iverilog/tgt-vhdl/stmt.cc

1472 lines
48 KiB
C++
Raw Normal View History

2008-06-03 19:26:36 +02:00
/*
* VHDL code generation for statements.
*
* Copyright (C) 2008 Nick Gasson (nick@nickg.me.uk)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "vhdl_target.h"
#include "state.hh"
2008-06-03 19:26:36 +02:00
#include <iostream>
2008-06-03 19:44:17 +02:00
#include <cstring>
#include <cassert>
#include <sstream>
#include <typeinfo>
#include <limits>
#include <set>
#include <algorithm>
2008-06-03 19:44:17 +02:00
/*
* VHDL has no real equivalent of Verilog's $finish task. The
* current solution is to use `assert false ...' to terminate
* the simulator. This isn't great, as the simulator will
* return a failure exit code when in fact it completed
* successfully.
*
* An alternative is to use the VHPI interface supported by
2008-09-09 18:30:47 +02:00
* some VHDL simulators and implement the $finish functionality
* in C. This function can be enabled with the flag
* -puse-vhpi-finish=1.
*/
static int draw_stask_finish(vhdl_procedural *proc, stmt_container *container,
2008-06-11 15:11:37 +02:00
ivl_statement_t stmt)
{
const char *use_vhpi = ivl_design_flag(get_vhdl_design(), "use-vhpi-finish");
if (strcmp(use_vhpi, "1") == 0) {
//get_active_entity()->requires_package("work.Verilog_Support");
container->add_stmt(new vhdl_pcall_stmt("work.Verilog_Support.Finish"));
}
else {
container->add_stmt(new vhdl_assert_stmt("SIMULATION FINISHED"));
}
return 0;
}
2008-06-03 19:44:17 +02:00
/*
* Generate VHDL for system tasks (like $display). Not all of
* these are supported.
*/
static int draw_stask(vhdl_procedural *proc, stmt_container *container,
2008-06-11 15:11:37 +02:00
ivl_statement_t stmt)
2008-06-03 19:44:17 +02:00
{
const char *name = ivl_stmt_name(stmt);
if (strcmp(name, "$display") == 0)
2008-06-20 20:00:07 +02:00
return draw_stask_display(proc, container, stmt, true);
else if (strcmp(name, "$write") == 0)
return draw_stask_display(proc, container, stmt, false);
else if (strcmp(name, "$finish") == 0)
2008-06-11 15:11:37 +02:00
return draw_stask_finish(proc, container, stmt);
2008-06-03 19:44:17 +02:00
else {
vhdl_seq_stmt *result = new vhdl_null_stmt();
ostringstream ss;
ss << "Unsupported system task " << name << " omitted here ("
<< ivl_stmt_file(stmt) << ":" << ivl_stmt_lineno(stmt) << ")";
result->set_comment(ss.str());
container->add_stmt(result);
cerr << "Warning: no VHDL translation for system task " << name << endl;
2008-06-03 19:44:17 +02:00
return 0;
}
}
2008-06-03 19:26:36 +02:00
/*
* Generate VHDL for a block of Verilog statements. This doesn't
* actually do anything, other than recursively translate the
* block's statements and add them to the process. This is OK as
2008-06-11 15:11:37 +02:00
* the stmt_container class behaves like a Verilog block.
*/
static int draw_block(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt, bool is_last)
{
int count = ivl_stmt_block_count(stmt);
for (int i = 0; i < count; i++) {
ivl_statement_t stmt_i = ivl_stmt_block_stmt(stmt, i);
if (draw_stmt(proc, container, stmt_i, is_last && i == count - 1) != 0)
return 1;
}
return 0;
}
2008-06-05 14:16:35 +02:00
/*
* A no-op statement. This corresponds to a `null' statement in VHDL.
2008-06-05 14:16:35 +02:00
*/
static int draw_noop(vhdl_procedural *proc, stmt_container *container,
2008-06-11 15:11:37 +02:00
ivl_statement_t stmt)
2008-06-05 14:16:35 +02:00
{
2008-06-11 15:11:37 +02:00
container->add_stmt(new vhdl_null_stmt());
2008-06-05 14:16:35 +02:00
return 0;
}
static vhdl_var_ref *make_assign_lhs(ivl_lval_t lval, vhdl_scope *scope)
2008-07-14 22:04:09 +02:00
{
ivl_signal_t sig = ivl_lval_sig(lval);
if (!sig) {
error("Only signals as lvals supported at the moment");
return NULL;
}
vhdl_expr *base = NULL;
ivl_expr_t e_off = ivl_lval_part_off(lval);
if (NULL == e_off)
e_off = ivl_lval_idx(lval);
if (e_off) {
if ((base = translate_expr(e_off)) == NULL)
return NULL;
vhdl_type integer(VHDL_TYPE_INTEGER);
base = base->cast(&integer);
}
unsigned lval_width = ivl_lval_width(lval);
string signame(get_renamed_signal(sig));
vhdl_decl *decl = scope->get_decl(signame);
assert(decl);
2008-07-14 22:04:09 +02:00
vhdl_type *ltype = new vhdl_type(*decl->get_type());
vhdl_var_ref *lval_ref = new vhdl_var_ref(signame.c_str(), ltype);
2008-07-17 14:41:44 +02:00
if (base) {
if (decl->get_type()->get_name() == VHDL_TYPE_ARRAY)
lval_ref->set_slice(base, 0);
else if (ivl_signal_width(sig) > 1)
2008-07-17 14:41:44 +02:00
lval_ref->set_slice(base, lval_width - 1);
}
2008-07-07 22:19:59 +02:00
return lval_ref;
}
static bool assignment_lvals(ivl_statement_t stmt, vhdl_procedural *proc,
list<vhdl_var_ref*> &lvals)
{
int nlvals = ivl_stmt_lvals(stmt);
for (int i = 0; i < nlvals; i++) {
ivl_lval_t lval = ivl_stmt_lval(stmt, i);
vhdl_var_ref *lhs = make_assign_lhs(lval, proc->get_scope());
if (NULL == lhs)
return false;
lvals.push_back(lhs);
}
return true;
}
/*
* Generate the right sort of assignment statement for assigning
* `lhs' to `rhs'.
*/
static vhdl_abstract_assign_stmt *
assign_for(vhdl_decl::assign_type_t atype, vhdl_var_ref *lhs, vhdl_expr *rhs)
{
switch (atype) {
case vhdl_decl::ASSIGN_BLOCK:
return new vhdl_assign_stmt(lhs, rhs);
case vhdl_decl::ASSIGN_NONBLOCK:
return new vhdl_nbassign_stmt(lhs, rhs);
default:
assert(false);
}
}
/*
* Check that this assignment type is valid within the context of `proc'.
* For example, a <= assignment is not valid within a function.
*/
bool check_valid_assignment(vhdl_decl::assign_type_t atype, vhdl_procedural *proc,
ivl_statement_t stmt)
{
if (atype == vhdl_decl::ASSIGN_NONBLOCK &&
!proc->get_scope()->allow_signal_assignment()) {
error("Unable to translate assignment at %s:%d\n"
" Translating this would require generating a non-blocking (<=)\n"
" assignment in a VHDL context where this is disallowed (e.g.\n"
" a function).", ivl_stmt_file(stmt), ivl_stmt_lineno(stmt));
return false;
}
else
return true;
}
/*
* Generate an assignment of type T for the Verilog statement stmt.
*/
void make_assignment(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt, bool blocking)
{
list<vhdl_var_ref*> lvals;
if (!assignment_lvals(stmt, proc, lvals))
return;
vhdl_expr *rhs, *rhs2 = NULL;
ivl_expr_t rval = ivl_stmt_rval(stmt);
if (ivl_expr_type(rval) == IVL_EX_TERNARY) {
rhs = translate_expr(ivl_expr_oper2(rval));
rhs2 = translate_expr(ivl_expr_oper3(rval));
}
else
rhs = translate_expr(rval);
if (rhs == NULL)
return;
if (lvals.size() == 1) {
vhdl_var_ref *lhs = lvals.front();
rhs = rhs->cast(lhs->get_type());
ivl_expr_t i_delay;
vhdl_expr *after = NULL;
if ((i_delay = ivl_stmt_delay_expr(stmt)) != NULL)
after = translate_time_expr(i_delay);
// Find the declaration of the LHS so we know what type
// of assignment statement to generate (is it a signal,
// a variable, etc?)
vhdl_decl *decl = proc->get_scope()->get_decl(lhs->get_name());
// A small optimisation is to expand ternary RHSs into an
// if statement (eliminates a function call and produces
// more idiomatic code)
if (ivl_expr_type(rval) == IVL_EX_TERNARY) {
rhs2 = rhs2->cast(lhs->get_type());
vhdl_var_ref *lhs2 =
make_assign_lhs(ivl_stmt_lval(stmt, 0), proc->get_scope());
vhdl_expr *test = translate_expr(ivl_expr_oper1(rval));
if (NULL == test)
return;
vhdl_if_stmt *vhdif = new vhdl_if_stmt(test);
if (!check_valid_assignment(decl->assignment_type(), proc, stmt))
return;
// True part
{
vhdl_abstract_assign_stmt *a =
assign_for(decl->assignment_type(), lhs, rhs);
if (after)
a->set_after(after);
vhdif->get_then_container()->add_stmt(a);
}
// False part
{
vhdl_abstract_assign_stmt *a =
assign_for(decl->assignment_type(), lhs2, rhs2);
if (after)
a->set_after(translate_time_expr(i_delay));
vhdif->get_else_container()->add_stmt(a);
}
container->add_stmt(vhdif);
return;
}
// Where possible, move constant assignments into the
// declaration as initialisers. This optimisation is only
// performed on assignments of constant values to prevent
// ordering problems.
2008-09-09 18:30:47 +02:00
// This also has another application: If this is an `initial'
// process and we haven't yet generated a `wait' statement then
// moving the assignment to the initialization preserves the
// expected Verilog behaviour: VHDL does not distinguish
// `initial' and `always' processes so an `always' process might
// be activated before an `initial' process at time 0. The
// `always' process may then use the uninitialised signal value.
// The second test ensures that we only try to initialise
// internal signals not ports
ivl_lval_t lval = ivl_stmt_lval(stmt, 0);
if (proc->get_scope()->initializing()
&& ivl_signal_port(ivl_lval_sig(lval)) == IVL_SIP_NONE
&& !decl->has_initial()
&& rhs->constant()
&& decl->get_type()->get_name() != VHDL_TYPE_ARRAY) {
// If this assignment is not in the top-level container
// it will not be made on all paths through the code
// This precludes any future extraction of an initialiser
if (container != proc->get_container())
decl->set_initial(NULL); // Default initial value
else {
decl->set_initial(rhs);
delete lhs;
return;
}
}
if (!check_valid_assignment(decl->assignment_type(), proc, stmt))
return;
vhdl_abstract_assign_stmt *a =
assign_for(decl->assignment_type(), lhs, rhs);
container->add_stmt(a);
if (after != NULL)
a->set_after(after);
}
else {
// Multiple lvals are implemented by first assigning the complete
// RHS to a temporary, and then assigning each lval in turn as
// bit-selects of the temporary
static int tmp_count = 0;
ostringstream ss;
ss << "Verilog_Assign_Tmp_" << tmp_count++;
string tmpname = ss.str();
proc->get_scope()->add_decl
(new vhdl_var_decl(tmpname.c_str(), new vhdl_type(*rhs->get_type())));
vhdl_var_ref *tmp_ref =
new vhdl_var_ref(tmpname.c_str(), new vhdl_type(*rhs->get_type()));
container->add_stmt(new vhdl_assign_stmt(tmp_ref, rhs));
list<vhdl_var_ref*>::iterator it;
int width_so_far = 0;
for (it = lvals.begin(); it != lvals.end(); ++it) {
vhdl_var_ref *tmp_rhs =
new vhdl_var_ref(tmpname.c_str(), new vhdl_type(*rhs->get_type()));
int lval_width = (*it)->get_type()->get_width();
vhdl_expr *slice_base = new vhdl_const_int(width_so_far);
tmp_rhs->set_slice(slice_base, lval_width - 1);
ivl_expr_t i_delay;
vhdl_expr *after = NULL;
if ((i_delay = ivl_stmt_delay_expr(stmt)) != NULL)
after = translate_time_expr(i_delay);
// Find the declaration of the LHS so we know what type
// of assignment statement to generate (is it a signal,
// a variable, etc?)
vhdl_decl *decl = proc->get_scope()->get_decl((*it)->get_name());
if (!check_valid_assignment(decl->assignment_type(), proc, stmt))
return;
vhdl_abstract_assign_stmt *a =
assign_for(decl->assignment_type(), *it, tmp_rhs);
if (after)
a->set_after(after);
container->add_stmt(a);
width_so_far += lval_width;
}
2008-06-18 14:06:27 +02:00
}
}
/*
* A non-blocking assignment inside a process. The semantics for
* this are essentially the same as VHDL's non-blocking signal
* assignment.
*/
static int draw_nbassign(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt)
{
assert(proc->get_scope()->allow_signal_assignment());
make_assignment(proc, container, stmt, false);
return 0;
}
static int draw_assign(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt, bool is_last)
{
if (proc->get_scope()->allow_signal_assignment()) {
2008-07-15 15:09:24 +02:00
// Blocking assignment is implemented as non-blocking assignment
// followed by a zero-time wait
// This follows the Verilog semantics fairly closely.
make_assignment(proc, container, stmt, false);
// Don't generate a zero-wait if this is the last statement in
// the process
if (!is_last) {
container->add_stmt
(new vhdl_wait_stmt(VHDL_WAIT_FOR0));
proc->added_wait_stmt();
}
}
else
make_assignment(proc, container, stmt, true);
return 0;
}
/*
* The VHDL code generator inserts `wait for 0 ns' after each
* not-last-in-block blocking assignment.
* If this is immediately followed by another `wait for ...' then
* we might as well not emit the first zero-time wait.
*/
void prune_wait_for_0(stmt_container *container)
{
vhdl_wait_stmt *wait0;
stmt_container::stmt_list_t &stmts = container->get_stmts();
while (stmts.size() > 0
&& (wait0 = dynamic_cast<vhdl_wait_stmt*>(stmts.back()))) {
if (wait0->get_type() == VHDL_WAIT_FOR0) {
delete wait0;
stmts.pop_back();
}
else
break;
}
}
/*
* Delay statements are equivalent to the `wait for' form of the
* VHDL wait statement.
*/
static int draw_delay(vhdl_procedural *proc, stmt_container *container,
2008-06-11 15:11:37 +02:00
ivl_statement_t stmt)
{
2008-06-09 13:40:59 +02:00
// This currently ignores the time units and precision
// of the enclosing scope
// A neat way to do this would be to make these values
// constants in the scope (type is Time), and have the
// VHDL wait statement compute the value from that.
// The other solution is to add them as parameters to
// the vhdl_process class
2008-06-19 13:16:19 +02:00
vhdl_expr *time;
if (ivl_statement_type(stmt) == IVL_ST_DELAY) {
uint64_t value = ivl_stmt_delay_val(stmt);
time = new vhdl_const_time(value, TIME_UNIT_NS);
}
else {
time = translate_time_expr(ivl_stmt_delay_expr(stmt));
2008-06-19 13:16:19 +02:00
if (NULL == time)
return 1;
}
prune_wait_for_0(container);
ivl_statement_t sub_stmt = ivl_stmt_sub_stmt(stmt);
vhdl_wait_stmt *wait =
new vhdl_wait_stmt(VHDL_WAIT_FOR, time);
// Remember that we needed a wait statement so if this is
// a process it cannot have a sensitivity list
proc->added_wait_stmt();
container->add_stmt(wait);
// Expand the sub-statement as well
// Often this would result in a useless `null' statement which
// is caught here instead
if (ivl_statement_type(sub_stmt) != IVL_ST_NOOP)
draw_stmt(proc, container, sub_stmt);
2008-06-09 13:40:59 +02:00
// Any further assignments occur after simulation time 0
// so they cannot be used to initialise signal declarations
// (if this scope is an initial process)
proc->get_scope()->set_initializing(false);
return 0;
}
/*
* Build a set of all the nexuses referenced by signals in `expr'.
*/
static void get_nexuses_from_expr(ivl_expr_t expr, set<ivl_nexus_t> &out)
{
switch (ivl_expr_type(expr)) {
case IVL_EX_SIGNAL:
out.insert(ivl_signal_nex(ivl_expr_signal(expr), 0));
break;
case IVL_EX_TERNARY:
get_nexuses_from_expr(ivl_expr_oper3(expr), out);
case IVL_EX_BINARY:
get_nexuses_from_expr(ivl_expr_oper2(expr), out);
case IVL_EX_UNARY:
get_nexuses_from_expr(ivl_expr_oper1(expr), out);
break;
default:
break;
}
}
/*
* Attempt to identify common forms of wait statements and produce
* more idiomatic VHDL than would be produced by the generic
* draw_wait funciton. The main application of this is a input to
* synthesis tools that don't synthesise the full VHDL language.
* If none of these patterns are matched, the function returns false
* and the default draw_wait is used.
*
* Current patterns:
* always @(posedge A or posedge B)
* if (A)
* ...
* else
* ...
*
* This is assumed to be the template for a FF with asynchronous
* reset. A is assumed to be the reset as it is dominant. This will
* produce the following VHDL:
*
* process (A, B) is
* begin
* if A = '1' then
* ...
* else if rising_edge(B) then
* ...
* end if;
* end process;
*/
static bool draw_synthesisable_wait(vhdl_process *proc, stmt_container *container,
ivl_statement_t stmt)
{
// At the moment this only detects FFs with an asynchronous reset
// All other code will fall back on the default draw_wait
// Store a set of the edge triggered signals
// The second item is true if this is positive-edge
set<ivl_nexus_t> edge_triggered;
const int nevents = ivl_stmt_nevent(stmt);
for (int i = 0; i < nevents; i++) {
ivl_event_t event = ivl_stmt_events(stmt, i);
if (ivl_event_nany(event) > 0)
return false;
int npos = ivl_event_npos(event);
for (int j = 0; j < npos; j++)
edge_triggered.insert(ivl_event_pos(event, j));
int nneg = ivl_event_nneg(event);
for (int j = 0; j < nneg; j++)
edge_triggered.insert(ivl_event_neg(event, j));
}
// If we're edge-sensitive to less than two signals this doesn't
// match the expected template, so use the default draw_wait
if (edge_triggered.size() < 2)
return false;
// Now check to see if the immediately embedded statement is an `if'
ivl_statement_t sub_stmt = ivl_stmt_sub_stmt(stmt);
if (ivl_statement_type(sub_stmt) != IVL_ST_CONDIT)
return false;
// The if should have two branches: one is the reset branch and
// one is the clocked branch
if (ivl_stmt_cond_false(sub_stmt) == NULL)
return false;
// Check the first branch of the if statement
// If it matches exactly one of the edge-triggered signals then assume
// this is the (dominant) reset branch
set<ivl_nexus_t> test_nexuses;
get_nexuses_from_expr(ivl_stmt_cond_expr(sub_stmt), test_nexuses);
// Now subtracting this set from the set of edge triggered events
// should leave just one nexus, which is hopefully the clock.
// If not, then we fall back on the default draw_wait
set<ivl_nexus_t> clock_net;
set_difference(edge_triggered.begin(), edge_triggered.end(),
test_nexuses.begin(), test_nexuses.end(),
inserter(clock_net, clock_net.begin()));
if (clock_net.size() != 1)
return false;
// Build a VHDL `if' statement to model this
vhdl_expr *reset_test = translate_expr(ivl_stmt_cond_expr(sub_stmt));
vhdl_if_stmt *body = new vhdl_if_stmt(reset_test);
// Draw the reset branch
draw_stmt(proc, body->get_then_container(), ivl_stmt_cond_true(sub_stmt));
// Build a test for the clock event
vhdl_fcall *edge = NULL;
ivl_nexus_t the_clock_net = *clock_net.begin();
for (int i = 0; i < nevents; i++) {
ivl_event_t event = ivl_stmt_events(stmt, i);
const unsigned npos = ivl_event_npos(event);
for (unsigned j = 0; j < npos; j++) {
if (ivl_event_pos(event, j) == the_clock_net)
edge = new vhdl_fcall("rising_edge", vhdl_type::boolean());
}
const unsigned nneg = ivl_event_nneg(event);
for (unsigned j = 0; j < nneg; j++)
if (ivl_event_neg(event, j) == the_clock_net)
edge = new vhdl_fcall("falling_edge", vhdl_type::boolean());
}
assert(edge);
edge->add_expr(nexus_to_var_ref(proc->get_scope(), *clock_net.begin()));
// Draw the clocked branch
// For an asynchronous reset we just want this around the else branch,
stmt_container *else_container = body->add_elsif(edge);
draw_stmt(proc, else_container, ivl_stmt_cond_false(sub_stmt));
if (proc->contains_wait_stmt()) {
// Expanding the body produced a `wait' statement which can't
// be included in a sensitised process so undo all this work
// and fall back on the default draw_wait
delete body;
return false;
}
else
container->add_stmt(body);
// Add all the edge triggered signals to the sensitivity list
for (set<ivl_nexus_t>::const_iterator it = edge_triggered.begin();
it != edge_triggered.end(); ++it) {
// Get the signal that represents this nexus in this scope
vhdl_var_ref *ref = nexus_to_var_ref(proc->get_scope(), *it);
proc->add_sensitivity(ref->get_name());
// Don't need the reference any more
delete ref;
}
// Don't bother with the default draw_wait
return true;
}
/*
* A wait statement waits for a level change on a @(..) list of
* signals. The logic here might seem a little bit convoluted,
* it attempts to always produce something that will simulate
* correctly, and tries to produce something that will also
* synthesise correctly (although not at the expense of simulation
* accuracy).
*
* The difficulty stems from VHDL's restriction that a process with
* a sensitivity list may not contain any `wait' statements: we need
* to generate these to accurately model some Verilog statements.
*
* The steps followed are:
* 1) Determine whether this is the top-level statement in the process
* 2) If this is top-level, call draw_synthesisable_wait to see if the
* process and wait statement match any templates for which we know
* how to produce good, idiomatic synthesisable VHDL (e.g. FF with
* async reset)
* 3) Determine whether the process is combinatorial (purely level
* sensitive), or sequential (edge sensitive)
* 4) Draw all of the statements in the body
* 5) One of the following will be true:
* A) The process is combinatorial, top-level, and there are
* no `wait' statements in the body: add all the level-sensitive
* signals to the VHDL sensitivity list
* B) The process is combinatorial, and there *are* `wait'
* statements in the body or it is not top-level: generate
* a VHDL `wait-on' statement at the end of the body containing
* the level-sensitive signals
* C) The process is sequential, top-level, and there are
* no `wait' statements in the body: build an `if' statement
* with the edge-detecting expression and wrap the process
* in it.
* D) The process is sequential, there *are* `wait' statements
* in the body, or it is not top-level: generate a VHDL
* `wait-until' with the edge-detecting expression and add
* it before the body of the wait event.
*/
static int draw_wait(vhdl_procedural *_proc, stmt_container *container,
2008-06-11 15:11:37 +02:00
ivl_statement_t stmt)
{
// Wait statements only occur in processes
vhdl_process *proc = dynamic_cast<vhdl_process*>(_proc);
assert(proc); // Catch not process
// If this container is the top-level statement (i.e. it is the
// first thing inside a process) then we can extract these
// events out into the sensitivity list
bool is_top_level = proc->get_container()->empty();
// See if this can be implemented in a more idomatic way before we
// fall back on the generic translation
if (is_top_level && draw_synthesisable_wait(proc, container, stmt))
return 0;
2008-06-06 18:36:15 +02:00
int nevents = ivl_stmt_nevent(stmt);
bool combinatorial = true; // True if no negedge/posedge events
2008-06-06 18:36:15 +02:00
for (int i = 0; i < nevents; i++) {
ivl_event_t event = ivl_stmt_events(stmt, i);
if (ivl_event_npos(event) > 0 || ivl_event_nneg(event) > 0)
combinatorial = false;
}
2008-06-06 18:36:15 +02:00
if (combinatorial) {
// If the process has no wait statement in its body then
// add all the events to the sensitivity list, otherwise
// build a wait-on statement at the end of the process
draw_stmt(proc, container, ivl_stmt_sub_stmt(stmt), true);
vhdl_wait_stmt *wait = NULL;
if (proc->contains_wait_stmt() || !is_top_level)
wait = new vhdl_wait_stmt(VHDL_WAIT_ON);
for (int i = 0; i < nevents; i++) {
ivl_event_t event = ivl_stmt_events(stmt, i);
int nany = ivl_event_nany(event);
for (int j = 0; j < nany; j++) {
ivl_nexus_t nexus = ivl_event_any(event, j);
vhdl_var_ref *ref = nexus_to_var_ref(proc->get_scope(), nexus);
2008-06-06 18:36:15 +02:00
if (wait)
wait->add_sensitivity(ref->get_name());
else
proc->add_sensitivity(ref->get_name());
delete ref;
}
2008-06-12 11:36:38 +02:00
}
if (wait)
container->add_stmt(wait);
}
else {
// Build a test expression to represent the edge event
// If this process contains no `wait' statements and this
// is the top-level container then we
// wrap it in an `if' statement with this test and add the
// edge triggered signals to the sensitivity, otherwise
// build a `wait until' statement at the top of the process
vhdl_binop_expr *test =
new vhdl_binop_expr(VHDL_BINOP_OR, vhdl_type::boolean());
stmt_container tmp_container;
draw_stmt(proc, &tmp_container, ivl_stmt_sub_stmt(stmt), true);
for (int i = 0; i < nevents; i++) {
ivl_event_t event = ivl_stmt_events(stmt, i);
2008-06-12 11:36:38 +02:00
int nany = ivl_event_nany(event);
for (int j = 0; j < nany; j++) {
ivl_nexus_t nexus = ivl_event_any(event, j);
vhdl_var_ref *ref = nexus_to_var_ref(proc->get_scope(), nexus);
ref->set_name(ref->get_name() + "'Event");
test->add_expr(ref);
if (!proc->contains_wait_stmt() && is_top_level)
proc->add_sensitivity(ref->get_name());
}
int nneg = ivl_event_nneg(event);
for (int j = 0; j < nneg; j++) {
ivl_nexus_t nexus = ivl_event_neg(event, j);
vhdl_var_ref *ref = nexus_to_var_ref(proc->get_scope(), nexus);
vhdl_fcall *detect =
new vhdl_fcall("falling_edge", vhdl_type::boolean());
detect->add_expr(ref);
test->add_expr(detect);
if (!proc->contains_wait_stmt() && is_top_level)
proc->add_sensitivity(ref->get_name());
}
int npos = ivl_event_npos(event);
for (int j = 0; j < npos; j++) {
ivl_nexus_t nexus = ivl_event_pos(event, j);
vhdl_var_ref *ref = nexus_to_var_ref(proc->get_scope(), nexus);
vhdl_fcall *detect =
new vhdl_fcall("rising_edge", vhdl_type::boolean());
detect->add_expr(ref);
test->add_expr(detect);
if (!proc->contains_wait_stmt() && is_top_level)
proc->add_sensitivity(ref->get_name());
}
2008-06-12 11:36:38 +02:00
}
if (proc->contains_wait_stmt() || !is_top_level) {
container->add_stmt(new vhdl_wait_stmt(VHDL_WAIT_UNTIL, test));
container->move_stmts_from(&tmp_container);
}
else {
// Wrap the whole process body in an `if' statement to detect
// the edge event
vhdl_if_stmt *edge_detect = new vhdl_if_stmt(test);
// Move all the statements from the process body into the `if'
// statement
edge_detect->get_then_container()->move_stmts_from(&tmp_container);
container->add_stmt(edge_detect);
}
2008-06-06 18:36:15 +02:00
}
return 0;
}
static int draw_if(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt, bool is_last)
2008-06-11 15:11:37 +02:00
{
2008-06-11 15:20:05 +02:00
vhdl_expr *test = translate_expr(ivl_stmt_cond_expr(stmt));
if (NULL == test)
return 1;
vhdl_if_stmt *vhdif = new vhdl_if_stmt(test);
ivl_statement_t cond_true_stmt = ivl_stmt_cond_true(stmt);
if (cond_true_stmt)
draw_stmt(proc, vhdif->get_then_container(), cond_true_stmt, is_last);
ivl_statement_t cond_false_stmt = ivl_stmt_cond_false(stmt);
if (cond_false_stmt)
draw_stmt(proc, vhdif->get_else_container(), cond_false_stmt, is_last);
2008-06-11 15:20:05 +02:00
container->add_stmt(vhdif);
2008-06-11 15:11:37 +02:00
return 0;
}
static vhdl_var_ref *draw_case_test(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt)
2008-06-21 16:03:36 +02:00
{
vhdl_expr *test = translate_expr(ivl_stmt_cond_expr(stmt));
if (NULL == test)
return NULL;
// VHDL case expressions are required to be quite simple: variable
// references or slices. So we may need to create a temporary
// variable to hold the result of the expression evaluation
if (typeid(*test) != typeid(vhdl_var_ref)) {
const char *tmp_name = "Verilog_Case_Ex";
vhdl_type *test_type = new vhdl_type(*test->get_type());
if (!proc->get_scope()->have_declared(tmp_name)) {
proc->get_scope()->add_decl
(new vhdl_var_decl(tmp_name, new vhdl_type(*test_type)));
}
vhdl_var_ref *tmp_ref = new vhdl_var_ref(tmp_name, NULL);
container->add_stmt(new vhdl_assign_stmt(tmp_ref, test));
return new vhdl_var_ref(tmp_name, test_type);
}
else
return dynamic_cast<vhdl_var_ref*>(test);
}
static int draw_case(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt, bool is_last)
{
vhdl_var_ref *test = draw_case_test(proc, container, stmt);
if (NULL == test)
return 1;
2008-06-21 16:03:36 +02:00
vhdl_case_stmt *vhdlcase = new vhdl_case_stmt(test);
container->add_stmt(vhdlcase);
// VHDL is more strict than Verilog about covering every
// possible case. So make sure we add an 'others' branch
// if there isn't a default one.
bool have_others = false;
2008-06-21 16:03:36 +02:00
int nbranches = ivl_stmt_case_count(stmt);
for (int i = 0; i < nbranches; i++) {
2008-07-04 12:10:20 +02:00
vhdl_expr *when;
ivl_expr_t net = ivl_stmt_case_expr(stmt, i);
if (net) {
2008-07-04 12:10:20 +02:00
when = translate_expr(net)->cast(test->get_type());
if (NULL == when)
return 1;
}
else {
2008-07-04 12:10:20 +02:00
when = new vhdl_var_ref("others", NULL);
have_others = true;
}
2008-07-04 12:10:20 +02:00
vhdl_case_branch *branch = new vhdl_case_branch(when);
vhdlcase->add_branch(branch);
ivl_statement_t stmt_i = ivl_stmt_case_stmt(stmt, i);
draw_stmt(proc, branch->get_container(), stmt_i, is_last);
2008-06-21 16:03:36 +02:00
}
2008-07-04 12:10:20 +02:00
if (!have_others) {
vhdl_case_branch *others =
new vhdl_case_branch(new vhdl_var_ref("others", NULL));
others->get_container()->add_stmt(new vhdl_null_stmt());
vhdlcase->add_branch(others);
}
2008-06-21 16:03:36 +02:00
return 0;
}
/*
* Check to see if the given number (expression) can be represented
* accurately in a long value.
*/
static bool number_is_long(ivl_expr_t expr)
{
ivl_expr_type_t type = ivl_expr_type(expr);
assert(type == IVL_EX_NUMBER || type == IVL_EX_ULONG);
// Make sure the ULONG can be represented correctly in a long.
if (type == IVL_EX_ULONG) {
unsigned long val = ivl_expr_uvalue(expr);
if (val > static_cast<unsigned>(numeric_limits<long>::max())) {
return false;
}
return true;
}
// Check to see if the number actually fits in a long.
unsigned nbits = ivl_expr_width(expr);
if (nbits >= 8*sizeof(long)) {
const char*bits = ivl_expr_bits(expr);
char pad_bit = bits[nbits-1];
for (unsigned idx = 8*sizeof(long); idx < nbits; idx++) {
if (bits[idx] != pad_bit) return false;
}
}
return true;
}
/*
* Return the given number (expression) as a signed long value.
*
* Make sure to call number_is_long() first to verify that the number
* can be represented accurately in a long value.
*/
static long get_number_as_long(ivl_expr_t expr)
{
long imm = 0;
switch (ivl_expr_type(expr)) {
case IVL_EX_ULONG:
imm = ivl_expr_uvalue(expr);
break;
case IVL_EX_NUMBER: {
const char*bits = ivl_expr_bits(expr);
unsigned nbits = ivl_expr_width(expr);
if (nbits > 8*sizeof(long)) nbits = 8*sizeof(long);
for (unsigned idx = 0; idx < nbits; idx++) {
switch (bits[idx]) {
case '0':
break;
case '1':
imm |= 1L << idx;
break;
default:
assert(0);
}
if (ivl_expr_signed(expr) && bits[nbits-1] == '1' &&
nbits < 8*sizeof(long)) imm |= -1L << nbits;
}
break;
}
default:
assert(0);
}
return imm;
}
/*
* Build a check against a constant 'x'. This is for an out of range
* or undefined select.
*/
static void check_against_x(vhdl_binop_expr *all, vhdl_var_ref *test,
ivl_expr_t expr, unsigned width, unsigned base,
bool is_casez)
{
if (is_casez) {
// For a casez we need to check against 'x'.
for (unsigned i = 0; i < ivl_expr_width(expr); i++) {
vhdl_binop_expr *sub_expr =
new vhdl_binop_expr(VHDL_BINOP_OR, vhdl_type::boolean());
vhdl_type *type;
vhdl_var_ref *ref;
// Check if the test bit is 'z'.
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
vhdl_binop_expr *cmp =
new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(new vhdl_const_bit('z'));
sub_expr->add_expr(cmp);
// Compare the test bit against a constant 'x'.
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(new vhdl_const_bit('x'));
sub_expr->add_expr(cmp);
all->add_expr(sub_expr);
}
} else {
// For a casex 'x' is a don't care, so just put 'true'.
all->add_expr(new vhdl_const_bool(true));
}
}
/*
* Build the test signal to constant bits check.
*/
static void process_number(vhdl_binop_expr *all, vhdl_var_ref *test,
ivl_expr_t expr, unsigned width, unsigned base,
bool is_casez)
{
const char *bits = ivl_expr_bits(expr);
bool just_dont_care = true;
for (unsigned i = 0; i < ivl_expr_width(expr); i++) {
switch (bits[i]) {
case 'x':
if (is_casez) break;
case '?':
case 'z':
continue; // Ignore these.
}
vhdl_binop_expr *sub_expr =
new vhdl_binop_expr(VHDL_BINOP_OR, vhdl_type::boolean());
vhdl_type *type;
vhdl_var_ref *ref;
// Check if the test bit is 'z'.
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
vhdl_binop_expr *cmp =
new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(new vhdl_const_bit('z'));
sub_expr->add_expr(cmp);
// If this is a casex statement check if the test bit is 'x'.
if (!is_casez) {
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(new vhdl_const_bit('x'));
sub_expr->add_expr(cmp);
}
// Compare the bit against the constant value.
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(new vhdl_const_bit(bits[i]));
sub_expr->add_expr(cmp);
all->add_expr(sub_expr);
just_dont_care = false;
}
// If there are no bits comparisons then just put a True
if (just_dont_care) {
all->add_expr(new vhdl_const_bool(true));
}
}
/*
* Build the test signal to label signal check.
*/
static bool process_signal(vhdl_binop_expr *all, vhdl_var_ref *test,
ivl_expr_t expr, unsigned width, unsigned base,
bool is_casez, unsigned swid, long sbase)
{
// If the word or dimensions are not zero then we have an array.
if (ivl_expr_oper1(expr) != 0 ||
ivl_signal_dimensions(ivl_expr_signal(expr)) != 0) {
error("Sorry, array selects are not currently allowed in this "
"context.");
return true;
}
unsigned ewid = ivl_expr_width(expr);
for (unsigned i = 0; i < swid; i++) {
// Generate a comparison for this bit position
vhdl_binop_expr *cmp;
vhdl_type *type;
vhdl_var_ref *ref;
// Check if this is an out of bounds access. If this is a casez
// then check against a constant 'x' for the out of bound bits
// otherwise skip the check (casex).
if (i + sbase >= ewid || i + sbase < 0) {
if (is_casez) {
// Get the current test bit.
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
// Compare the bit against 'x'.
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(new vhdl_const_bit('x'));
all->add_expr(cmp);
continue;
} else {
// The compiler replaces a completely out of range select
// with a constant so we know there will be at least one
// valid bit here. We don't need a just_dont_care test.
continue;
}
}
vhdl_binop_expr *sub_expr =
new vhdl_binop_expr(VHDL_BINOP_OR, vhdl_type::boolean());
vhdl_var_ref *bit;
// Get the current expression bit.
// Why can we reuse the expression bit, but not the condition bit?
type = vhdl_type::nunsigned(ivl_expr_width(expr));
bit = new vhdl_var_ref(ivl_expr_name(expr), type);
bit->set_slice(new vhdl_const_int(i+sbase));
// Check if the expression bit is 'z'.
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(bit);
cmp->add_expr(new vhdl_const_bit('z'));
sub_expr->add_expr(cmp);
// If this is a casex statement check if the expression bit is 'x'.
if (!is_casez) {
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(bit);
cmp->add_expr(new vhdl_const_bit('x'));
sub_expr->add_expr(cmp);
}
// Check if the test bit is 'z'.
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(new vhdl_const_bit('z'));
sub_expr->add_expr(cmp);
// If this is a casex statement check if the test bit is 'x'.
if (!is_casez) {
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(new vhdl_const_bit('x'));
sub_expr->add_expr(cmp);
}
// Next check if the test and expression bits are equal.
type = vhdl_type::nunsigned(width);
ref = new vhdl_var_ref(test->get_name().c_str(), type);
ref->set_slice(new vhdl_const_int(i+base));
cmp = new vhdl_binop_expr(VHDL_BINOP_EQ, vhdl_type::boolean());
cmp->add_expr(ref);
cmp->add_expr(bit);
sub_expr->add_expr(cmp);
all->add_expr(sub_expr);
}
return false;
}
/*
* These are the constructs that we allow in a casex/z label
* expression. Returns true on failure.
*/
static bool process_expr_bits(vhdl_binop_expr *all, vhdl_var_ref *test,
ivl_expr_t expr, unsigned width, unsigned base,
bool is_casez)
{
assert(ivl_expr_width(expr)+base <= width);
switch (ivl_expr_type(expr)) {
case IVL_EX_CONCAT:
// Loop repeat number of times processing each sub element.
for (unsigned repeat = 0; repeat < ivl_expr_repeat(expr); repeat++) {
unsigned nparms = ivl_expr_parms(expr) - 1;
for (unsigned parm = 0; parm <= nparms; parm++) {
ivl_expr_t pexpr = ivl_expr_parm(expr, nparms-parm);
if (process_expr_bits(all, test, pexpr, width, base, is_casez))
return true;
base += ivl_expr_width(pexpr);
}
}
break;
case IVL_EX_NUMBER:
process_number(all, test, expr, width, base, is_casez);
break;
case IVL_EX_SIGNAL:
if (process_signal(all, test, expr, width, base, is_casez,
ivl_expr_width(expr), 0)) return true;
break;
case IVL_EX_SELECT: {
ivl_expr_t bexpr = ivl_expr_oper2(expr);
if (ivl_expr_type(bexpr) != IVL_EX_NUMBER &&
ivl_expr_type(bexpr) != IVL_EX_ULONG) {
error("Sorry, only constant bit/part selects are currently allowed "
"in this context.");
return true;
}
// If the number is out of bounds or an 'x' then check against 'x'.
if (!number_is_long(bexpr)) {
check_against_x(all, test, expr, width, base, is_casez);
} else if (process_signal(all, test, ivl_expr_oper1(expr), width, base,
is_casez, ivl_expr_width(expr),
get_number_as_long(bexpr))) return true;
break;
}
default:
error("Sorry, expression type %d is not currently supported.",
ivl_expr_type(expr));
return true;
break;
}
return false;
}
/*
* A casex/z statement cannot be directly translated to a VHDL case
* statement as VHDL does not treat the don't-care bit as special.
* The solution here is to generate an if statement from the casex/z
* which compares only the non-don't-care bit positions.
*/
int draw_casezx(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt, bool is_last)
{
vhdl_var_ref *test = draw_case_test(proc, container, stmt);
if (NULL == test)
return 1;
vhdl_if_stmt *result = NULL;
int nbranches = ivl_stmt_case_count(stmt);
bool is_casez = ivl_statement_type(stmt) == IVL_ST_CASEZ;
for (int i = 0; i < nbranches; i++) {
stmt_container *where = NULL;
ivl_expr_t net = ivl_stmt_case_expr(stmt, i);
if (net) {
vhdl_binop_expr *all =
new vhdl_binop_expr(VHDL_BINOP_AND, vhdl_type::boolean());
// The net must be something we can generate a comparison for.
if (process_expr_bits(all, test, net, ivl_expr_width(net), 0,
is_casez)) {
error("%s:%d: Sorry, only case%s statements with simple "
"expression labels can be translated to VHDL",
ivl_stmt_file(stmt), ivl_stmt_lineno(stmt),
(is_casez ? "z" : "x"));
return 1;
}
if (result)
where = result->add_elsif(all);
else {
result = new vhdl_if_stmt(all);
where = result->get_then_container();
}
}
else {
// This the default case and therefore the `else' branch
assert(result);
where = result->get_else_container();
}
// `where' now points to a branch of an if statement which
// corresponds to this casex/z branch
assert(where);
draw_stmt(proc, where, ivl_stmt_case_stmt(stmt, i), is_last);
}
// Add a comment to say that this corresponds to a casex/z statement
// as this may not be obvious
ostringstream ss;
ss << "Generated from case"
<< (is_casez ? 'z' : 'x')
<< " statement at " << ivl_stmt_file(stmt) << ":" << ivl_stmt_lineno(stmt);
result->set_comment(ss.str());
container->add_stmt(result);
// We don't actually use the generated `test' expression
delete test;
return 0;
}
int draw_while(vhdl_procedural *proc, stmt_container *container,
2008-06-21 16:13:44 +02:00
ivl_statement_t stmt)
{
vhdl_expr *test = translate_expr(ivl_stmt_cond_expr(stmt));
if (NULL == test)
return 1;
// The test must be a Boolean (and std_logic and (un)signed types
// must be explicitly cast unlike in Verilog)
vhdl_type boolean(VHDL_TYPE_BOOLEAN);
test = test->cast(&boolean);
2008-06-21 16:13:44 +02:00
vhdl_while_stmt *loop = new vhdl_while_stmt(test);
container->add_stmt(loop);
draw_stmt(proc, loop->get_container(), ivl_stmt_sub_stmt(stmt));
return 0;
}
2008-07-24 15:30:10 +02:00
int draw_forever(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt)
{
vhdl_loop_stmt *loop = new vhdl_loop_stmt;
container->add_stmt(loop);
draw_stmt(proc, loop->get_container(), ivl_stmt_sub_stmt(stmt));
return 0;
}
2008-07-24 15:52:06 +02:00
int draw_repeat(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt)
{
vhdl_expr *times = translate_expr(ivl_stmt_cond_expr(stmt));
if (NULL == times)
return 1;
vhdl_type integer(VHDL_TYPE_INTEGER);
times = times->cast(&integer);
const char *it_name = "Verilog_Repeat";
vhdl_for_stmt *loop =
new vhdl_for_stmt(it_name, new vhdl_const_int(1), times);
container->add_stmt(loop);
draw_stmt(proc, loop->get_container(), ivl_stmt_sub_stmt(stmt));
return 0;
}
/*
* Tasks are difficult to translate to VHDL since they allow things
* not allowed by VHDL's corresponding procedures (e.g. updating
* global variables. The solution here is to expand tasks in-line.
*/
int draw_utask(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt)
{
ivl_scope_t tscope = ivl_stmt_call(stmt);
// TODO: adding some comments to the output would be helpful
2008-09-09 18:30:47 +02:00
// TOOD: this completely ignores parameters!
draw_stmt(proc, container, ivl_scope_def(tscope), false);
return 0;
}
2008-06-03 19:26:36 +02:00
/*
* Generate VHDL statements for the given Verilog statement and
2008-06-11 15:11:37 +02:00
* add them to the given VHDL process. The container is the
* location to add statements: e.g. the process body, a branch
* of an if statement, etc.
*
* The flag is_last should be set if this is the final statement
* in a block or process. It avoids generating useless `wait for 0ns'
* statements if the next statement would be a wait anyway.
2008-06-03 19:26:36 +02:00
*/
int draw_stmt(vhdl_procedural *proc, stmt_container *container,
ivl_statement_t stmt, bool is_last)
2008-06-03 19:26:36 +02:00
{
2008-06-21 16:03:36 +02:00
assert(stmt);
2008-06-03 19:44:17 +02:00
switch (ivl_statement_type(stmt)) {
case IVL_ST_STASK:
2008-06-11 15:11:37 +02:00
return draw_stask(proc, container, stmt);
case IVL_ST_BLOCK:
return draw_block(proc, container, stmt, is_last);
2008-06-05 14:16:35 +02:00
case IVL_ST_NOOP:
2008-06-11 15:11:37 +02:00
return draw_noop(proc, container, stmt);
case IVL_ST_ASSIGN:
return draw_assign(proc, container, stmt, is_last);
case IVL_ST_ASSIGN_NB:
2008-06-11 15:11:37 +02:00
return draw_nbassign(proc, container, stmt);
case IVL_ST_DELAY:
2008-06-19 13:16:19 +02:00
case IVL_ST_DELAYX:
2008-06-11 15:11:37 +02:00
return draw_delay(proc, container, stmt);
case IVL_ST_WAIT:
2008-06-11 15:11:37 +02:00
return draw_wait(proc, container, stmt);
case IVL_ST_CONDIT:
return draw_if(proc, container, stmt, is_last);
2008-06-21 16:03:36 +02:00
case IVL_ST_CASE:
return draw_case(proc, container, stmt, is_last);
2008-06-21 16:13:44 +02:00
case IVL_ST_WHILE:
return draw_while(proc, container, stmt);
2008-07-24 15:30:10 +02:00
case IVL_ST_FOREVER:
return draw_forever(proc, container, stmt);
2008-07-24 15:52:06 +02:00
case IVL_ST_REPEAT:
return draw_repeat(proc, container, stmt);
case IVL_ST_UTASK:
return draw_utask(proc, container, stmt);
2008-08-18 16:29:30 +02:00
case IVL_ST_FORCE:
case IVL_ST_RELEASE:
error("force/release statements cannot be translated to VHDL");
return 1;
case IVL_ST_DISABLE:
error("disable statement cannot be translated to VHDL");
return 1;
case IVL_ST_CASEX:
case IVL_ST_CASEZ:
return draw_casezx(proc, container, stmt, is_last);
case IVL_ST_FORK:
error("fork statement cannot be translated to VHDL");
return 1;
case IVL_ST_CASSIGN:
case IVL_ST_DEASSIGN:
error("continuous procedural assignment cannot be translated to VHDL");
return 1;
2008-06-03 19:44:17 +02:00
default:
error("No VHDL translation for statement at %s:%d (type = %d)",
ivl_stmt_file(stmt), ivl_stmt_lineno(stmt),
ivl_statement_type(stmt));
return 1;
}
2008-06-03 19:26:36 +02:00
}