In generate for blocks, there is a genvar that can be used in
expressions within the generate block. Generate this genvar in
the generated output, matched to the generate scope.
It is common for typedefs of complex types to use further typedefs.
Emit the type definitions depth first so that the types that are used
are defined first. This reduces the need for pre-declaration of types.
When concatenation expressions have aggregate arguments, we need to
get the type of the result down to the aggregate expressions so that
it can know how to interpret the elements.
Elaborate records and emit them as packed SV records. Also handle
record members so handle name prefixes.
While we are at it, handle some cases of array aggregate expressions.
When signals/variables are records, they are often referenced by
their members, using a prefix.name syntax. Parse that syntax and
generate "sorry" messages in elaboration.
Not all the lex/yacc (flex/bison) targets were using a consistent syntax.
This patch fixes that and explicitly serializes the *.c/*.cc and *.h build.
Not doing this was causing problem when using make -j. The issue appears to
be that if two targets are specified for a rule (e.g. file.cc file.h: file.y)
make does not realize they are both built by the same call so the rule is
executed twice. Once for the .cc target and once for the .h target. This is
not a problem for a serial build. To work around this only use the .c/.cc
file in the main target and then make the .h file depend on the .c/.cc file
as a sub-target.
This patch fixes a compile problem in Cygwin where there are two
definitions for abs() that do not match so the C++ code doesn't know
which one to call. To avoid the whole mess replace the call to abs()
with the appropriate ?: construct.
In MinGW, when parameters are passed to vhdlpp by ivlpp, single quotes
are treated as ordinary characters. Use double quotes instead, as is
done in the driver.
Also, MinGW does not have a standard mkdir() function, so we need to
convert calls to mkdir() into calls to _mkdir().
Entity generics are easily implemented as module parameters, so make
it so. Give the parameters their default values from the generic declaration.
Array bounds may use values that cannot be evaluated right away, so
put off their evaluation.
This patch makes the code consistently use struct/class in the C++ files,
it removes a couple shadow warnings and where a class pointer is passed to
the C routines, it defines the pointer as a class for C++ and as struct for
C and it removes a namespace std duplication.
Type cast expressions and some function calls are syntactically
identical to array element select, so we can only tell the difference
by looking up the name of the identifier being selected. If it is a
type name, then create an ExpCast instead of an ExpName object.
Also, parse and emit vector part selects.
Named libraries are similar to the work library, but they are not
written to implicitly, or imported implicitly. They are only brought
in by a "library" clause, the the packages within the library are
brought in by a "use" clause.
Presumably, the user will want the ability to explicitly set the
working library location, so create a +vhdl-work+ plusarg setting
for exactly that purpose.
Port map aspects were held in std::maps. Because
of that, in case of multiple assignments to the same
port, some assignments were lost and in effect vhdlpp
produced correct verilog code from a buggy VHDL.
Std::map was replaced by std::multimap. Thanks to it
we can gather this multiple assignments and detect them
in the elaboration phase.
This patch introduces in ScopeBase separate containers
for declarations coming from the current scope and from
the previous scopes.
Until now, in one scope, all objects were kept in an stl map.
When a scope was created inside other scopes, a shallow
copy of the map was made. This solution was nice for
name shadowing (in new scopes, when a name was
encountered, the old objects were overridden by a new
one), but didn't allow for distinguishing where the objects
were allocated. As a result, it is impossible to know who
the owner is and who should delete them.
In this commit ScopeBase gets two containers: for old
and new objects. If a ScopeBase is made from another
ScopeBase object, all objects from the copied object
go to an old_XXX container, where XXX depends on the
type of the copied objects. When a ScopeBase object
is deleted, the objects from new_XXX are deleted and
the ones from old_XXX are not touched.
This patch adds some complexity to the internals
of ScopeBase, but leaves its interface unchanged.
This is rather a cosmetic change. The patch changes
the container used for stack of scopes from std::list
to std::stack. It suits this particular application
a bit better.