openFPGALoader/src/xilinx.cpp

2239 lines
60 KiB
C++
Raw Normal View History

2021-06-26 15:24:07 +02:00
// SPDX-License-Identifier: Apache-2.0
/*
* Copyright (C) 2019 Gwenhael Goavec-Merou <gwenhael.goavec-merou@trabucayre.com>
*/
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <unistd.h>
#include <cstring>
#include <fstream>
#include <iomanip>
2019-09-26 18:29:20 +02:00
#include <iostream>
#include <list>
2023-11-25 15:14:32 +01:00
#include <memory>
2019-09-26 18:29:20 +02:00
#include <stdexcept>
#include <string>
#include <vector>
2019-09-26 18:29:20 +02:00
#include "bitparser.hpp"
#include "common.hpp"
#include "configBitstreamParser.hpp"
2023-11-25 15:14:32 +01:00
#include "display.hpp"
#include "jedParser.hpp"
2023-11-25 15:14:32 +01:00
#include "jtag.hpp"
#include "mcsParser.hpp"
#include "part.hpp"
#include "progressBar.hpp"
2022-10-23 10:22:47 +02:00
#if defined (_WIN64) || defined (_WIN32)
#include "pathHelper.hpp"
2022-10-23 10:22:47 +02:00
#endif
2023-11-25 15:14:32 +01:00
#include "rawParser.hpp"
#include "spiFlash.hpp"
#include "spiInterface.hpp"
#include "xilinx.hpp"
#include "xilinxMapParser.hpp"
2019-09-26 18:29:20 +02:00
/* Used for xc3s */
#define USER1 0x02
#define USER4 0x23
#define CFG_IN 0x05
#define USERCODE 0x08
#define IDCODE 0x09
#define ISC_ENABLE 0x10
#define JPROGRAM 0x0B
#define JSTART 0x0C
#define JSHUTDOWN 0x0D
#define ISC_PROGRAM 0x11
#define ISC_DISABLE 0x16
#define BYPASS 0xff
/* xc95 instructions set */
#define XC95_IDCODE 0xfe
#define XC95_ISC_ERASE 0xed
#define XC95_ISC_ENABLE 0xe9
#define XC95_ISC_DISABLE 0xf0
#define XC95_XSC_BLANK_CHECK 0xe5
#define XC95_ISC_PROGRAM 0xea
#define XC95_ISC_READ 0xee
/* DRP instructions set */
#define XADC_DRP 0x37
/* XADC Addresses */
#define XADC_TEMP 0x00
#define XADC_LOCK 0x00
#define XADC_VCCINT 0x01
#define XADC_VCCAUX 0x02
#define XADC_VAUXEN 0x02
#define XADC_VPVN 0x03
#define XADC_RESET 0x03
#define XADC_VREFP 0x04
#define XADC_VREFN 0x05
#define XADC_VCCBRAM 0x06
#define XADC_SUPAOFFS 0x08
#define XADC_ADCAOFFS 0x09
#define XADC_ADCAGAIN 0x0a
#define XADC_VCCPINT 0x0d
#define XADC_VCCPAUX 0x0e
#define XADC_VCCODDR 0x0f
#define XADC_VAUX0 0x10
#define XADC_VAUX1 0x11
#define XADC_VAUX2 0x12
#define XADC_VAUX3 0x13
#define XADC_VAUX4 0x14
#define XADC_VAUX5 0x15
#define XADC_VAUX6 0x16
#define XADC_VAUX7 0x17
#define XADC_VAUX8 0x18
#define XADC_VAUX9 0x19
#define XADC_VAUX10 0x1a
#define XADC_VAUX11 0x1b
#define XADC_VAUX12 0x1c
#define XADC_VAUX13 0x1d
#define XADC_VAUX14 0x1e
#define XADC_VAUX15 0x1f
#define XADC_TEMP_MAX 0x20
#define XADC_TEMP_MIN 0x24
#define XADC_SUPBOFFS 0x30
#define XADC_ADCBOFFS 0x31
#define XADC_ADCBGAIN 0x32
#define XADC_FLAG 0x3f
#define XADC_CFG0 0x40
#define XADC_CFG1 0x41
#define XADC_CFG2 0x42
#define XADC_SEQ0 0x48
#define XADC_SEQ1 0x49
#define XADC_SEQ2 0x4a
#define XADC_SEQ3 0x4b
#define XADC_SEQ4 0x4c
#define XADC_SEQ5 0x4d
#define XADC_SEQ6 0x4e
#define XADC_SEQ7 0x4f
#define XADC_ALARM0 0x50
#define XADC_ALARM1 0x51
#define XADC_ALARM2 0x52
#define XADC_ALARM3 0x53
#define XADC_ALARM4 0x54
#define XADC_ALARM5 0x55
#define XADC_ALARM6 0x56
#define XADC_ALARM7 0x57
#define XADC_ALARM8 0x58
#define XADC_ALARM9 0x59
#define XADC_ALARM10 0x5a
#define XADC_ALARM11 0x5b
#define XADC_ALARM12 0x5c
#define XADC_ALARM13 0x5d
#define XADC_ALARM14 0x5e
#define XADC_ALARM15 0x5f
#define XADC_VCC_MINOFFSET 0x24
#define XADC_VCC_MAXOFFSET 0x20
/* Boundary-scan instruction set based on the FPGA model */
static std::map<std::string, std::map<std::string, std::vector<uint8_t>>>
ircode_mapping {
{
/* 7-series default */
"default",
{
{ "USER1", {0x02} },
{ "USER2", {0x03} },
{ "CFG_OUT", {0x04} },
{ "CFG_IN", {0x05} },
{ "USERCODE", {0x08} },
{ "IDCODE", {0x09} },
{ "ISC_ENABLE", {0x10} },
{ "JPROGRAM", {0x0B} },
{ "JSTART", {0x0C} },
{ "JSHUTDOWN", {0x0D} },
{ "ISC_PROGRAM", {0x11} },
{ "ISC_DISABLE", {0x16} },
{ "BYPASS", {0xff} },
}
},
{
/* Xilinx Virtex UltraScale+ */
/* <vivado_dir>/data/parts/xilinx/virtexuplus/public/bsdl/xcvu9p_flga2104.bsd */
2023-02-19 11:38:15 +01:00
"virtexusp",
{
{ "USER1", {0b00100100, 0b00101001, 0b00} },
{ "USER2", {0b00100100, 0b00111001, 0b00} },
2023-11-25 15:14:32 +01:00
{ "CFG_IN", {0b00100100, 0b01011001, 0b00} }, // CFG_IN_SLR1
{ "USERCODE", {0b00100100, 0b10001001, 0b00} },
{ "IDCODE", {0b01001001, 0b10010010, 0b00} },
{ "ISC_ENABLE", {0b00010000, 0b00000100, 0b01} },
{ "JPROGRAM", {0b11001011, 0b10110010, 0b00} },
{ "JSTART", {0b00001100, 0b11000011, 0b00} },
{ "JSHUTDOWN", {0b01001101, 0b11010011, 0b00} },
{ "ISC_PROGRAM", {0b01010001, 0b00010100, 0b01} },
{ "ISC_DISABLE", {0b10010110, 0b01100101, 0b01} },
{ "BYPASS", {0b11111111, 0b11111111, 0b11} },
}
}
};
/* Helper to get instruction code as a uint8_t pointer * */
static uint8_t *get_ircode(
std::map<std::string, std::vector<uint8_t>> &inst_map, std::string inst)
{
return inst_map.at(inst).data();
}
static void open_bitfile(
const std::string &filename, const std::string &extension,
ConfigBitstreamParser **parser, bool reverse, bool verbose)
{
printInfo("Open file ", false);
if (extension == "bit") {
*parser = new BitParser(filename, reverse, verbose);
} else if (extension == "mcs") {
*parser = new McsParser(filename, reverse, verbose);
} else {
*parser = new RawParser(filename, reverse);
}
printSuccess("DONE");
printInfo("Parse file ", false);
if ((*parser)->parse() == EXIT_FAILURE) {
throw std::runtime_error("Failed to parse bitstream");
}
printSuccess("DONE");
}
#define FUSE_DNA 0x32
2023-11-25 15:14:32 +01:00
uint64_t Xilinx::fuse_dna_read(void)
{
2023-11-25 15:14:32 +01:00
unsigned char tx_data[8] = {0, 0, 0, 0, 0, 0, 0, 0};
unsigned char rx_data[8];
_jtag->go_test_logic_reset();
_jtag->shiftIR(FUSE_DNA, 6);
_jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 64);
2023-11-25 15:14:32 +01:00
uint64_t dna = 0;
for(int i = 0; i < 8; i++) {
unsigned char rev = 0;
for (int j = 0; j < 8; j++) {
2023-11-25 15:14:32 +01:00
rev |= ((rx_data[i] >> j) & 1) << (7 - j);
}
dna = (dna << 8ULL) | rev;
}
return dna & 0x1ffffffffffffff;
}
2023-11-25 15:14:32 +01:00
unsigned int Xilinx::xadc_read(uint16_t addr)
{
unsigned int tx_data = (1 << 26) | (addr << 16);
unsigned int rx_data = 0;
_jtag->go_test_logic_reset();
_jtag->shiftIR(XADC_DRP, 6);
_jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32);
usleep(1000);
_jtag->shiftIR(XADC_DRP, 6);
_jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32);
return rx_data;
}
2023-11-25 15:14:32 +01:00
void Xilinx::xadc_write(uint16_t addr, uint16_t data)
{
unsigned int tx_data = (1 << 26) | (addr << 16) | data;
unsigned int rx_data = 0;
_jtag->go_test_logic_reset();
_jtag->shiftIR(XADC_DRP, 6);
_jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32);
}
2023-11-25 15:14:32 +01:00
unsigned int Xilinx::xadc_single(uint16_t ch)
{
_jtag->go_test_logic_reset();
// single channel, disable the sequencer
2023-11-25 15:14:32 +01:00
xadc_write(XADC_CFG1, 0x3000);
// set channel, no averaging, additional settling time
2023-11-25 15:14:32 +01:00
xadc_write(XADC_CFG0, (1 << 15) | (1 << 8) | ch);
// leave some time (1ms) for the conversion
usleep(1000);
unsigned int ret = xadc_read(ch);
return ret;
}
Xilinx::Xilinx(Jtag *jtag, const std::string &filename,
const std::string &secondary_filename,
const std::string &file_type,
Device::prog_type_t prg_type,
const std::string &device_package, const std::string &spiOverJtagPath,
const std::string &target_flash,
bool verify, int8_t verbose,
bool skip_load_bridge, bool skip_reset, bool read_dna, bool read_xadc):
Device(jtag, filename, file_type, verify, verbose),
SPIInterface(filename, verbose, 256, verify, skip_load_bridge,
skip_reset),
_device_package(device_package), _spiOverJtagPath(spiOverJtagPath),
_irlen(6), _secondary_filename(secondary_filename), _soj_is_v2(false),
_jtag_chain_len(1)
2019-11-21 09:26:43 +01:00
{
2021-06-25 11:28:19 +02:00
if (prg_type == Device::RD_FLASH) {
_mode = Device::READ_MODE;
} else if (!_file_extension.empty()) {
if (_file_extension == "mcs") {
_mode = Device::SPI_MODE;
2021-02-04 07:29:35 +01:00
} else if (_file_extension == "bit" || _file_extension == "bin") {
2021-02-18 21:09:34 +01:00
if (prg_type == Device::WR_SRAM)
_mode = Device::MEM_MODE;
else
_mode = Device::SPI_MODE;
} else if (_file_extension == "jed") {
_mode = Device::FLASH_MODE;
} else {
_mode = Device::SPI_MODE;
}
2019-09-26 18:29:20 +02:00
}
select_flash_chip(PRIMARY_FLASH);
if (target_flash == "primary") {
_flash_chips = PRIMARY_FLASH;
} else if (target_flash == "secondary") {
_flash_chips = SECONDARY_FLASH;
} else if (target_flash == "both") {
_flash_chips = (PRIMARY_FLASH | SECONDARY_FLASH);
} else {
throw std::runtime_error("Error: unknown flash target: " + target_flash);
}
if (_flash_chips & SECONDARY_FLASH) {
_secondary_file_extension = secondary_filename.substr(
secondary_filename.find_last_of(".") + 1);
_mode = Device::SPI_MODE;
if (!(_device_package == "xcvu9p-flga2104" || _device_package == "xcku5p-ffvb676" || _device_package == "xcku040-ffva1156")) {
throw std::runtime_error("Error: secondary flash unavailable");
}
}
uint32_t idcode = _jtag->get_target_device_id();
std::string family = fpga_list[idcode].family;
std::string model = fpga_list[idcode].model;
_irlen = fpga_list[idcode].irlength;
_ircode_map = ircode_mapping.at("default");
if (family.substr(0, 5) == "artix") {
_fpga_family = ARTIX_FAMILY;
} else if (family == "spartan7") {
_fpga_family = SPARTAN7_FAMILY;
} else if (family == "zynq") {
_fpga_family = ZYNQ_FAMILY;
if (_mode != Device::MEM_MODE) {
char mess[256];
snprintf(mess, 256, "Error: can't flash non-volatile memory for "
"Zynq7000 devices\n"
"\tSPI Flash access is only available from PS side\n");
throw std::runtime_error(mess);
}
} else if (family.substr(0, 6) == "zynqmp") {
if (_mode != Device::MEM_MODE) {
char mess[256];
snprintf(mess, 256, "Error: can't flash non-volatile memory for "
"ZynqMP devices\n"
"\tSPI Flash access is only available from PSU side\n");
throw std::runtime_error(mess);
}
if (!zynqmp_init(family))
throw std::runtime_error("Error with ZynqMP init");
_fpga_family = ZYNQMP_FAMILY;
} else if (family == "kintex7") {
_fpga_family = KINTEX_FAMILY;
} else if (family == "kintexus") {
_fpga_family = KINTEXUS_FAMILY;
} else if (family == "kintexusp") {
_fpga_family = KINTEXUSP_FAMILY;
} else if (family == "artixusp") {
_fpga_family = ARTIXUSP_FAMILY;
} else if (family == "virtexus") {
_fpga_family = VIRTEXUS_FAMILY;
} else if (family == "virtexusp") {
_fpga_family = VIRTEXUSP_FAMILY;
2023-02-19 11:38:15 +01:00
_ircode_map = ircode_mapping.at("virtexusp");
} else if (family.substr(0, 8) == "spartan3") {
2021-08-30 15:08:11 +02:00
_fpga_family = SPARTAN3_FAMILY;
} else if (family == "xcf") {
_fpga_family = XCF_FAMILY;
if (_mode == Device::MEM_MODE) {
throw std::runtime_error("Error: Only write or read is supported");
}
} else if (family == "spartan6") {
_fpga_family = SPARTAN6_FAMILY;
} else if (family == "xc2c") {
xc2c_init(idcode);
} else if (family == "xc9500xl") {
_fpga_family = XC95_FAMILY;
switch (idcode) {
case 0x09602093:
_xc95_line_len = 2;
break;
case 0x09604093:
_xc95_line_len = 4;
break;
case 0x09608093:
_xc95_line_len = 8;
break;
case 0x09616093:
_xc95_line_len = 16;
break;
}
} else {
_fpga_family = UNKNOWN_FAMILY;
}
if (read_dna) {
if (_fpga_family == ARTIX_FAMILY || _fpga_family == KINTEXUS_FAMILY) {
2023-11-25 15:14:32 +01:00
uint64_t dna = Xilinx::fuse_dna_read();
printf("{\"dna\": \"0x%016" PRIx64 "\"}\n", dna);
} else {
throw std::runtime_error("Error: read_xadc only supported for Artix 7");
}
}
if (read_xadc) {
if (_fpga_family == ARTIX_FAMILY || _fpga_family == KINTEXUS_FAMILY) {
// calibrate XADC
Xilinx::xadc_single(8);
const int MAX_CHANNEL = 8;
const int TEMP_MEAS = 4;
unsigned int v = 0;
for (int i = 0; i < TEMP_MEAS; i++) {
v += Xilinx::xadc_single(XADC_TEMP);
}
double temp = ((v/(double)TEMP_MEAS) * 503.975)/(1 << 16) - 273.15;
double max_temp = (Xilinx::xadc_single(XADC_TEMP_MAX) * 503.975)/(1 << 16) - 273.15;
double min_temp = (Xilinx::xadc_single(XADC_TEMP_MIN) * 503.975)/(1 << 16) - 273.15;
unsigned int channel_values[32];
for (int ch = 0; ch < MAX_CHANNEL; ch++) {
if (ch < 7 || ch > 12) {
v = Xilinx::xadc_single(ch);
} else {
// 7 = Invalid channel selection
// 8 = Carry out XADC calibration
// 9...12 = Invalid channel selection
v = 0;
}
channel_values[ch] = v;
}
double vccint = (Xilinx::xadc_single(XADC_VCCINT)>>4)/4096.0 * 3.0; // ref: UG480
double vccintmax = (Xilinx::xadc_single(XADC_VCCINT + XADC_VCC_MAXOFFSET)>>4)/4096.0 * 3.0; // ref: UG480
double vccintmin = (Xilinx::xadc_single(XADC_VCCINT + XADC_VCC_MINOFFSET)>>4)/4096.0 * 3.0; // ref: UG480
double vccaux = (Xilinx::xadc_single(XADC_VCCAUX)>>4)/4096.0 * 3.0; // ref: UG480
double vccauxmax = (Xilinx::xadc_single(XADC_VCCAUX + XADC_VCC_MAXOFFSET)>>4)/4096.0 * 3.0; // ref: UG480
double vccauxmin = (Xilinx::xadc_single(XADC_VCCAUX + XADC_VCC_MINOFFSET)>>4)/4096.0 * 3.0; // ref: UG480
/* output as JSON dict */
std::cout << "{";
std::cout << "\"temp\": " << temp << ", " << std::endl;;
std::cout << " \"maxtemp\": " << max_temp << ", " << std::endl;;
std::cout << " \"mintemp\": " << min_temp << ", " << std::endl;;
std::cout << "\"raw\": {";
for (int ch = 0; ch < MAX_CHANNEL; ch++) {
std::cout << "\"" << ch << "\": " << channel_values[ch]
2023-11-25 15:14:32 +01:00
<< ((ch == MAX_CHANNEL - 1)? "}" : ", ");
}
std::cout << "," << std::endl;
std::cout << "\"vccint\": " << vccint << ", " << std::endl;
std::cout << " \"maxvccint\": " << vccintmax << ", " << std::endl;
std::cout << " \"minvccint\": " << vccintmin << ", " << std::endl;
std::cout << "\"vccaux\": " << vccaux << ", " << std::endl;
std::cout << " \"maxvccaux\": " << vccauxmax << ", " << std::endl;
std::cout << " \"minvccaux\": " << vccauxmin << ", " << std::endl;
std::cout << "}" << std::endl;
} else {
throw std::runtime_error("Error: read_xadc only supported for Artix 7");
}
}
2019-09-26 18:29:20 +02:00
}
Xilinx::~Xilinx() {}
bool Xilinx::zynqmp_init(const std::string &family)
{
/* by default, at powering a zynqmp has
* PL TAP and ARM DAP disabled
* at this time only PS TAB and a dummy are seen
* So first step is to enable PL and ARM
*/
if (family == "zynqmp_cfgn") {
/* PS TAP is the first device with 0xfffffe idcode */
_jtag->device_select(0);
/* send 0x03 into JTAG_CTRL register */
uint16_t ircode = 0x824;
_jtag->shiftIR(ircode & 0xff, 8, Jtag::SHIFT_IR);
2022-01-24 18:58:32 +01:00
_jtag->shiftIR((ircode >> 8) & 0x0f, 4);
uint8_t instr[4] = {0x3, 0, 0, 0};
_jtag->shiftDR(instr, NULL, 32);
/* synchronize everything by moving to TLR */
_jtag->set_state(Jtag::TEST_LOGIC_RESET);
_jtag->toggleClk(10);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(100);
/* force again JTAG chain detection */
_jtag->detectChain(5);
}
/* check if the chain is correctly configured:
* 2 devices
* PL at position 0
* ARM at position 1
*/
char mess[256];
2024-03-09 10:21:21 +01:00
std::vector<uint32_t> listDev = _jtag->get_devices_list();
if (listDev.size() != 2) {
snprintf(mess, sizeof(mess), "ZynqMP error: wrong"
" JTAG length: %zu instead of 2\n",
listDev.size());
printError(mess);
return false;
}
if (fpga_list[listDev[0]].family != "zynqmp") {
snprintf(mess, sizeof(mess), "ZynqMP error: first device"
" is not the PL TAP -> 0x%08x\n",
listDev[0]);
printError(mess);
return false;
}
if (listDev[1] != 0x5ba00477) {
snprintf(mess, sizeof(mess), "ZynqMP error: second device"
" is not the ARM DAP cortex A53 -> 0x%08x\n",
listDev[1]);
printError(mess);
return false;
}
_jtag->insert_first(0xdeadbeef, 6);
_jtag->device_select(1);
_irlen = 6;
return true;
}
2019-09-26 18:29:20 +02:00
void Xilinx::reset()
{
_jtag->shiftIR(get_ircode(_ircode_map, "JSHUTDOWN"), NULL, _irlen);
_jtag->shiftIR(get_ircode(_ircode_map, "JPROGRAM"), NULL, _irlen);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(10000*12);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
2019-09-26 18:29:20 +02:00
_jtag->toggleClk(2000);
_jtag->shiftIR(get_ircode(_ircode_map, "BYPASS"), NULL, _irlen);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2000);
2019-09-26 18:29:20 +02:00
}
2023-08-10 12:50:26 +02:00
uint32_t Xilinx::idCode()
2019-09-26 18:29:20 +02:00
{
int id = 0;
unsigned char tx_data[4]= {0x00, 0x00, 0x00, 0x00};
2019-09-26 18:29:20 +02:00
unsigned char rx_data[4];
_jtag->go_test_logic_reset();
_jtag->shiftIR(get_ircode(_ircode_map, "IDCODE"), NULL, _irlen);
_jtag->shiftDR(tx_data, rx_data, 32);
id = ((rx_data[0] & 0x000000ff) |
2019-09-26 18:29:20 +02:00
((rx_data[1] << 8) & 0x0000ff00) |
((rx_data[2] << 16) & 0x00ff0000) |
((rx_data[3] << 24) & 0xff000000));
/* workaround for XC95 with different
* IR length and IDCODE value
*/
if (id == 0) {
_jtag->go_test_logic_reset();
_jtag->shiftIR(XC95_IDCODE, 8);
_jtag->shiftDR(tx_data, rx_data, 32);
id = ((rx_data[0] & 0x000000ff) |
((rx_data[1] << 8) & 0x0000ff00) |
((rx_data[2] << 16) & 0x00ff0000) |
((rx_data[3] << 24) & 0xff000000));
}
return id;
2019-09-26 18:29:20 +02:00
}
void Xilinx::program(unsigned int offset, bool unprotect_flash)
{
ConfigBitstreamParser *bit = nullptr;
ConfigBitstreamParser *secondary_bit = nullptr;
2021-02-04 07:29:35 +01:00
bool reverse = false;
/* nothing to do */
2021-06-25 11:28:19 +02:00
if (_mode == Device::NONE_MODE || _mode == Device::READ_MODE)
2021-02-04 07:29:35 +01:00
return;
if (_mode == Device::FLASH_MODE && _file_extension == "jed") {
2023-09-01 15:35:44 +02:00
if (_fpga_family != XC95_FAMILY && _fpga_family != XC2C_FAMILY)
throw std::runtime_error("Error: jed only supported for xc95 and xc2c");
printInfo("Open file ", false);
2023-11-25 15:14:32 +01:00
2023-09-01 15:35:44 +02:00
std::unique_ptr<JedParser> jed(new JedParser(_filename, _verbose));
if (jed->parse() == EXIT_FAILURE) {
printError("FAIL");
return;
}
printSuccess("DONE");
if (_fpga_family == XC95_FAMILY)
2023-09-01 15:35:44 +02:00
flow_program(jed.get());
else if (_fpga_family == XC2C_FAMILY)
2023-09-01 15:35:44 +02:00
xc2c_flow_program(jed.get());
return;
}
if (_fpga_family == XC95_FAMILY) {
printError("Only jed file and flash mode supported for XC95 CPLD");
return;
}
2021-08-30 15:08:11 +02:00
if (_mode == Device::MEM_MODE || _fpga_family == XCF_FAMILY)
2021-02-04 07:29:35 +01:00
reverse = true;
try {
if (_flash_chips & PRIMARY_FLASH) {
open_bitfile(_filename, _file_extension, &bit, reverse, _verbose);
}
if (_flash_chips & SECONDARY_FLASH) {
open_bitfile(_secondary_filename, _secondary_file_extension,
&secondary_bit, reverse, _verbose);
}
2021-02-04 07:29:35 +01:00
} catch (std::exception &e) {
printError("FAIL");
if (bit)
delete bit;
if (secondary_bit)
delete secondary_bit;
return;
}
if (_verbose) {
if (bit)
bit->displayHeader();
if (secondary_bit)
secondary_bit->displayHeader();
}
2021-08-30 15:08:11 +02:00
if (_fpga_family == XCF_FAMILY) {
xcf_program(bit);
delete bit;
2021-08-30 15:08:11 +02:00
return;
}
if (_mode == Device::SPI_MODE) {
if (_flash_chips & PRIMARY_FLASH) {
select_flash_chip(PRIMARY_FLASH);
program_spi(bit, offset, unprotect_flash);
}
if (_flash_chips & SECONDARY_FLASH) {
select_flash_chip(SECONDARY_FLASH);
program_spi(secondary_bit, offset, unprotect_flash);
}
reset();
} else {
if (_fpga_family == SPARTAN3_FAMILY)
xc3s_flow_program(bit);
else
program_mem(bit);
}
2021-02-04 07:29:35 +01:00
delete bit;
}
bool Xilinx::post_flash_access()
{
if (_skip_reset)
printInfo("Skip resetting device");
else
reset();
return true;
}
bool Xilinx::prepare_flash_access()
{
bool ret = false;
if (_skip_load_bridge) {
printInfo("Skip loading bridge for spiOverjtag");
ret = true;
} else {
ret = load_bridge();
}
/* Get number of FPGAs in the Jtag Chain */
_jtag_chain_len = _jtag->get_chain_len();
/* check SpiOverJtag version */
if (ret) {
if (get_spiOverJtag_version() == 2.0f)
_soj_is_v2 = true;
printf("SOJ version: %f\n", _soj_is_v2 ? 2.0f : 1.0f);
}
return ret;
}
2021-06-25 11:28:19 +02:00
bool Xilinx::load_bridge()
2021-02-04 07:29:35 +01:00
{
std::string bitname;
if (!_spiOverJtagPath.empty()) {
bitname = _spiOverJtagPath;
} else {
if (_device_package.empty()) {
printError("Can't program SPI flash: missing device-package information");
return false;
}
bitname = get_shell_env_var("OPENFPGALOADER_SOJ_DIR", DATA_DIR "/openFPGALoader");
bitname += "/spiOverJtag_" + _device_package + ".bit.gz";
}
#if defined (_WIN64) || defined (_WIN32)
/* Convert relative path embedded at compile time to an absolute path */
bitname = PathHelper::absolutePath(bitname);
#endif
2021-02-04 07:29:35 +01:00
/* first: load spi over jtag */
try {
BitParser bridge(bitname, true, _verbose);
printSuccess("Use: " + bridge.getFilename());
bridge.parse();
if (_fpga_family == SPARTAN3_FAMILY)
xc3s_flow_program(&bridge);
else
program_mem(&bridge);
} catch (std::exception &e) {
printError(e.what());
throw std::runtime_error(e.what());
}
2021-06-25 11:28:19 +02:00
return true;
}
float Xilinx::get_spiOverJtag_version()
{
uint8_t jtx[6] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t jrx[7];
uint8_t rx[6];
_jtag->shiftIR(USER4, _irlen, Jtag::UPDATE_IR);
printf("jtag_chain_len: %d\n", _jtag_chain_len);
if (_jtag_chain_len > 1)
_jtag->shiftDR(jtx, NULL, _jtag_chain_len - 1, Jtag::SHIFT_DR);
_jtag->shiftDR(jtx, jrx, 6 * 8);
_jtag->flush();
memcpy(rx, &jrx[1], 5);
rx[5] = '\0';
float version = atof((const char *)rx);
if (version == 0.0f) // not supported => 1.0
return 1.0f;
return version;
}
void Xilinx::program_spi(ConfigBitstreamParser * bit, unsigned int offset,
bool unprotect_flash)
2021-06-25 11:28:19 +02:00
{
2023-09-19 16:56:50 +02:00
if (!bit)
throw std::runtime_error("called with null bitstream");
2023-08-08 15:54:27 +02:00
const uint8_t *data = bit->getData();
int length = bit->getLength() / 8;
SPIInterface::write(offset, data, length, unprotect_flash);
}
2021-02-04 07:29:35 +01:00
void Xilinx::program_mem(ConfigBitstreamParser *bitfile)
2019-09-26 18:29:20 +02:00
{
std::cout << "load program" << std::endl;
unsigned char *tx_buf;
unsigned char rx_buf[(_irlen >> 3) + 1];
2019-09-26 18:29:20 +02:00
/* comment TDI TMS TCK
* 1: On power-up, place a logic 1 on the TMS,
* and clock the TCK five times. This ensures X 1 5
* starting in the TLR (Test-Logic-Reset) state.
*/
_jtag->go_test_logic_reset();
/*
* 2: Move into the RTI state. X 0 1
* 3: Move into the SELECT-IR state. X 1 2
* 4: Enter the SHIFT-IR state. X 0 2
* 5: Start loading the JPROGRAM instruction, 01011(4) 0 5
* LSB first:
* 6: Load the MSB of the JPROGRAM instruction
* when exiting SHIFT-IR, as defined in the 0 1 1
* IEEE standard.
* 7: Place a logic 1 on the TMS and clock the
* TCK five times. This ensures starting in X 1 5
* the TLR (Test-Logic-Reset) state.
*/
_jtag->shiftIR(get_ircode(_ircode_map, "JPROGRAM"), NULL, _irlen);
2019-09-26 18:29:20 +02:00
/* test */
tx_buf = get_ircode(_ircode_map, "BYPASS");
2019-09-26 18:29:20 +02:00
do {
_jtag->shiftIR(tx_buf, rx_buf, _irlen);
} while (!(rx_buf[0] &0x01));
2019-09-26 18:29:20 +02:00
/*
* 8: Move into the RTI state. X 0 10,000(1)
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
2019-09-26 18:29:20 +02:00
_jtag->toggleClk(10000*12);
/*
* 9: Start loading the CFG_IN instruction,
* LSB first: 00101 0 5
* 10: Load the MSB of CFG_IN instruction when
* exiting SHIFT-IR, as defined in the 0 1 1
* IEEE standard.
*/
_jtag->shiftIR(get_ircode(_ircode_map, "CFG_IN"), NULL, _irlen);
2019-09-26 18:29:20 +02:00
/*
* 11: Enter the SELECT-DR state. X 1 2
*/
_jtag->set_state(Jtag::SELECT_DR_SCAN);
2019-09-26 18:29:20 +02:00
/*
* 13: Shift in the FPGA bitstream. Bitn (MSB)
* is the first bit in the bitstream(2). bit1...bitn 0 (bits in bitstream)-1
* 14: Shift in the last bit of the bitstream.
* Bit0 (LSB) shifts on the transition to bit0 1 1
* EXIT1-DR.
*/
/* GGM: TODO */
2021-02-04 07:29:35 +01:00
int byte_length = bitfile->getLength() / 8;
2023-08-08 15:54:27 +02:00
const uint8_t *data = bitfile->getData();
2023-08-10 16:36:18 +02:00
int tx_len;
Jtag::tapState_t tx_end;
int burst_len = byte_length / 100;
ProgressBar progress("Load SRAM", byte_length, 50, _quiet);
for (int i=0; i < byte_length; i+=burst_len) {
if (i + burst_len > byte_length) {
tx_len = (byte_length - i) * 8;
2021-05-15 18:43:54 +02:00
/*
* 15: Enter UPDATE-DR state. X 1 1
*/
tx_end = Jtag::UPDATE_DR;
} else {
tx_len = burst_len * 8;
2023-08-08 15:54:27 +02:00
/*
* 12: Enter the SHIFT-DR state. X 0 2
*/
2021-05-15 18:43:54 +02:00
tx_end = Jtag::SHIFT_DR;
}
2021-05-15 18:43:54 +02:00
_jtag->shiftDR(data+i, NULL, tx_len, tx_end);
_jtag->flush();
progress.display(i);
}
progress.done();
2019-09-26 18:29:20 +02:00
/*
* 16: Move into RTI state. X 0 1
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
2019-09-26 18:29:20 +02:00
/*
* 17: Enter the SELECT-IR state. X 1 2
* 18: Move to the SHIFT-IR state. X 0 2
* 19: Start loading the JSTART instruction
2019-09-26 18:29:20 +02:00
* (optional). The JSTART instruction 01100 0 5
* initializes the startup sequence.
* 20: Load the last bit of the JSTART instruction. 0 1 1
* 21: Move to the UPDATE-IR state. X 1 1
*/
_jtag->shiftIR(get_ircode(_ircode_map, "JSTART"), NULL, _irlen, Jtag::UPDATE_IR);
2019-09-26 18:29:20 +02:00
/*
* 22: Move to the RTI state and clock the
* startup sequence by applying a minimum X 0 2000
* of 2000 clock cycles to the TCK.
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
2019-09-26 18:29:20 +02:00
_jtag->toggleClk(2000);
/*
* 23: Move to the TLR state. The device is
* now functional. X 1 3
*/
_jtag->go_test_logic_reset();
/* Some xc7s50 does not detect correct connected flash w/o this shift*/
_jtag->shiftIR(tx_buf, rx_buf, _irlen);
uint8_t ir_c = rx_buf[0] & 0x03;
uint8_t isc_done = ((rx_buf[0] >> 2) & 0x01);
uint8_t isc_ena = ((rx_buf[0] >> 3) & 0x01);
uint8_t init = ((rx_buf[0] >> 4) & 0x01);
uint8_t done = ((rx_buf[0] >> 5) & 0x01);
printf("Shift IR %02x\n", rx_buf[0]);
printf("ir: %x isc_done %x isc_ena %x init %x done %x\n", ir_c, isc_done, isc_ena,
init, done);
if (!done) {
read_register("STAT");
}
}
2024-11-09 11:24:16 +01:00
static uint32_t char_array_to_word(uint8_t *in)
{
return (((uint32_t)in[3] << 24) |
((uint32_t)in[2] << 16) |
((uint32_t)in[1] << 8) |
((uint32_t)in[0] << 0));
}
typedef struct {
std::string description;
uint8_t offset;
uint8_t size;
std::map<int, std::string> reg_cnt;
} reg_struct_t;
#define REG_ENTRY(_description, _offset, _size, ...) \
{_description, _offset, _size, {__VA_ARGS__}}
static const std::map<std::string, std::list<reg_struct_t>> reg_content = {
{"CTRL0", std::list<reg_struct_t>{
REG_ENTRY("GTS USR B", 0, 1,
{0, "I/Os 3-stated"}, {1, "I/Os active"}),
REG_ENTRY("Reserved", 1, 2),
REG_ENTRY("PERSIST", 3, 1,
{0, "No"}, {1, "Yes"}),
REG_ENTRY("SBITS", 4, 2,
{0, "Read/Write OK"}, {1, "Readback disabled"},
{2, "Both Writes and Reads disabled"},
{3, "Both Writes and Reads disabled"}),
REG_ENTRY("DEC", 6, 1,
{0, "Disable"}, {1, "Enable"}),
REG_ENTRY("FARSRC", 7, 1),
REG_ENTRY("GLUMASK B", 8, 1),
REG_ENTRY("Reserved", 9, 1),
REG_ENTRY("ConfigFallback", 10, 1,
{0, "Disable"}, {1, "Enable"}),
REG_ENTRY("Reserved", 11, 1),
REG_ENTRY("OverTempPwrDown", 12, 1,
{0, "Disable"}, {1, "Enable"}),
REG_ENTRY("Reserved", 13, 17),
REG_ENTRY("ICAP Select", 30, 1,
{0, "Top ICAPE2 Port Enabled"},
{1, "Bottom ICAPE2 Port Enabled"}),
REG_ENTRY("EFUSE key", 31, 1,
{0, "Battery backed RAM"}, {1, "eFUSE"}),
}},
{"STAT", std::list<reg_struct_t>{
REG_ENTRY("CRC Error", 0, 1,
{0, "No CRC error"}, {1, "CRC error"}),
REG_ENTRY("Part Secured", 1, 1),
REG_ENTRY("MMCM lock", 2, 1),
REG_ENTRY("DCI match", 3, 1),
REG_ENTRY("EOS", 4, 1),
REG_ENTRY("GTS CFG B", 5, 1),
REG_ENTRY("GWE", 6, 1),
REG_ENTRY("GHIGH B", 7, 1),
REG_ENTRY("MODE", 8, 3),
REG_ENTRY("INIT Complete", 11, 1),
REG_ENTRY("INIT B", 12, 1),
REG_ENTRY("Release Done", 13, 1),
REG_ENTRY("Done", 14, 1),
REG_ENTRY("ID Error", 15, 1,
{0, "No ID error"}, {1, "ID error"}),
REG_ENTRY("DEC Error", 16, 1),
REG_ENTRY("XADC Over temp", 17, 1),
REG_ENTRY("STARTUP State", 18, 3),
REG_ENTRY("Reserved", 21, 4),
REG_ENTRY("BUS Width", 25, 2,
{0, "x1"}, {1, "x8"}, {2, "x16"}, {3, "x32"}),
REG_ENTRY("Reserved", 27, 5)
}},
// UG470 Table 5-34
{"WBSTAR", std::list<reg_struct_t>{
// Next bitstream start address. The default start address
// is address zero.
REG_ENTRY("START ADDR", 0, 29),
REG_ENTRY("RS TS B", 29, 1,
{0, "3-state enabled (RS[1:0] disabled) (default)"},
{1, "3-state disabled (RS[1:0] enabled)"},
),
// RS[1:0] pin value on next warm boot. The default is 00.
REG_ENTRY("RS[1:0]", 30, 2),
}},
// UG470 Table 5-39
{"BOOTSTS", std::list<reg_struct_t>{
// Status 0 is valid
REG_ENTRY("VALID 0", 0, 1),
REG_ENTRY("FALLBACK 0", 1, 1,
{0, "Normal configuration"},
{1, "Fallback to default reconfiguration, RS[1:0] actively drives 2'b00"}
),
// Internal PROG triggered configuration
REG_ENTRY("IPROG 0", 2, 1),
// Watchdog time-out error
REG_ENTRY("WTO Error 0", 3, 1),
// ID_CODE error
REG_ENTRY("ID Error 0", 4, 1),
// CRC error
REG_ENTRY("CRC Error 0", 5, 1),
// BPI address counter wraparound error, supported in
// asynchronous read mode
REG_ENTRY("WRAP Error 0", 6, 1),
// HMAC error
REG_ENTRY("HMAC Error 0", 7, 1),
REG_ENTRY("VALID 1", 8, 1),
REG_ENTRY("FALLBACK 1", 9, 1,
{0, "Normal configuration"},
{1, "Fallback to default reconfiguration, RS[1:0] actively drives 2'b00"}
),
REG_ENTRY("IPROG 1", 10, 1),
REG_ENTRY("WTO Error 1", 11, 1),
REG_ENTRY("ID Error 1", 12, 1),
REG_ENTRY("CRC Error 1", 13, 1),
REG_ENTRY("WRAP Error 1", 14, 1),
REG_ENTRY("HMAC Error 1", 15, 1),
}},
};
/* UG470 table 5-23 */
static const std::map<std::string, uint8_t> reg_code = {
{"CTRL0", 0x05}, // Control register 0
{"STAT", 0x07}, // Status register
{"CONF0", 0x09}, // Configuration Option 0
{"CONF1", 0x0e}, // Configuration Option 1
{"WBSTAR", 0x10}, // Warm Boot Start Address Register
{"BOOTSTS", 0x16}, // Boot history status register
{"CTRL1", 0x18}, // Control register 1
};
uint32_t Xilinx::dumpRegister(std::string reg_name)
{
uint8_t reg[4];
const uint8_t dummy[] = {0x00, 0x00, 0x00, 0x04};
/* opcode:
* 0x0: NOP
* 0x1: read
* 0x2: write
* 0x3: Reserved
*/
/* register code
* 0x05: Control register 0
* 0x07: Status register
* 0x09: Configuration Option 0
* 0x0e: Configuration Option 1
* 0x18: Control Register 1
* 0x16: Boot history Status register
*/
auto code = reg_code.find(reg_name);
if (code == reg_code.end()) {
printError("Unknown register " + reg_name);
printError("Known Register are:");
for (auto reg : reg_code)
printError("\t" + reg.first);
return 0xdeadbeef;
}
/* packet type 1 */
const uint32_t regcode = static_cast<uint32_t>(code->second);
uint32_t cfg_packets[] = {
0xAA995566, // Sync Word
0x20000000, // NOOP
((0x01 & 0x0007) << 29) | // [31:29]: Header type
((0x01 & 0x0003) << 27) | // [28:27]: opcode
((regcode & 0x3fff) << 13) | // [26:13]: register code
((0x00 & 0x0003) << 11) | // [12:11]: Reserved must be set to 0
((0x01 & 0x07ff) << 0), // [10:0 ]: word count
0x20000000, // NOOP
0x20000000, // NOOP
};
_jtag->go_test_logic_reset();
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->shiftIR(get_ircode(_ircode_map, "CFG_IN"), NULL, _irlen, Jtag::SELECT_DR_SCAN);
Jtag::tapState_t next_state = Jtag::SHIFT_DR;
for (int i = 0; i < 5; i++) {
if (i == 4)
next_state = Jtag::SELECT_IR_SCAN;
const uint32_t tmp = BitParser::reverse_32(cfg_packets[i]);
const uint8_t cfg[] = {
static_cast<uint8_t>((tmp >> 0) & 0xff),
static_cast<uint8_t>((tmp >> 8) & 0xff),
static_cast<uint8_t>((tmp >> 16) & 0xff),
static_cast<uint8_t>((tmp >> 24) & 0xff)
};
_jtag->shiftDR(cfg, NULL, 32, next_state);
}
_jtag->shiftIR(get_ircode(_ircode_map, "CFG_OUT"), NULL, _irlen, Jtag::SELECT_DR_SCAN);
_jtag->shiftDR(dummy, reg, 32);
_jtag->go_test_logic_reset();
uint32_t reg_word = char_array_to_word(reg);
reg_word = BitParser::reverse_32(reg_word);
return reg_word;
}
void Xilinx::displayRegister(const std::string reg_name, const uint32_t reg_val) {
auto reg = reg_content.find(reg_name);
if (reg == reg_content.end()) {
printError("Unknown register " + reg_name);
return;
}
std::stringstream raw_val;
raw_val << "0x" << std::hex << reg_val;
printSuccess("Register raw value: " + raw_val.str());
const std::list<reg_struct_t> regs = reg->second;
for (reg_struct_t r: regs) {
uint8_t offset = r.offset;
uint8_t size = r.size;
uint32_t mask = (1 << size) - 1;
uint32_t val = (reg_val >> offset) & mask;
std::stringstream ss, desc;
desc << r.description;
ss << std::setw(16) << std::left << r.description;
if (r.reg_cnt.size() != 0) {
ss << r.reg_cnt[val];
} else {
std::stringstream hex_val;
hex_val << "0x" << std::hex << val;
ss << hex_val.str();
}
printInfo(ss.str());
}
2019-09-26 18:29:20 +02:00
}
bool Xilinx::dumpFlash(uint32_t base_addr, uint32_t len)
2021-06-25 11:28:19 +02:00
{
2021-08-30 15:08:11 +02:00
if (_fpga_family == XC95_FAMILY || _fpga_family == XCF_FAMILY) {
std::string buffer;
if (_fpga_family == XC95_FAMILY) {
/* enable ISC */
flow_enable();
buffer = flow_read();
/* disable ISC */
flow_disable();
} else {
/* enable ISC */
xcf_flow_enable(0x34);
buffer = xcf_read();
/* disable ISC */
xcf_flow_disable();
}
printInfo("Open dump file ", false);
FILE *fd = fopen(_filename.c_str(), "wb");
if (!fd) {
printError("FAIL");
return false;
}
printSuccess("DONE");
printInfo("Read flash ", false);
fwrite(buffer.c_str(), sizeof(uint8_t), buffer.size(), fd);
printSuccess("DONE");
fclose(fd);
return true;
}
if (_flash_chips & PRIMARY_FLASH) {
select_flash_chip(PRIMARY_FLASH);
SPIInterface::set_filename(_filename);
if (!SPIInterface::dump(base_addr, len))
return false;
}
if (_flash_chips & SECONDARY_FLASH) {
select_flash_chip(SECONDARY_FLASH);
SPIInterface::set_filename(_secondary_filename);
if (!SPIInterface::dump(base_addr, len))
return false;
}
return true;
}
bool Xilinx::detect_flash()
{
if (_flash_chips & PRIMARY_FLASH) {
select_flash_chip(PRIMARY_FLASH);
if (!SPIInterface::detect_flash())
return false;
}
if (_flash_chips & SECONDARY_FLASH) {
select_flash_chip(SECONDARY_FLASH);
if (!SPIInterface::detect_flash())
return false;
}
return true;
}
bool Xilinx::protect_flash(uint32_t len)
{
if (_flash_chips & PRIMARY_FLASH) {
select_flash_chip(PRIMARY_FLASH);
if (!SPIInterface::protect_flash(len))
return false;
}
if (_flash_chips & SECONDARY_FLASH) {
select_flash_chip(SECONDARY_FLASH);
if (!SPIInterface::protect_flash(len))
return false;
}
return true;
}
bool Xilinx::unprotect_flash()
{
if (_flash_chips & PRIMARY_FLASH) {
select_flash_chip(PRIMARY_FLASH);
if (!SPIInterface::unprotect_flash())
return false;
}
if (_flash_chips & SECONDARY_FLASH) {
select_flash_chip(SECONDARY_FLASH);
if (!SPIInterface::unprotect_flash())
return false;
}
return true;
}
bool Xilinx::set_quad_bit(bool set_quad)
{
if (_flash_chips & PRIMARY_FLASH) {
select_flash_chip(PRIMARY_FLASH);
if (!SPIInterface::set_quad_bit(set_quad))
return false;
}
if (_flash_chips & SECONDARY_FLASH) {
select_flash_chip(SECONDARY_FLASH);
if (!SPIInterface::set_quad_bit(set_quad))
return false;
}
return true;
}
bool Xilinx::bulk_erase_flash()
{
if (_flash_chips & PRIMARY_FLASH) {
select_flash_chip(PRIMARY_FLASH);
if (!SPIInterface::bulk_erase_flash())
return false;
}
if (_flash_chips & SECONDARY_FLASH) {
select_flash_chip(SECONDARY_FLASH);
if (!SPIInterface::bulk_erase_flash())
return false;
}
return true;
2021-06-25 11:28:19 +02:00
}
/* flow program for xc3s (legacy mode) */
/* based on ISE spartan3/data/xx_1532.bsd files */
/* */
bool Xilinx::xc3s_flow_program(ConfigBitstreamParser *bit)
{
int byte_length = bit->getLength() / 8;
int burst_len = byte_length / 100;
2023-08-08 15:54:27 +02:00
const uint8_t *data = bit->getData();
2023-08-10 16:36:18 +02:00
int tx_len = burst_len * 8;
Jtag::tapState_t tx_end = Jtag::SHIFT_DR;
ProgressBar progress("Load SRAM", byte_length, 50, _quiet);
flow_enable();
if (_jtag->shiftIR(JPROGRAM, _irlen) < 0)
return false;
/* wait until memory cleared (DS099 v3.1 fig.30 p.52) */
uint8_t tx_buf = BYPASS, rx_buf;
do {
if (_jtag->shiftIR(&tx_buf, &rx_buf, _irlen) < 0)
return false;
2023-11-25 15:14:32 +01:00
} while (!(rx_buf & 0x10)); // wait until INIT
if (_jtag->shiftIR(JSHUTDOWN, _irlen) < 0)
return false;
_jtag->toggleClk(16);
if (_jtag->shiftIR(CFG_IN, _irlen) < 0)
return false;
2023-11-25 15:14:32 +01:00
for (int i = 0; byte_length > 0; byte_length-=burst_len, data+=burst_len) {
if (burst_len > byte_length) {
tx_len = byte_length * 8;
tx_end = Jtag::RUN_TEST_IDLE;
}
if (_jtag->shiftDR(data, NULL, tx_len, tx_end) < 0) {
progress.fail();
return false;
}
_jtag->flush();
progress.display(i);
i+= burst_len;
}
progress.done();
_jtag->toggleClk(1);
if (_jtag->shiftIR(JSTART, _irlen) < 0)
return false;
_jtag->toggleClk(32);
if (_jtag->shiftIR(BYPASS, _irlen) < 0)
return false;
2023-08-08 15:54:27 +02:00
uint8_t d = 0;
if (_jtag->shiftDR(&d, NULL, 1) < 0)
return false;
_jtag->toggleClk(1);
flow_disable();
2023-11-25 15:14:32 +01:00
uint8_t mask = 0x20; // Done bit
uint32_t idcode = _jtag->get_target_device_id();
if (fpga_list[idcode].family == "spartan3e") {
2023-11-25 15:14:32 +01:00
mask = 0x10; // ISC done dit
}
int retry = 100;
do {
if (_jtag->shiftIR(&tx_buf, &rx_buf, _irlen) < 0)
return false;
if (_jtag->shiftDR(data, NULL, 1) < 0)
return false;
2023-11-25 15:14:32 +01:00
} while (!(rx_buf & mask) && (retry-- > 0)); // wait until mask
return true;
}
void Xilinx::flow_enable()
{
uint8_t xfer_buf = 0x15;
uint8_t isc_enable = XC95_ISC_ENABLE;
int drlen = 6, tcklen = 1;
if (_fpga_family == SPARTAN3_FAMILY) {
xfer_buf = 0x00;
isc_enable = ISC_ENABLE;
drlen = 5;
tcklen = 16;
}
if (_jtag->shiftIR(isc_enable, _irlen) < 0)
return;
if (_jtag->shiftDR(&xfer_buf, NULL, drlen) < 0)
return;
_jtag->toggleClk(tcklen);
}
void Xilinx::flow_disable()
{
uint8_t isc_disable = XC95_ISC_DISABLE;
int tcklen = ((_jtag->getClkFreq() * 100) / 1000000);
if (_fpga_family == SPARTAN3_FAMILY) {
isc_disable = ISC_DISABLE;
tcklen = 16;
}
if (_jtag->shiftIR(isc_disable, _irlen) < 0)
return;
_jtag->toggleClk(tcklen);
if (_jtag->shiftIR(BYPASS, _irlen) < 0)
return;
if (_fpga_family == SPARTAN3_FAMILY) {
uint8_t xfer_buf = 0;
if (_jtag->shiftDR(&xfer_buf, NULL, 1) < 0)
return;
}
_jtag->toggleClk(1);
}
/* */
/* internal flash (xc95) */
/* based on ISE xc9500yy/data/xx_1532.bsd files */
/* */
bool Xilinx::flow_erase()
{
uint8_t xfer_buf[3] = {0x03, 0x00, 0x00};
printInfo("Erase flash ", false);
_jtag->shiftIR(XC95_ISC_ERASE, 8);
_jtag->shiftDR(xfer_buf, NULL, 18);
_jtag->toggleClk((_jtag->getClkFreq() * 400) / 1000);
_jtag->shiftDR(NULL, xfer_buf, 18);
if ((xfer_buf[0] & 0x03) != 0x01) {
printError("FAIL");
return false;
}
if (_verify) {
xfer_buf[0] = 0x03;
xfer_buf[1] = xfer_buf[2] = 0x00;
_jtag->shiftIR(XC95_XSC_BLANK_CHECK, 8);
_jtag->shiftDR(xfer_buf, NULL, 18);
_jtag->toggleClk(500);
_jtag->shiftDR(NULL, xfer_buf, 18);
if ((xfer_buf[0] & 0x03) != 0x01) {
printError("FAIL");
return false;
}
}
printSuccess("DONE");
return true;
}
bool Xilinx::flow_program(JedParser *jed)
{
uint8_t wr_buf[16+2]; // largest section length
uint8_t rd_buf[16+3];
/* enable ISC */
flow_enable();
/* erase internal flash */
if (!flow_erase())
return false;
/* xc95 internal flash is written by sector
* for each one them 15 jed sections are used
*/
size_t nb_section = jed->nb_section() / (15);
ProgressBar progress("Write Flash", nb_section, 50, _quiet);
for (size_t i = 0; i < nb_section; i++) {
uint16_t addr2 = i * 32;
for (int ii = 0; ii < 15; ii++) {
uint8_t mode = (ii == 14) ? 0x3 : 0x1;
int id = i * 15 + ii;
memcpy(wr_buf, jed->data_for_section(id)[0].c_str(),
_xc95_line_len);
wr_buf[_xc95_line_len] = (uint8_t) addr2&0xff;
wr_buf[_xc95_line_len+ 1 ] = (uint8_t)((addr2 >> 8) & 0xff);
_jtag->shiftIR(XC95_ISC_PROGRAM, 8);
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
if (ii == 14)
_jtag->toggleClk((_jtag->getClkFreq() * 50) / 1000);
else
_jtag->toggleClk(1);
if (ii == 14) {
mode = 0x00;
for (int loop_try = 0; loop_try < 32; loop_try++) {
_jtag->shiftIR(XC95_ISC_PROGRAM, 8);
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
_jtag->toggleClk((_jtag->getClkFreq() * 50) / 1000);
_jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2) + 2);
if ((rd_buf[0] & 0x03) == 0x01)
break;
}
if ((rd_buf[0] & 0x03) != 0x01) {
progress.fail();
return false;
}
}
addr2 += ((ii+1) % 0x05) ? 1 : 4;
}
progress.display(i);
}
progress.done();
/* TODO: verify */
if (_verify) {
std::string flash = flow_read();
int flash_pos = 0;
ProgressBar progress2("Verify Flash", nb_section, 50, _quiet);
for (size_t section = 0; section < nb_section; section++) {
for (size_t subsection = 0; subsection < 15; subsection++) {
int id = section * 15 + subsection;
std::string content = jed->data_for_section(id)[0];
for (int col = 0; col < _xc95_line_len; col++, flash_pos++) {
if ((uint8_t)content[col] != (uint8_t)flash[flash_pos]) {
char error[256];
progress2.fail();
snprintf(error, sizeof(error),
"Error: wrong value: read %02x instead of %02x",
(uint8_t)flash[flash_pos], (uint8_t)content[col]);
printError(error);
flow_disable();
return false;
}
}
}
}
progress2.done();
}
/* disable ISC */
flow_disable();
return true;
}
std::string Xilinx::flow_read()
{
uint8_t mode;
std::string buffer;
uint8_t wr_buf[16+2]; // largest section length
uint8_t rd_buf[16+2];
2023-09-01 15:35:44 +02:00
memset(wr_buf, 0xff, sizeof(wr_buf));
/* limit JTAG clock frequency to 1MHz */
if (_jtag->getClkFreq() > 1e6)
_jtag->setClkFreq(1e6);
ProgressBar progress("Read Flash", 108, 50, _quiet);
for (size_t section = 0; section < 108; section++) {
uint16_t addr2 = section * 32;
for (int subsection = 0; subsection < 15; subsection++) {
wr_buf[_xc95_line_len ] = (uint8_t)((addr2 ) & 0xff);
wr_buf[_xc95_line_len + 1] = (uint8_t)((addr2 >> 8) & 0xff);
mode = 3;
_jtag->shiftIR(XC95_ISC_READ, 8);
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
_jtag->toggleClk(1);
mode = 0;
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
_jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2));
for (int pos = 0; pos < _xc95_line_len; pos++)
buffer += rd_buf[pos];
addr2 += ((subsection+1) % 0x05) ? 1 : 4;
}
progress.display(section);
}
progress.done();
return buffer;
}
2021-08-30 15:08:11 +02:00
/* */
/* XCF Prom */
/* */
#define XCF_FVFY3 0xE2
#define XCF_ISCTESTSTATUS 0xE3
#define XCF_ISC_ENABLE 0xE8
#define XCF_ISC_PROGRAM 0xEA
#define XCF_ISC_ADDR_SHIFT 0xEB
#define XCF_ISC_ERASE 0xEC
#define XCF_ISC_DATA_SHIFT 0xED
#define XCF_CONFIG 0xEE
2021-08-30 15:08:11 +02:00
#define XCF_ISC_READ 0xeF
#define XCF_ISC_DISABLE 0xF0
void Xilinx::xcf_flow_enable(uint8_t mode)
{
_jtag->shiftIR(XCF_ISC_ENABLE, 8);
_jtag->shiftDR(&mode, NULL, 6);
_jtag->toggleClk(1);
}
void Xilinx::xcf_flow_disable()
{
_jtag->shiftIR(XCF_ISC_DISABLE, 8);
2023-09-19 16:56:50 +02:00
_jtag->flush();
2021-08-30 15:08:11 +02:00
usleep(110000);
_jtag->shiftIR(BYPASS, 8);
_jtag->toggleClk(1);
}
bool Xilinx::xcf_flow_erase()
{
uint8_t xfer_buf[2] = {0x01, 0x00};
printInfo("Erase flash ", false);
xcf_flow_enable();
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
_jtag->shiftDR(xfer_buf, NULL, 16);
_jtag->toggleClk(1);
_jtag->shiftIR(XCF_ISC_ERASE, 8);
2023-09-19 16:56:50 +02:00
_jtag->flush();
2021-08-30 15:08:11 +02:00
usleep(500000);
int i;
for (i = 0; i < 32; i++) {
_jtag->shiftIR(XCF_ISCTESTSTATUS, 8);
2023-09-19 16:56:50 +02:00
_jtag->flush();
2021-08-30 15:08:11 +02:00
usleep(500000);
_jtag->shiftDR(NULL, xfer_buf, 8);
if ((xfer_buf[0] & 0x04))
break;
}
if (i == 32) {
printError("FAIL");
return false;
}
printSuccess("DONE");
xcf_flow_disable();
return true;
}
bool Xilinx::xcf_program(ConfigBitstreamParser *bitfile)
{
uint8_t tx_buf[4096 / 8];
uint16_t pkt_len =
((_jtag->get_target_device_id() == 0x05044093) ? 2048 : 4096) / 8;
2023-09-19 16:56:50 +02:00
if (!bitfile)
throw std::runtime_error("called with null bitstream");
2023-08-08 15:54:27 +02:00
const uint8_t *data = bitfile->getData();
2021-08-30 15:08:11 +02:00
uint32_t data_len = bitfile->getLength() / 8;
uint32_t xfer_len, offset = 0;
uint32_t addr = 0;
2023-08-10 16:36:18 +02:00
Jtag::tapState_t xfer_end;
2021-08-30 15:08:11 +02:00
/* limit JTAG clock frequency to 15MHz */
if (_jtag->getClkFreq() > 15e6)
_jtag->setClkFreq(15e6);
if (!xcf_flow_erase()) {
printError("flow erase failed");
return false;
}
xcf_flow_enable();
int blk_id = 0;
ProgressBar progress("Write PROM", (data_len / pkt_len), 50, _quiet);
while (data_len > 0) {
if (data_len < pkt_len) {
xfer_len = data_len;
xfer_end = Jtag::SHIFT_DR;
} else {
xfer_len = pkt_len;
xfer_end = Jtag::RUN_TEST_IDLE;
}
/* send data to PROM */
_jtag->shiftIR(XCF_ISC_DATA_SHIFT, 8);
_jtag->shiftDR(data+offset, NULL, xfer_len * 8, xfer_end);
if (xfer_len != pkt_len) {
uint32_t res = pkt_len - xfer_len;
memset(tx_buf, 0xff, res);
_jtag->shiftDR(tx_buf, NULL, res * 8);
}
_jtag->toggleClk(1);
/* send address */
tx_buf[0] = (addr >> 0) & 0x00ff;
tx_buf[1] = (addr >> 8) & 0x00ff;
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
_jtag->shiftDR(tx_buf, NULL, 16);
_jtag->toggleClk(1);
/* send program instruction */
_jtag->shiftIR(XCF_ISC_PROGRAM, 8);
2023-09-19 16:56:50 +02:00
_jtag->flush();
2021-08-30 15:08:11 +02:00
usleep((addr == 0) ? 14000: 500);
/* wait until bit 3 != 1 */
int i;
for (i = 0; i < 29; i++) {
_jtag->shiftIR(XCF_ISCTESTSTATUS, 8);
2023-09-19 16:56:50 +02:00
_jtag->flush();
2021-08-30 15:08:11 +02:00
usleep(500);
_jtag->shiftDR(NULL, tx_buf, 8);
if ((tx_buf[0] & 0x04))
break;
}
if (i == 29) {
progress.fail();
return false;
}
blk_id++;
offset += xfer_len;
addr += 32;
data_len -= xfer_len;
progress.display(blk_id);
}
progress.done();
/* program done */
_jtag->shiftIR(BYPASS, 8);
_jtag->toggleClk(1);
if (_verify) {
std::string flash = xcf_read();
uint32_t file_size = bitfile->getLength() / 8;
uint32_t prom_size = (uint32_t)flash.size();
uint32_t nb_bytes = (file_size > prom_size) ? prom_size : file_size;
ProgressBar progress2("Verify Flash", nb_bytes, 50, _quiet);
for (uint32_t pos = 0; pos < nb_bytes; pos++) {
if (data[pos] != (uint8_t)flash[pos]) {
progress2.fail();
char error[64];
snprintf(error, sizeof(error),
"Error: wrong value: read %02x instead of %02x",
(uint8_t)flash[pos], (uint8_t)data[pos]);
printError(error);
xcf_flow_disable();
return false;
}
progress.display(pos);
}
progress2.done();
}
_jtag->go_test_logic_reset();
xcf_flow_disable();
/* reconfigure FPGA */
_jtag->shiftIR(XCF_CONFIG, 8);
_jtag->toggleClk(1);
_jtag->shiftIR(BYPASS, 8);
_jtag->toggleClk(1);
2021-08-30 15:08:11 +02:00
return true;
}
std::string Xilinx::xcf_read()
{
uint32_t addr = 0;
uint8_t rx_buf[4096 / 8];
uint16_t pkt_len =
((_jtag->get_target_device_id() == 0x05044093) ? 2048 : 4096) / 8;
uint16_t nb_section =
((_jtag->get_target_device_id() == 0x05046093) ? 1024 : 512);
std::string buffer;
/* limit JTAG clock frequency to 15MHz */
if (_jtag->getClkFreq() > 15e6)
_jtag->setClkFreq(15e6);
ProgressBar progress("Read PROM", nb_section, 50, _quiet);
for (size_t section = 0; section < nb_section; section++) {
/* send address */
rx_buf[0] = (addr >> 0) & 0x00ff;
rx_buf[1] = (addr >> 8) & 0x00ff;
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
_jtag->shiftDR(rx_buf, NULL, 16);
_jtag->toggleClk(1);
/* send data to PROM */
_jtag->shiftIR(XCF_ISC_READ, 8);
2023-09-19 16:56:50 +02:00
_jtag->flush();
2021-08-30 15:08:11 +02:00
usleep(50);
_jtag->shiftDR(NULL, rx_buf, pkt_len * 8);
for (int i = 0; i < pkt_len; i++)
buffer += rx_buf[i];
progress.display(section);
addr += 32;
}
progress.done();
return buffer;
}
/*--------------------------------------------------------*/
/* xc2c */
/*--------------------------------------------------------*/
#define XC2C_IDCODE 0x01
#define XC2C_ISC_DISABLE 0xc0
#define XC2C_VERIFY 0xd1
#define XC2C_ISC_ENABLE_OTF 0xe4
#define XC2C_ISC_WRITE 0xe6
#define XC2C_ISC_SRAM_READ 0xe7
#define XC2C_ISC_ENABLE 0xe8
#define XC2C_ISC_PROGRAM 0xea
#define XC2C_ISC_ERASE 0xed
#define XC2C_ISC_READ 0xee
#define XC2C_ISC_INIT 0xf0
#define XC2C_USERCODE 0xfd
/* xilinx programmer qualification specification 6.2
* directly reversed
*/
static constexpr uint8_t _gray_code[256] = {
0x00, 0x80, 0xc0, 0x40, 0x60, 0xe0, 0xa0, 0x20,
0x30, 0xb0, 0xf0, 0x70, 0x50, 0xd0, 0x90, 0x10,
0x18, 0x98, 0xd8, 0x58, 0x78, 0xf8, 0xb8, 0x38,
0x28, 0xa8, 0xe8, 0x68, 0x48, 0xc8, 0x88, 0x08,
0x0c, 0x8c, 0xcc, 0x4c, 0x6c, 0xec, 0xac, 0x2c,
0x3c, 0xbc, 0xfc, 0x7c, 0x5c, 0xdc, 0x9c, 0x1c,
0x14, 0x94, 0xd4, 0x54, 0x74, 0xf4, 0xb4, 0x34,
0x24, 0xa4, 0xe4, 0x64, 0x44, 0xc4, 0x84, 0x04,
0x06, 0x86, 0xc6, 0x46, 0x66, 0xe6, 0xa6, 0x26,
0x36, 0xb6, 0xf6, 0x76, 0x56, 0xd6, 0x96, 0x16,
0x1e, 0x9e, 0xde, 0x5e, 0x7e, 0xfe, 0xbe, 0x3e,
0x2e, 0xae, 0xee, 0x6e, 0x4e, 0xce, 0x8e, 0x0e,
0x0a, 0x8a, 0xca, 0x4a, 0x6a, 0xea, 0xaa, 0x2a,
0x3a, 0xba, 0xfa, 0x7a, 0x5a, 0xda, 0x9a, 0x1a,
0x12, 0x92, 0xd2, 0x52, 0x72, 0xf2, 0xb2, 0x32,
0x22, 0xa2, 0xe2, 0x62, 0x42, 0xc2, 0x82, 0x02,
0x03, 0x83, 0xc3, 0x43, 0x63, 0xe3, 0xa3, 0x23,
0x33, 0xb3, 0xf3, 0x73, 0x53, 0xd3, 0x93, 0x13,
0x1b, 0x9b, 0xdb, 0x5b, 0x7b, 0xfb, 0xbb, 0x3b,
0x2b, 0xab, 0xeb, 0x6b, 0x4b, 0xcb, 0x8b, 0x0b,
0x0f, 0x8f, 0xcf, 0x4f, 0x6f, 0xef, 0xaf, 0x2f,
0x3f, 0xbf, 0xff, 0x7f, 0x5f, 0xdf, 0x9f, 0x1f,
0x17, 0x97, 0xd7, 0x57, 0x77, 0xf7, 0xb7, 0x37,
0x27, 0xa7, 0xe7, 0x67, 0x47, 0xc7, 0x87, 0x07,
0x05, 0x85, 0xc5, 0x45, 0x65, 0xe5, 0xa5, 0x25,
0x35, 0xb5, 0xf5, 0x75, 0x55, 0xd5, 0x95, 0x15,
0x1d, 0x9d, 0xdd, 0x5d, 0x7d, 0xfd, 0xbd, 0x3d,
0x2d, 0xad, 0xed, 0x6d, 0x4d, 0xcd, 0x8d, 0x0d,
0x09, 0x89, 0xc9, 0x49, 0x69, 0xe9, 0xa9, 0x29,
0x39, 0xb9, 0xf9, 0x79, 0x59, 0xd9, 0x99, 0x19,
0x11, 0x91, 0xd1, 0x51, 0x71, 0xf1, 0xb1, 0x31,
0x21, 0xa1, 0xe1, 0x61, 0x41, 0xc1, 0x81, 0x01,
};
void Xilinx::xc2c_init(uint32_t idcode)
{
_fpga_family = XC2C_FAMILY;
std::string model = fpga_list[idcode].model;
2024-11-09 11:24:16 +01:00
size_t underscore_pos = model.find_first_of('_', 0);
if (underscore_pos == model.npos) {
underscore_pos = model.length();
}
snprintf(_cpld_base_name, underscore_pos,
"%s", model.substr(0, underscore_pos).c_str());
switch ((idcode >> 16) & 0x3f) {
case 0x01: /* xc2c32 */
case 0x11: /* xc2c32a PC44 */
case 0x21: /* xc2c32a */
_cpld_nb_col = 260;
_cpld_nb_row = 48;
_cpld_addr_size = 6;
break;
case 0x05: /* xc2c64 */
case 0x25: /* xc2c64a */
_cpld_nb_col = 274;
_cpld_nb_row = 96;
_cpld_addr_size = 7;
break;
case 0x18: /* xc2c128 */
_cpld_nb_col = 752;
_cpld_nb_row = 80;
_cpld_addr_size = 7;
break;
case 0x14: /* xc2c256 */
_cpld_nb_col = 1364;
_cpld_nb_row = 96;
_cpld_addr_size = 7;
break;
case 0x15: /* xc2c384 */
_cpld_nb_col = 1868;
_cpld_nb_row = 120;
_cpld_addr_size = 7;
break;
case 0x17: /* xc2c512 */
_cpld_nb_col = 1980;
_cpld_nb_row = 160;
_cpld_addr_size = 8;
break;
default:
throw std::runtime_error("Error: unknown XC2C version");
}
_cpld_nb_row += 2; // 2 more row: done + sec and usercode
// datasheet table 2 p.15
}
/* reinit device
* datasheet table 47-48 p.61-62
*/
void Xilinx::xc2c_flow_reinit()
{
uint8_t c = 0;
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
_jtag->shiftIR(XC2C_ISC_INIT, 8);
_jtag->toggleClk((_jtag->getClkFreq() * 20) / 1000);
_jtag->shiftIR(XC2C_ISC_INIT, 8);
_jtag->shiftDR(&c, NULL, 8);
_jtag->toggleClk((_jtag->getClkFreq() * 800) / 1000);
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
_jtag->shiftIR(BYPASS, 8);
}
/* full flash erase (with optional blank check)
* datasheet 12.1 (table41) p.56
*/
bool Xilinx::xc2c_flow_erase()
{
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8, Jtag::UPDATE_IR);
_jtag->shiftIR(XC2C_ISC_ERASE, 8);
_jtag->toggleClk((_jtag->getClkFreq() * 100) / 1000);
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
if (_verify) {
std::string rx_buf = xc2c_flow_read();
for (auto &val : rx_buf) {
if ((uint8_t)val != 0xff) {
printError("Erase: fails to verify blank check");
return false;
}
}
}
return true;
}
/* read flash full content
* return it has string buffer
* table 45 - 46 p. 59-60
*/
std::string Xilinx::xc2c_flow_read()
{
uint8_t rx_buf[249];
uint32_t delay_loop = (_jtag->getClkFreq() * 20) / 1000000;
uint16_t pos = 0;
uint8_t addr_shift = 8 - _cpld_addr_size;
std::string buffer;
buffer.resize(((_cpld_nb_col * _cpld_nb_row) + 7) / 8);
ProgressBar progress("Read Flash", _cpld_nb_row + 1, 50, _quiet);
_jtag->shiftIR(BYPASS, 8);
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
_jtag->shiftIR(XC2C_ISC_READ, 8);
/* send address
* send addr 0 before loop because each row content
* is followed by next addr (or dummy for the last row
*/
/* send address */
uint8_t addr = _gray_code[0] >> addr_shift;
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
/* wait 20us */
_jtag->toggleClk(delay_loop);
for (size_t row = 1; row <= _cpld_nb_row; row++) {
/* read nb_col bits, stay in shift_dr to send next addr */
_jtag->shiftDR(NULL, rx_buf, _cpld_nb_col, Jtag::SHIFT_DR);
/* send address */
addr = _gray_code[row] >> addr_shift;
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
/* wait 20us */
_jtag->toggleClk(delay_loop);
for (int i = 0; i < _cpld_nb_col; i++, pos++)
if (rx_buf[i >> 3] & (1 << (i & 0x07)))
buffer[pos >> 3] |= (1 << (pos & 0x07));
else
buffer[pos >> 3] &= ~(1 << (pos & 0x07));
progress.display(row);
}
progress.done();
_jtag->shiftIR(XC2C_ISC_DISABLE, Jtag::TEST_LOGIC_RESET);
return buffer;
}
bool Xilinx::xc2c_flow_program(JedParser *jed)
{
uint32_t delay_loop = (_jtag->getClkFreq() * 20) / 1000;
uint8_t shift_addr = 8 - _cpld_addr_size;
/* map jed fuse using device map */
printInfo("Map jed fuses: ", false);
XilinxMapParser *map_parser;
try {
std::string mapname = ISE_DIR "/ISE_DS/ISE/xbr/data/" +
std::string(_cpld_base_name) + ".map";
map_parser = new XilinxMapParser(mapname, _cpld_nb_row, _cpld_nb_col,
jed, 0xffffffff, _verbose);
map_parser->parse();
} catch(std::exception &e) {
printError("FAIL");
throw std::runtime_error(e.what());
}
printSuccess("DONE");
std::vector<std::string> listfuse = map_parser->cfg_data();
/* erase internal flash */
printInfo("Erase Flash: ", false);
if (!xc2c_flow_erase()) {
printError("FAIL");
throw std::runtime_error("Fail to erase interface flash");
} else {
printSuccess("DONE");
}
ProgressBar progress("Write Flash", _cpld_nb_row, 50, _quiet);
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
_jtag->shiftIR(XC2C_ISC_PROGRAM, 8);
uint16_t iter = 0;
2023-09-19 16:56:50 +02:00
for (const auto &row : listfuse) {
uint16_t pos = 0;
uint8_t addr = _gray_code[iter] >> shift_addr;
2023-09-01 15:35:44 +02:00
uint8_t wr_buf[249] = {0}; // largest section length
for (auto col : row) {
if (col)
wr_buf[pos >> 3] |= (1 << (pos & 0x07));
else
wr_buf[pos >> 3] &= ~(1 << (pos & 0x07));
pos++;
}
_jtag->shiftDR(wr_buf, NULL, _cpld_nb_col, Jtag::SHIFT_DR);
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
_jtag->toggleClk(delay_loop);
iter++;
}
/* done bit and usercode are shipped into listfuse
* so only needs to send isc disable
*/
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
if (_verify) {
std::string rx_buffer = xc2c_flow_read();
iter = 0;
2023-09-19 16:56:50 +02:00
for (const auto &row : listfuse) {
for (auto col : row) {
if ((rx_buffer[iter >> 3] >> (iter & 0x07)) != col) {
throw std::runtime_error("Program: verify failed");
}
iter++;
}
}
}
/* reload */
xc2c_flow_reinit();
return true;
}
/* */
/* SPI interface */
/* */
/*
* jtag : jtag interface
* cmd : opcode for SPI flash
* tx : buffer to send
* rx : buffer to fill
* len : number of byte to send/receive (cmd not comprise)
* so to send only a cmd set len to 0 (or omit this param)
*/
int Xilinx::spi_put(uint8_t cmd,
2023-08-08 15:54:27 +02:00
const uint8_t *tx, uint8_t *rx, uint32_t len)
{
/* SpiOverJtag v2 */
if (_soj_is_v2)
return spi_put_v2(cmd, tx, rx, len);
int xfer_len = len + 1 + ((rx == NULL) ? 0 : 1);
uint8_t jtx[xfer_len];
jtx[0] = McsParser::reverseByte(cmd);
/* uint8_t jtx[xfer_len] = {McsParser::reverseByte(cmd)}; */
uint8_t jrx[xfer_len];
if (tx != NULL) {
for (uint32_t i=0; i < len; i++)
jtx[i+1] = McsParser::reverseByte(tx[i]);
}
/* addr BSCAN user1 */
_jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen);
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = McsParser::reverseByte(jrx[i+1] >> 1) | (jrx[i+2] & 0x01);
}
return 0;
}
2023-08-08 15:54:27 +02:00
int Xilinx::spi_put(const uint8_t *tx, uint8_t *rx, uint32_t len)
{
int xfer_len = len + ((rx == NULL) ? 0 : 1);
uint8_t jtx[xfer_len];
uint8_t jrx[xfer_len];
if (tx != NULL) {
for (uint32_t i=0; i < len; i++)
jtx[i] = McsParser::reverseByte(tx[i]);
}
/* addr BSCAN user1 */
_jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen);
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = McsParser::reverseByte(jrx[i] >> 1) | (jrx[i+1] & 0x01);
}
return 0;
}
int Xilinx::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond,
uint32_t timeout, bool verbose)
{
uint8_t rx[2];
uint8_t tx[2];
uint8_t tmp;
uint32_t count = 0;
const uint8_t shift = _jtag_chain_len;
uint8_t idx = 0;
if (_soj_is_v2)
tx[idx++] = (0x2 << 1) | 1;
tx[idx++] = McsParser::reverseByte(cmd);
_jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen, Jtag::UPDATE_IR);
_jtag->shiftDR(tx, NULL, 8 * idx, Jtag::SHIFT_DR);
do {
_jtag->shiftDR(tx, rx, 8*2, Jtag::SHIFT_DR);
tmp = McsParser::reverseByte(rx[0 ]>> shift);
if (shift == 1)
tmp |= (0x01 & rx[1]);
else
tmp |= McsParser::reverseByte(rx[1]) >> (8 - shift);
count++;
if (count == timeout){
printf("timeout: %x %x %x\n", tmp, rx[0], rx[1]);
break;
}
if (verbose) {
printf("%x %x %x %u %02x %02x\n", tmp, mask, cond, count, rx[0], rx[1]);
}
} while ((tmp & mask) != cond);
_jtag->shiftDR(tx, rx, 8 * 2, Jtag::EXIT1_DR);
_jtag->go_test_logic_reset();
if (count == timeout) {
printf("%x\n", tmp);
std::cout << "wait: Error" << std::endl;
return -ETIME;
} else {
return 0;
}
}
int Xilinx::spi_put_v2(uint8_t cmd, const uint8_t *tx, uint8_t *rx,
uint32_t len)
{
const uint32_t real_len = len + 1; // rx/tx length + cmd
uint32_t kPktLen = real_len + 2; // One header and +1 due to the needs of an additional bit/byte
uint8_t mode = 0x01;
if (real_len > 32) {
kPktLen++; // Additional header
mode = 0x00;
}
const uint32_t xfer_bit_len = (kPktLen - 1) * 8 + (rx ? 8 : 1);
uint8_t jrx[kPktLen];
uint8_t pkt[kPktLen];
uint32_t idx = 0;
pkt[idx++] = ((0x1f & real_len) << 3) | ((0x03 & mode) << 1) | 1;
if (mode == 0x00)
pkt[idx++] = 0xff & (real_len >> 5);
pkt[idx++] = McsParser::reverseByte(cmd);
if (tx) {
for (uint32_t i=0; i < len; i++)
pkt[idx++] = McsParser::reverseByte(tx[i]);
} else {
memset(&pkt[idx], 0, len);
idx += len;
}
/* addr BSCAN user1 */
_jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen);
_jtag->shiftDR(pkt, (rx == NULL) ? NULL : jrx, xfer_bit_len);
_jtag->go_test_logic_reset();
_jtag->flush();
if (_verbose) {
for (uint32_t i = 0; i < kPktLen; i++)
printf("%02x ", pkt[i]);
printf("\n");
}
if (rx != NULL) {
if (_verbose) {
for (uint32_t i = 0; i < kPktLen; i++)
printf("%02x ", jrx[i]);
printf("\n");
for (uint32_t i = 0; i < kPktLen; i++)
printf("%02x ", McsParser::reverseByte(jrx[i]));
printf("\n");
}
idx = (mode == 0 ? 3 : 2);
const uint8_t shift = _jtag_chain_len;
for (uint32_t i = 0; i < len; i++) {
rx[i] = McsParser::reverseByte(jrx[i + idx] >> shift);
if (shift == 1)
rx[i] |= (jrx[i + idx + 1] & 0x01);
else
rx[i] |= McsParser::reverseByte(jrx[i + idx + 1]) >> (8 - shift);
if (_verbose)
printf("%02x ", rx[i]);
}
if (_verbose)
printf("\n");
}
return 0;
}
void Xilinx::select_flash_chip(xilinx_flash_chip_t flash_chip) {
switch (flash_chip) {
case SECONDARY_FLASH:
_user_instruction = "USER2";
break;
case PRIMARY_FLASH:
default:
_user_instruction = "USER1";
break;
}
}