2239 lines
60 KiB
C++
2239 lines
60 KiB
C++
// SPDX-License-Identifier: Apache-2.0
|
|
/*
|
|
* Copyright (C) 2019 Gwenhael Goavec-Merou <gwenhael.goavec-merou@trabucayre.com>
|
|
*/
|
|
|
|
#define __STDC_FORMAT_MACROS
|
|
#include <inttypes.h>
|
|
#include <unistd.h>
|
|
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "bitparser.hpp"
|
|
#include "common.hpp"
|
|
#include "configBitstreamParser.hpp"
|
|
#include "display.hpp"
|
|
#include "jedParser.hpp"
|
|
#include "jtag.hpp"
|
|
#include "mcsParser.hpp"
|
|
#include "part.hpp"
|
|
#include "progressBar.hpp"
|
|
#if defined (_WIN64) || defined (_WIN32)
|
|
#include "pathHelper.hpp"
|
|
#endif
|
|
#include "rawParser.hpp"
|
|
#include "spiFlash.hpp"
|
|
#include "spiInterface.hpp"
|
|
#include "xilinx.hpp"
|
|
#include "xilinxMapParser.hpp"
|
|
|
|
/* Used for xc3s */
|
|
#define USER1 0x02
|
|
#define USER4 0x23
|
|
#define CFG_IN 0x05
|
|
#define USERCODE 0x08
|
|
#define IDCODE 0x09
|
|
#define ISC_ENABLE 0x10
|
|
#define JPROGRAM 0x0B
|
|
#define JSTART 0x0C
|
|
#define JSHUTDOWN 0x0D
|
|
#define ISC_PROGRAM 0x11
|
|
#define ISC_DISABLE 0x16
|
|
#define BYPASS 0xff
|
|
|
|
/* xc95 instructions set */
|
|
#define XC95_IDCODE 0xfe
|
|
#define XC95_ISC_ERASE 0xed
|
|
#define XC95_ISC_ENABLE 0xe9
|
|
#define XC95_ISC_DISABLE 0xf0
|
|
#define XC95_XSC_BLANK_CHECK 0xe5
|
|
#define XC95_ISC_PROGRAM 0xea
|
|
#define XC95_ISC_READ 0xee
|
|
|
|
/* DRP instructions set */
|
|
#define XADC_DRP 0x37
|
|
|
|
/* XADC Addresses */
|
|
#define XADC_TEMP 0x00
|
|
#define XADC_LOCK 0x00
|
|
#define XADC_VCCINT 0x01
|
|
#define XADC_VCCAUX 0x02
|
|
#define XADC_VAUXEN 0x02
|
|
#define XADC_VPVN 0x03
|
|
#define XADC_RESET 0x03
|
|
#define XADC_VREFP 0x04
|
|
#define XADC_VREFN 0x05
|
|
#define XADC_VCCBRAM 0x06
|
|
#define XADC_SUPAOFFS 0x08
|
|
#define XADC_ADCAOFFS 0x09
|
|
#define XADC_ADCAGAIN 0x0a
|
|
#define XADC_VCCPINT 0x0d
|
|
#define XADC_VCCPAUX 0x0e
|
|
#define XADC_VCCODDR 0x0f
|
|
#define XADC_VAUX0 0x10
|
|
#define XADC_VAUX1 0x11
|
|
#define XADC_VAUX2 0x12
|
|
#define XADC_VAUX3 0x13
|
|
#define XADC_VAUX4 0x14
|
|
#define XADC_VAUX5 0x15
|
|
#define XADC_VAUX6 0x16
|
|
#define XADC_VAUX7 0x17
|
|
#define XADC_VAUX8 0x18
|
|
#define XADC_VAUX9 0x19
|
|
#define XADC_VAUX10 0x1a
|
|
#define XADC_VAUX11 0x1b
|
|
#define XADC_VAUX12 0x1c
|
|
#define XADC_VAUX13 0x1d
|
|
#define XADC_VAUX14 0x1e
|
|
#define XADC_VAUX15 0x1f
|
|
#define XADC_TEMP_MAX 0x20
|
|
#define XADC_TEMP_MIN 0x24
|
|
#define XADC_SUPBOFFS 0x30
|
|
#define XADC_ADCBOFFS 0x31
|
|
#define XADC_ADCBGAIN 0x32
|
|
#define XADC_FLAG 0x3f
|
|
#define XADC_CFG0 0x40
|
|
#define XADC_CFG1 0x41
|
|
#define XADC_CFG2 0x42
|
|
#define XADC_SEQ0 0x48
|
|
#define XADC_SEQ1 0x49
|
|
#define XADC_SEQ2 0x4a
|
|
#define XADC_SEQ3 0x4b
|
|
#define XADC_SEQ4 0x4c
|
|
#define XADC_SEQ5 0x4d
|
|
#define XADC_SEQ6 0x4e
|
|
#define XADC_SEQ7 0x4f
|
|
#define XADC_ALARM0 0x50
|
|
#define XADC_ALARM1 0x51
|
|
#define XADC_ALARM2 0x52
|
|
#define XADC_ALARM3 0x53
|
|
#define XADC_ALARM4 0x54
|
|
#define XADC_ALARM5 0x55
|
|
#define XADC_ALARM6 0x56
|
|
#define XADC_ALARM7 0x57
|
|
#define XADC_ALARM8 0x58
|
|
#define XADC_ALARM9 0x59
|
|
#define XADC_ALARM10 0x5a
|
|
#define XADC_ALARM11 0x5b
|
|
#define XADC_ALARM12 0x5c
|
|
#define XADC_ALARM13 0x5d
|
|
#define XADC_ALARM14 0x5e
|
|
#define XADC_ALARM15 0x5f
|
|
|
|
#define XADC_VCC_MINOFFSET 0x24
|
|
#define XADC_VCC_MAXOFFSET 0x20
|
|
|
|
/* Boundary-scan instruction set based on the FPGA model */
|
|
static std::map<std::string, std::map<std::string, std::vector<uint8_t>>>
|
|
ircode_mapping {
|
|
{
|
|
/* 7-series default */
|
|
"default",
|
|
{
|
|
{ "USER1", {0x02} },
|
|
{ "USER2", {0x03} },
|
|
{ "CFG_OUT", {0x04} },
|
|
{ "CFG_IN", {0x05} },
|
|
{ "USERCODE", {0x08} },
|
|
{ "IDCODE", {0x09} },
|
|
{ "ISC_ENABLE", {0x10} },
|
|
{ "JPROGRAM", {0x0B} },
|
|
{ "JSTART", {0x0C} },
|
|
{ "JSHUTDOWN", {0x0D} },
|
|
{ "ISC_PROGRAM", {0x11} },
|
|
{ "ISC_DISABLE", {0x16} },
|
|
{ "BYPASS", {0xff} },
|
|
}
|
|
},
|
|
{
|
|
/* Xilinx Virtex UltraScale+ */
|
|
/* <vivado_dir>/data/parts/xilinx/virtexuplus/public/bsdl/xcvu9p_flga2104.bsd */
|
|
"virtexusp",
|
|
{
|
|
{ "USER1", {0b00100100, 0b00101001, 0b00} },
|
|
{ "USER2", {0b00100100, 0b00111001, 0b00} },
|
|
{ "CFG_IN", {0b00100100, 0b01011001, 0b00} }, // CFG_IN_SLR1
|
|
{ "USERCODE", {0b00100100, 0b10001001, 0b00} },
|
|
{ "IDCODE", {0b01001001, 0b10010010, 0b00} },
|
|
{ "ISC_ENABLE", {0b00010000, 0b00000100, 0b01} },
|
|
{ "JPROGRAM", {0b11001011, 0b10110010, 0b00} },
|
|
{ "JSTART", {0b00001100, 0b11000011, 0b00} },
|
|
{ "JSHUTDOWN", {0b01001101, 0b11010011, 0b00} },
|
|
{ "ISC_PROGRAM", {0b01010001, 0b00010100, 0b01} },
|
|
{ "ISC_DISABLE", {0b10010110, 0b01100101, 0b01} },
|
|
{ "BYPASS", {0b11111111, 0b11111111, 0b11} },
|
|
}
|
|
}
|
|
};
|
|
|
|
/* Helper to get instruction code as a uint8_t pointer * */
|
|
static uint8_t *get_ircode(
|
|
std::map<std::string, std::vector<uint8_t>> &inst_map, std::string inst)
|
|
{
|
|
return inst_map.at(inst).data();
|
|
}
|
|
|
|
static void open_bitfile(
|
|
const std::string &filename, const std::string &extension,
|
|
ConfigBitstreamParser **parser, bool reverse, bool verbose)
|
|
{
|
|
printInfo("Open file ", false);
|
|
if (extension == "bit") {
|
|
*parser = new BitParser(filename, reverse, verbose);
|
|
} else if (extension == "mcs") {
|
|
*parser = new McsParser(filename, reverse, verbose);
|
|
} else {
|
|
*parser = new RawParser(filename, reverse);
|
|
}
|
|
|
|
printSuccess("DONE");
|
|
|
|
printInfo("Parse file ", false);
|
|
if ((*parser)->parse() == EXIT_FAILURE) {
|
|
throw std::runtime_error("Failed to parse bitstream");
|
|
}
|
|
|
|
printSuccess("DONE");
|
|
}
|
|
|
|
#define FUSE_DNA 0x32
|
|
|
|
uint64_t Xilinx::fuse_dna_read(void)
|
|
{
|
|
unsigned char tx_data[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
|
unsigned char rx_data[8];
|
|
|
|
_jtag->go_test_logic_reset();
|
|
_jtag->shiftIR(FUSE_DNA, 6);
|
|
_jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 64);
|
|
|
|
uint64_t dna = 0;
|
|
|
|
for(int i = 0; i < 8; i++) {
|
|
unsigned char rev = 0;
|
|
for (int j = 0; j < 8; j++) {
|
|
rev |= ((rx_data[i] >> j) & 1) << (7 - j);
|
|
}
|
|
dna = (dna << 8ULL) | rev;
|
|
}
|
|
|
|
return dna & 0x1ffffffffffffff;
|
|
}
|
|
|
|
unsigned int Xilinx::xadc_read(uint16_t addr)
|
|
{
|
|
unsigned int tx_data = (1 << 26) | (addr << 16);
|
|
unsigned int rx_data = 0;
|
|
|
|
_jtag->go_test_logic_reset();
|
|
_jtag->shiftIR(XADC_DRP, 6);
|
|
_jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32);
|
|
usleep(1000);
|
|
_jtag->shiftIR(XADC_DRP, 6);
|
|
_jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32);
|
|
|
|
return rx_data;
|
|
}
|
|
|
|
void Xilinx::xadc_write(uint16_t addr, uint16_t data)
|
|
{
|
|
unsigned int tx_data = (1 << 26) | (addr << 16) | data;
|
|
unsigned int rx_data = 0;
|
|
|
|
_jtag->go_test_logic_reset();
|
|
_jtag->shiftIR(XADC_DRP, 6);
|
|
_jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32);
|
|
}
|
|
|
|
unsigned int Xilinx::xadc_single(uint16_t ch)
|
|
{
|
|
_jtag->go_test_logic_reset();
|
|
// single channel, disable the sequencer
|
|
xadc_write(XADC_CFG1, 0x3000);
|
|
// set channel, no averaging, additional settling time
|
|
xadc_write(XADC_CFG0, (1 << 15) | (1 << 8) | ch);
|
|
// leave some time (1ms) for the conversion
|
|
usleep(1000);
|
|
unsigned int ret = xadc_read(ch);
|
|
|
|
return ret;
|
|
}
|
|
|
|
Xilinx::Xilinx(Jtag *jtag, const std::string &filename,
|
|
const std::string &secondary_filename,
|
|
const std::string &file_type,
|
|
Device::prog_type_t prg_type,
|
|
const std::string &device_package, const std::string &spiOverJtagPath,
|
|
const std::string &target_flash,
|
|
bool verify, int8_t verbose,
|
|
bool skip_load_bridge, bool skip_reset, bool read_dna, bool read_xadc):
|
|
Device(jtag, filename, file_type, verify, verbose),
|
|
SPIInterface(filename, verbose, 256, verify, skip_load_bridge,
|
|
skip_reset),
|
|
_device_package(device_package), _spiOverJtagPath(spiOverJtagPath),
|
|
_irlen(6), _secondary_filename(secondary_filename), _soj_is_v2(false),
|
|
_jtag_chain_len(1)
|
|
{
|
|
if (prg_type == Device::RD_FLASH) {
|
|
_mode = Device::READ_MODE;
|
|
} else if (!_file_extension.empty()) {
|
|
if (_file_extension == "mcs") {
|
|
_mode = Device::SPI_MODE;
|
|
} else if (_file_extension == "bit" || _file_extension == "bin") {
|
|
if (prg_type == Device::WR_SRAM)
|
|
_mode = Device::MEM_MODE;
|
|
else
|
|
_mode = Device::SPI_MODE;
|
|
} else if (_file_extension == "jed") {
|
|
_mode = Device::FLASH_MODE;
|
|
} else {
|
|
_mode = Device::SPI_MODE;
|
|
}
|
|
}
|
|
|
|
select_flash_chip(PRIMARY_FLASH);
|
|
|
|
if (target_flash == "primary") {
|
|
_flash_chips = PRIMARY_FLASH;
|
|
} else if (target_flash == "secondary") {
|
|
_flash_chips = SECONDARY_FLASH;
|
|
} else if (target_flash == "both") {
|
|
_flash_chips = (PRIMARY_FLASH | SECONDARY_FLASH);
|
|
} else {
|
|
throw std::runtime_error("Error: unknown flash target: " + target_flash);
|
|
}
|
|
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
_secondary_file_extension = secondary_filename.substr(
|
|
secondary_filename.find_last_of(".") + 1);
|
|
_mode = Device::SPI_MODE;
|
|
if (!(_device_package == "xcvu9p-flga2104" || _device_package == "xcku5p-ffvb676" || _device_package == "xcku040-ffva1156")) {
|
|
throw std::runtime_error("Error: secondary flash unavailable");
|
|
}
|
|
}
|
|
|
|
uint32_t idcode = _jtag->get_target_device_id();
|
|
std::string family = fpga_list[idcode].family;
|
|
std::string model = fpga_list[idcode].model;
|
|
_irlen = fpga_list[idcode].irlength;
|
|
_ircode_map = ircode_mapping.at("default");
|
|
|
|
if (family.substr(0, 5) == "artix") {
|
|
_fpga_family = ARTIX_FAMILY;
|
|
} else if (family == "spartan7") {
|
|
_fpga_family = SPARTAN7_FAMILY;
|
|
} else if (family == "zynq") {
|
|
_fpga_family = ZYNQ_FAMILY;
|
|
if (_mode != Device::MEM_MODE) {
|
|
char mess[256];
|
|
snprintf(mess, 256, "Error: can't flash non-volatile memory for "
|
|
"Zynq7000 devices\n"
|
|
"\tSPI Flash access is only available from PS side\n");
|
|
throw std::runtime_error(mess);
|
|
}
|
|
} else if (family.substr(0, 6) == "zynqmp") {
|
|
if (_mode != Device::MEM_MODE) {
|
|
char mess[256];
|
|
snprintf(mess, 256, "Error: can't flash non-volatile memory for "
|
|
"ZynqMP devices\n"
|
|
"\tSPI Flash access is only available from PSU side\n");
|
|
throw std::runtime_error(mess);
|
|
}
|
|
if (!zynqmp_init(family))
|
|
throw std::runtime_error("Error with ZynqMP init");
|
|
_fpga_family = ZYNQMP_FAMILY;
|
|
} else if (family == "kintex7") {
|
|
_fpga_family = KINTEX_FAMILY;
|
|
} else if (family == "kintexus") {
|
|
_fpga_family = KINTEXUS_FAMILY;
|
|
} else if (family == "kintexusp") {
|
|
_fpga_family = KINTEXUSP_FAMILY;
|
|
} else if (family == "artixusp") {
|
|
_fpga_family = ARTIXUSP_FAMILY;
|
|
} else if (family == "virtexus") {
|
|
_fpga_family = VIRTEXUS_FAMILY;
|
|
} else if (family == "virtexusp") {
|
|
_fpga_family = VIRTEXUSP_FAMILY;
|
|
_ircode_map = ircode_mapping.at("virtexusp");
|
|
} else if (family.substr(0, 8) == "spartan3") {
|
|
_fpga_family = SPARTAN3_FAMILY;
|
|
} else if (family == "xcf") {
|
|
_fpga_family = XCF_FAMILY;
|
|
if (_mode == Device::MEM_MODE) {
|
|
throw std::runtime_error("Error: Only write or read is supported");
|
|
}
|
|
} else if (family == "spartan6") {
|
|
_fpga_family = SPARTAN6_FAMILY;
|
|
} else if (family == "xc2c") {
|
|
xc2c_init(idcode);
|
|
} else if (family == "xc9500xl") {
|
|
_fpga_family = XC95_FAMILY;
|
|
switch (idcode) {
|
|
case 0x09602093:
|
|
_xc95_line_len = 2;
|
|
break;
|
|
case 0x09604093:
|
|
_xc95_line_len = 4;
|
|
break;
|
|
case 0x09608093:
|
|
_xc95_line_len = 8;
|
|
break;
|
|
case 0x09616093:
|
|
_xc95_line_len = 16;
|
|
break;
|
|
}
|
|
} else {
|
|
_fpga_family = UNKNOWN_FAMILY;
|
|
}
|
|
|
|
if (read_dna) {
|
|
if (_fpga_family == ARTIX_FAMILY || _fpga_family == KINTEXUS_FAMILY) {
|
|
uint64_t dna = Xilinx::fuse_dna_read();
|
|
printf("{\"dna\": \"0x%016" PRIx64 "\"}\n", dna);
|
|
} else {
|
|
throw std::runtime_error("Error: read_xadc only supported for Artix 7");
|
|
}
|
|
}
|
|
|
|
if (read_xadc) {
|
|
if (_fpga_family == ARTIX_FAMILY || _fpga_family == KINTEXUS_FAMILY) {
|
|
// calibrate XADC
|
|
Xilinx::xadc_single(8);
|
|
|
|
const int MAX_CHANNEL = 8;
|
|
const int TEMP_MEAS = 4;
|
|
|
|
unsigned int v = 0;
|
|
for (int i = 0; i < TEMP_MEAS; i++) {
|
|
v += Xilinx::xadc_single(XADC_TEMP);
|
|
}
|
|
double temp = ((v/(double)TEMP_MEAS) * 503.975)/(1 << 16) - 273.15;
|
|
double max_temp = (Xilinx::xadc_single(XADC_TEMP_MAX) * 503.975)/(1 << 16) - 273.15;
|
|
double min_temp = (Xilinx::xadc_single(XADC_TEMP_MIN) * 503.975)/(1 << 16) - 273.15;
|
|
|
|
unsigned int channel_values[32];
|
|
for (int ch = 0; ch < MAX_CHANNEL; ch++) {
|
|
if (ch < 7 || ch > 12) {
|
|
v = Xilinx::xadc_single(ch);
|
|
} else {
|
|
// 7 = Invalid channel selection
|
|
// 8 = Carry out XADC calibration
|
|
// 9...12 = Invalid channel selection
|
|
v = 0;
|
|
}
|
|
channel_values[ch] = v;
|
|
}
|
|
|
|
double vccint = (Xilinx::xadc_single(XADC_VCCINT)>>4)/4096.0 * 3.0; // ref: UG480
|
|
double vccintmax = (Xilinx::xadc_single(XADC_VCCINT + XADC_VCC_MAXOFFSET)>>4)/4096.0 * 3.0; // ref: UG480
|
|
double vccintmin = (Xilinx::xadc_single(XADC_VCCINT + XADC_VCC_MINOFFSET)>>4)/4096.0 * 3.0; // ref: UG480
|
|
|
|
double vccaux = (Xilinx::xadc_single(XADC_VCCAUX)>>4)/4096.0 * 3.0; // ref: UG480
|
|
double vccauxmax = (Xilinx::xadc_single(XADC_VCCAUX + XADC_VCC_MAXOFFSET)>>4)/4096.0 * 3.0; // ref: UG480
|
|
double vccauxmin = (Xilinx::xadc_single(XADC_VCCAUX + XADC_VCC_MINOFFSET)>>4)/4096.0 * 3.0; // ref: UG480
|
|
|
|
/* output as JSON dict */
|
|
std::cout << "{";
|
|
std::cout << "\"temp\": " << temp << ", " << std::endl;;
|
|
std::cout << " \"maxtemp\": " << max_temp << ", " << std::endl;;
|
|
std::cout << " \"mintemp\": " << min_temp << ", " << std::endl;;
|
|
std::cout << "\"raw\": {";
|
|
for (int ch = 0; ch < MAX_CHANNEL; ch++) {
|
|
std::cout << "\"" << ch << "\": " << channel_values[ch]
|
|
<< ((ch == MAX_CHANNEL - 1)? "}" : ", ");
|
|
}
|
|
std::cout << "," << std::endl;
|
|
std::cout << "\"vccint\": " << vccint << ", " << std::endl;
|
|
std::cout << " \"maxvccint\": " << vccintmax << ", " << std::endl;
|
|
std::cout << " \"minvccint\": " << vccintmin << ", " << std::endl;
|
|
std::cout << "\"vccaux\": " << vccaux << ", " << std::endl;
|
|
std::cout << " \"maxvccaux\": " << vccauxmax << ", " << std::endl;
|
|
std::cout << " \"minvccaux\": " << vccauxmin << ", " << std::endl;
|
|
std::cout << "}" << std::endl;
|
|
} else {
|
|
throw std::runtime_error("Error: read_xadc only supported for Artix 7");
|
|
}
|
|
}
|
|
}
|
|
Xilinx::~Xilinx() {}
|
|
|
|
bool Xilinx::zynqmp_init(const std::string &family)
|
|
{
|
|
/* by default, at powering a zynqmp has
|
|
* PL TAP and ARM DAP disabled
|
|
* at this time only PS TAB and a dummy are seen
|
|
* So first step is to enable PL and ARM
|
|
*/
|
|
if (family == "zynqmp_cfgn") {
|
|
/* PS TAP is the first device with 0xfffffe idcode */
|
|
_jtag->device_select(0);
|
|
/* send 0x03 into JTAG_CTRL register */
|
|
uint16_t ircode = 0x824;
|
|
_jtag->shiftIR(ircode & 0xff, 8, Jtag::SHIFT_IR);
|
|
_jtag->shiftIR((ircode >> 8) & 0x0f, 4);
|
|
uint8_t instr[4] = {0x3, 0, 0, 0};
|
|
_jtag->shiftDR(instr, NULL, 32);
|
|
/* synchronize everything by moving to TLR */
|
|
_jtag->set_state(Jtag::TEST_LOGIC_RESET);
|
|
_jtag->toggleClk(10);
|
|
_jtag->set_state(Jtag::RUN_TEST_IDLE);
|
|
_jtag->toggleClk(100);
|
|
/* force again JTAG chain detection */
|
|
_jtag->detectChain(5);
|
|
}
|
|
/* check if the chain is correctly configured:
|
|
* 2 devices
|
|
* PL at position 0
|
|
* ARM at position 1
|
|
*/
|
|
char mess[256];
|
|
std::vector<uint32_t> listDev = _jtag->get_devices_list();
|
|
if (listDev.size() != 2) {
|
|
snprintf(mess, sizeof(mess), "ZynqMP error: wrong"
|
|
" JTAG length: %zu instead of 2\n",
|
|
listDev.size());
|
|
printError(mess);
|
|
return false;
|
|
}
|
|
|
|
if (fpga_list[listDev[0]].family != "zynqmp") {
|
|
snprintf(mess, sizeof(mess), "ZynqMP error: first device"
|
|
" is not the PL TAP -> 0x%08x\n",
|
|
listDev[0]);
|
|
printError(mess);
|
|
return false;
|
|
}
|
|
|
|
if (listDev[1] != 0x5ba00477) {
|
|
snprintf(mess, sizeof(mess), "ZynqMP error: second device"
|
|
" is not the ARM DAP cortex A53 -> 0x%08x\n",
|
|
listDev[1]);
|
|
printError(mess);
|
|
return false;
|
|
}
|
|
|
|
_jtag->insert_first(0xdeadbeef, 6);
|
|
_jtag->device_select(1);
|
|
_irlen = 6;
|
|
|
|
return true;
|
|
}
|
|
|
|
void Xilinx::reset()
|
|
{
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "JSHUTDOWN"), NULL, _irlen);
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "JPROGRAM"), NULL, _irlen);
|
|
_jtag->set_state(Jtag::RUN_TEST_IDLE);
|
|
_jtag->toggleClk(10000*12);
|
|
|
|
_jtag->set_state(Jtag::RUN_TEST_IDLE);
|
|
_jtag->toggleClk(2000);
|
|
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "BYPASS"), NULL, _irlen);
|
|
_jtag->set_state(Jtag::RUN_TEST_IDLE);
|
|
_jtag->toggleClk(2000);
|
|
}
|
|
|
|
uint32_t Xilinx::idCode()
|
|
{
|
|
int id = 0;
|
|
unsigned char tx_data[4]= {0x00, 0x00, 0x00, 0x00};
|
|
unsigned char rx_data[4];
|
|
_jtag->go_test_logic_reset();
|
|
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "IDCODE"), NULL, _irlen);
|
|
_jtag->shiftDR(tx_data, rx_data, 32);
|
|
id = ((rx_data[0] & 0x000000ff) |
|
|
((rx_data[1] << 8) & 0x0000ff00) |
|
|
((rx_data[2] << 16) & 0x00ff0000) |
|
|
((rx_data[3] << 24) & 0xff000000));
|
|
|
|
/* workaround for XC95 with different
|
|
* IR length and IDCODE value
|
|
*/
|
|
if (id == 0) {
|
|
_jtag->go_test_logic_reset();
|
|
_jtag->shiftIR(XC95_IDCODE, 8);
|
|
_jtag->shiftDR(tx_data, rx_data, 32);
|
|
id = ((rx_data[0] & 0x000000ff) |
|
|
((rx_data[1] << 8) & 0x0000ff00) |
|
|
((rx_data[2] << 16) & 0x00ff0000) |
|
|
((rx_data[3] << 24) & 0xff000000));
|
|
}
|
|
|
|
return id;
|
|
}
|
|
|
|
void Xilinx::program(unsigned int offset, bool unprotect_flash)
|
|
{
|
|
ConfigBitstreamParser *bit = nullptr;
|
|
ConfigBitstreamParser *secondary_bit = nullptr;
|
|
bool reverse = false;
|
|
|
|
/* nothing to do */
|
|
if (_mode == Device::NONE_MODE || _mode == Device::READ_MODE)
|
|
return;
|
|
|
|
if (_mode == Device::FLASH_MODE && _file_extension == "jed") {
|
|
if (_fpga_family != XC95_FAMILY && _fpga_family != XC2C_FAMILY)
|
|
throw std::runtime_error("Error: jed only supported for xc95 and xc2c");
|
|
printInfo("Open file ", false);
|
|
|
|
std::unique_ptr<JedParser> jed(new JedParser(_filename, _verbose));
|
|
if (jed->parse() == EXIT_FAILURE) {
|
|
printError("FAIL");
|
|
return;
|
|
}
|
|
printSuccess("DONE");
|
|
|
|
if (_fpga_family == XC95_FAMILY)
|
|
flow_program(jed.get());
|
|
else if (_fpga_family == XC2C_FAMILY)
|
|
xc2c_flow_program(jed.get());
|
|
return;
|
|
}
|
|
|
|
if (_fpga_family == XC95_FAMILY) {
|
|
printError("Only jed file and flash mode supported for XC95 CPLD");
|
|
return;
|
|
}
|
|
|
|
if (_mode == Device::MEM_MODE || _fpga_family == XCF_FAMILY)
|
|
reverse = true;
|
|
|
|
try {
|
|
if (_flash_chips & PRIMARY_FLASH) {
|
|
open_bitfile(_filename, _file_extension, &bit, reverse, _verbose);
|
|
}
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
open_bitfile(_secondary_filename, _secondary_file_extension,
|
|
&secondary_bit, reverse, _verbose);
|
|
}
|
|
} catch (std::exception &e) {
|
|
printError("FAIL");
|
|
if (bit)
|
|
delete bit;
|
|
if (secondary_bit)
|
|
delete secondary_bit;
|
|
return;
|
|
}
|
|
|
|
if (_verbose) {
|
|
if (bit)
|
|
bit->displayHeader();
|
|
if (secondary_bit)
|
|
secondary_bit->displayHeader();
|
|
}
|
|
|
|
if (_fpga_family == XCF_FAMILY) {
|
|
xcf_program(bit);
|
|
delete bit;
|
|
return;
|
|
}
|
|
|
|
if (_mode == Device::SPI_MODE) {
|
|
if (_flash_chips & PRIMARY_FLASH) {
|
|
select_flash_chip(PRIMARY_FLASH);
|
|
program_spi(bit, offset, unprotect_flash);
|
|
}
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
select_flash_chip(SECONDARY_FLASH);
|
|
program_spi(secondary_bit, offset, unprotect_flash);
|
|
}
|
|
|
|
reset();
|
|
|
|
} else {
|
|
if (_fpga_family == SPARTAN3_FAMILY)
|
|
xc3s_flow_program(bit);
|
|
else
|
|
program_mem(bit);
|
|
}
|
|
|
|
delete bit;
|
|
}
|
|
|
|
bool Xilinx::post_flash_access()
|
|
{
|
|
if (_skip_reset)
|
|
printInfo("Skip resetting device");
|
|
else
|
|
reset();
|
|
return true;
|
|
}
|
|
|
|
bool Xilinx::prepare_flash_access()
|
|
{
|
|
bool ret = false;
|
|
if (_skip_load_bridge) {
|
|
printInfo("Skip loading bridge for spiOverjtag");
|
|
ret = true;
|
|
} else {
|
|
ret = load_bridge();
|
|
}
|
|
|
|
/* Get number of FPGAs in the Jtag Chain */
|
|
_jtag_chain_len = _jtag->get_chain_len();
|
|
|
|
/* check SpiOverJtag version */
|
|
if (ret) {
|
|
if (get_spiOverJtag_version() == 2.0f)
|
|
_soj_is_v2 = true;
|
|
printf("SOJ version: %f\n", _soj_is_v2 ? 2.0f : 1.0f);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool Xilinx::load_bridge()
|
|
{
|
|
std::string bitname;
|
|
if (!_spiOverJtagPath.empty()) {
|
|
bitname = _spiOverJtagPath;
|
|
} else {
|
|
if (_device_package.empty()) {
|
|
printError("Can't program SPI flash: missing device-package information");
|
|
return false;
|
|
}
|
|
|
|
bitname = get_shell_env_var("OPENFPGALOADER_SOJ_DIR", DATA_DIR "/openFPGALoader");
|
|
bitname += "/spiOverJtag_" + _device_package + ".bit.gz";
|
|
}
|
|
|
|
#if defined (_WIN64) || defined (_WIN32)
|
|
/* Convert relative path embedded at compile time to an absolute path */
|
|
bitname = PathHelper::absolutePath(bitname);
|
|
#endif
|
|
|
|
/* first: load spi over jtag */
|
|
try {
|
|
BitParser bridge(bitname, true, _verbose);
|
|
printSuccess("Use: " + bridge.getFilename());
|
|
|
|
bridge.parse();
|
|
if (_fpga_family == SPARTAN3_FAMILY)
|
|
xc3s_flow_program(&bridge);
|
|
else
|
|
program_mem(&bridge);
|
|
} catch (std::exception &e) {
|
|
printError(e.what());
|
|
throw std::runtime_error(e.what());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
float Xilinx::get_spiOverJtag_version()
|
|
{
|
|
uint8_t jtx[6] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00};
|
|
uint8_t jrx[7];
|
|
uint8_t rx[6];
|
|
|
|
_jtag->shiftIR(USER4, _irlen, Jtag::UPDATE_IR);
|
|
printf("jtag_chain_len: %d\n", _jtag_chain_len);
|
|
if (_jtag_chain_len > 1)
|
|
_jtag->shiftDR(jtx, NULL, _jtag_chain_len - 1, Jtag::SHIFT_DR);
|
|
_jtag->shiftDR(jtx, jrx, 6 * 8);
|
|
_jtag->flush();
|
|
|
|
memcpy(rx, &jrx[1], 5);
|
|
rx[5] = '\0';
|
|
|
|
float version = atof((const char *)rx);
|
|
if (version == 0.0f) // not supported => 1.0
|
|
return 1.0f;
|
|
return version;
|
|
}
|
|
|
|
void Xilinx::program_spi(ConfigBitstreamParser * bit, unsigned int offset,
|
|
bool unprotect_flash)
|
|
{
|
|
if (!bit)
|
|
throw std::runtime_error("called with null bitstream");
|
|
const uint8_t *data = bit->getData();
|
|
int length = bit->getLength() / 8;
|
|
SPIInterface::write(offset, data, length, unprotect_flash);
|
|
}
|
|
|
|
void Xilinx::program_mem(ConfigBitstreamParser *bitfile)
|
|
{
|
|
std::cout << "load program" << std::endl;
|
|
unsigned char *tx_buf;
|
|
unsigned char rx_buf[(_irlen >> 3) + 1];
|
|
|
|
/* comment TDI TMS TCK
|
|
* 1: On power-up, place a logic 1 on the TMS,
|
|
* and clock the TCK five times. This ensures X 1 5
|
|
* starting in the TLR (Test-Logic-Reset) state.
|
|
*/
|
|
_jtag->go_test_logic_reset();
|
|
/*
|
|
* 2: Move into the RTI state. X 0 1
|
|
* 3: Move into the SELECT-IR state. X 1 2
|
|
* 4: Enter the SHIFT-IR state. X 0 2
|
|
* 5: Start loading the JPROGRAM instruction, 01011(4) 0 5
|
|
* LSB first:
|
|
* 6: Load the MSB of the JPROGRAM instruction
|
|
* when exiting SHIFT-IR, as defined in the 0 1 1
|
|
* IEEE standard.
|
|
* 7: Place a logic 1 on the TMS and clock the
|
|
* TCK five times. This ensures starting in X 1 5
|
|
* the TLR (Test-Logic-Reset) state.
|
|
*/
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "JPROGRAM"), NULL, _irlen);
|
|
/* test */
|
|
tx_buf = get_ircode(_ircode_map, "BYPASS");
|
|
do {
|
|
_jtag->shiftIR(tx_buf, rx_buf, _irlen);
|
|
} while (!(rx_buf[0] &0x01));
|
|
/*
|
|
* 8: Move into the RTI state. X 0 10,000(1)
|
|
*/
|
|
_jtag->set_state(Jtag::RUN_TEST_IDLE);
|
|
_jtag->toggleClk(10000*12);
|
|
/*
|
|
* 9: Start loading the CFG_IN instruction,
|
|
* LSB first: 00101 0 5
|
|
* 10: Load the MSB of CFG_IN instruction when
|
|
* exiting SHIFT-IR, as defined in the 0 1 1
|
|
* IEEE standard.
|
|
*/
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "CFG_IN"), NULL, _irlen);
|
|
/*
|
|
* 11: Enter the SELECT-DR state. X 1 2
|
|
*/
|
|
_jtag->set_state(Jtag::SELECT_DR_SCAN);
|
|
/*
|
|
* 13: Shift in the FPGA bitstream. Bitn (MSB)
|
|
* is the first bit in the bitstream(2). bit1...bitn 0 (bits in bitstream)-1
|
|
* 14: Shift in the last bit of the bitstream.
|
|
* Bit0 (LSB) shifts on the transition to bit0 1 1
|
|
* EXIT1-DR.
|
|
*/
|
|
/* GGM: TODO */
|
|
int byte_length = bitfile->getLength() / 8;
|
|
const uint8_t *data = bitfile->getData();
|
|
int tx_len;
|
|
Jtag::tapState_t tx_end;
|
|
int burst_len = byte_length / 100;
|
|
|
|
ProgressBar progress("Load SRAM", byte_length, 50, _quiet);
|
|
|
|
for (int i=0; i < byte_length; i+=burst_len) {
|
|
if (i + burst_len > byte_length) {
|
|
tx_len = (byte_length - i) * 8;
|
|
/*
|
|
* 15: Enter UPDATE-DR state. X 1 1
|
|
*/
|
|
tx_end = Jtag::UPDATE_DR;
|
|
} else {
|
|
tx_len = burst_len * 8;
|
|
/*
|
|
* 12: Enter the SHIFT-DR state. X 0 2
|
|
*/
|
|
tx_end = Jtag::SHIFT_DR;
|
|
}
|
|
_jtag->shiftDR(data+i, NULL, tx_len, tx_end);
|
|
_jtag->flush();
|
|
progress.display(i);
|
|
}
|
|
progress.done();
|
|
/*
|
|
* 16: Move into RTI state. X 0 1
|
|
*/
|
|
_jtag->set_state(Jtag::RUN_TEST_IDLE);
|
|
/*
|
|
* 17: Enter the SELECT-IR state. X 1 2
|
|
* 18: Move to the SHIFT-IR state. X 0 2
|
|
* 19: Start loading the JSTART instruction
|
|
* (optional). The JSTART instruction 01100 0 5
|
|
* initializes the startup sequence.
|
|
* 20: Load the last bit of the JSTART instruction. 0 1 1
|
|
* 21: Move to the UPDATE-IR state. X 1 1
|
|
*/
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "JSTART"), NULL, _irlen, Jtag::UPDATE_IR);
|
|
/*
|
|
* 22: Move to the RTI state and clock the
|
|
* startup sequence by applying a minimum X 0 2000
|
|
* of 2000 clock cycles to the TCK.
|
|
*/
|
|
_jtag->set_state(Jtag::RUN_TEST_IDLE);
|
|
_jtag->toggleClk(2000);
|
|
/*
|
|
* 23: Move to the TLR state. The device is
|
|
* now functional. X 1 3
|
|
*/
|
|
_jtag->go_test_logic_reset();
|
|
/* Some xc7s50 does not detect correct connected flash w/o this shift*/
|
|
_jtag->shiftIR(tx_buf, rx_buf, _irlen);
|
|
uint8_t ir_c = rx_buf[0] & 0x03;
|
|
uint8_t isc_done = ((rx_buf[0] >> 2) & 0x01);
|
|
uint8_t isc_ena = ((rx_buf[0] >> 3) & 0x01);
|
|
uint8_t init = ((rx_buf[0] >> 4) & 0x01);
|
|
uint8_t done = ((rx_buf[0] >> 5) & 0x01);
|
|
printf("Shift IR %02x\n", rx_buf[0]);
|
|
printf("ir: %x isc_done %x isc_ena %x init %x done %x\n", ir_c, isc_done, isc_ena,
|
|
init, done);
|
|
|
|
if (!done) {
|
|
read_register("STAT");
|
|
}
|
|
}
|
|
|
|
static uint32_t char_array_to_word(uint8_t *in)
|
|
{
|
|
return (((uint32_t)in[3] << 24) |
|
|
((uint32_t)in[2] << 16) |
|
|
((uint32_t)in[1] << 8) |
|
|
((uint32_t)in[0] << 0));
|
|
}
|
|
|
|
typedef struct {
|
|
std::string description;
|
|
uint8_t offset;
|
|
uint8_t size;
|
|
std::map<int, std::string> reg_cnt;
|
|
} reg_struct_t;
|
|
|
|
#define REG_ENTRY(_description, _offset, _size, ...) \
|
|
{_description, _offset, _size, {__VA_ARGS__}}
|
|
|
|
static const std::map<std::string, std::list<reg_struct_t>> reg_content = {
|
|
{"CTRL0", std::list<reg_struct_t>{
|
|
REG_ENTRY("GTS USR B", 0, 1,
|
|
{0, "I/Os 3-stated"}, {1, "I/Os active"}),
|
|
REG_ENTRY("Reserved", 1, 2),
|
|
REG_ENTRY("PERSIST", 3, 1,
|
|
{0, "No"}, {1, "Yes"}),
|
|
REG_ENTRY("SBITS", 4, 2,
|
|
{0, "Read/Write OK"}, {1, "Readback disabled"},
|
|
{2, "Both Writes and Reads disabled"},
|
|
{3, "Both Writes and Reads disabled"}),
|
|
REG_ENTRY("DEC", 6, 1,
|
|
{0, "Disable"}, {1, "Enable"}),
|
|
REG_ENTRY("FARSRC", 7, 1),
|
|
REG_ENTRY("GLUMASK B", 8, 1),
|
|
REG_ENTRY("Reserved", 9, 1),
|
|
REG_ENTRY("ConfigFallback", 10, 1,
|
|
{0, "Disable"}, {1, "Enable"}),
|
|
REG_ENTRY("Reserved", 11, 1),
|
|
REG_ENTRY("OverTempPwrDown", 12, 1,
|
|
{0, "Disable"}, {1, "Enable"}),
|
|
REG_ENTRY("Reserved", 13, 17),
|
|
REG_ENTRY("ICAP Select", 30, 1,
|
|
{0, "Top ICAPE2 Port Enabled"},
|
|
{1, "Bottom ICAPE2 Port Enabled"}),
|
|
REG_ENTRY("EFUSE key", 31, 1,
|
|
{0, "Battery backed RAM"}, {1, "eFUSE"}),
|
|
}},
|
|
{"STAT", std::list<reg_struct_t>{
|
|
REG_ENTRY("CRC Error", 0, 1,
|
|
{0, "No CRC error"}, {1, "CRC error"}),
|
|
REG_ENTRY("Part Secured", 1, 1),
|
|
REG_ENTRY("MMCM lock", 2, 1),
|
|
REG_ENTRY("DCI match", 3, 1),
|
|
REG_ENTRY("EOS", 4, 1),
|
|
REG_ENTRY("GTS CFG B", 5, 1),
|
|
REG_ENTRY("GWE", 6, 1),
|
|
REG_ENTRY("GHIGH B", 7, 1),
|
|
REG_ENTRY("MODE", 8, 3),
|
|
REG_ENTRY("INIT Complete", 11, 1),
|
|
REG_ENTRY("INIT B", 12, 1),
|
|
REG_ENTRY("Release Done", 13, 1),
|
|
REG_ENTRY("Done", 14, 1),
|
|
REG_ENTRY("ID Error", 15, 1,
|
|
{0, "No ID error"}, {1, "ID error"}),
|
|
REG_ENTRY("DEC Error", 16, 1),
|
|
REG_ENTRY("XADC Over temp", 17, 1),
|
|
REG_ENTRY("STARTUP State", 18, 3),
|
|
REG_ENTRY("Reserved", 21, 4),
|
|
REG_ENTRY("BUS Width", 25, 2,
|
|
{0, "x1"}, {1, "x8"}, {2, "x16"}, {3, "x32"}),
|
|
REG_ENTRY("Reserved", 27, 5)
|
|
}},
|
|
// UG470 Table 5-34
|
|
{"WBSTAR", std::list<reg_struct_t>{
|
|
// Next bitstream start address. The default start address
|
|
// is address zero.
|
|
REG_ENTRY("START ADDR", 0, 29),
|
|
REG_ENTRY("RS TS B", 29, 1,
|
|
{0, "3-state enabled (RS[1:0] disabled) (default)"},
|
|
{1, "3-state disabled (RS[1:0] enabled)"},
|
|
),
|
|
// RS[1:0] pin value on next warm boot. The default is 00.
|
|
REG_ENTRY("RS[1:0]", 30, 2),
|
|
}},
|
|
// UG470 Table 5-39
|
|
{"BOOTSTS", std::list<reg_struct_t>{
|
|
// Status 0 is valid
|
|
REG_ENTRY("VALID 0", 0, 1),
|
|
REG_ENTRY("FALLBACK 0", 1, 1,
|
|
{0, "Normal configuration"},
|
|
{1, "Fallback to default reconfiguration, RS[1:0] actively drives 2'b00"}
|
|
),
|
|
// Internal PROG triggered configuration
|
|
REG_ENTRY("IPROG 0", 2, 1),
|
|
// Watchdog time-out error
|
|
REG_ENTRY("WTO Error 0", 3, 1),
|
|
// ID_CODE error
|
|
REG_ENTRY("ID Error 0", 4, 1),
|
|
// CRC error
|
|
REG_ENTRY("CRC Error 0", 5, 1),
|
|
// BPI address counter wraparound error, supported in
|
|
// asynchronous read mode
|
|
REG_ENTRY("WRAP Error 0", 6, 1),
|
|
// HMAC error
|
|
REG_ENTRY("HMAC Error 0", 7, 1),
|
|
REG_ENTRY("VALID 1", 8, 1),
|
|
REG_ENTRY("FALLBACK 1", 9, 1,
|
|
{0, "Normal configuration"},
|
|
{1, "Fallback to default reconfiguration, RS[1:0] actively drives 2'b00"}
|
|
),
|
|
REG_ENTRY("IPROG 1", 10, 1),
|
|
REG_ENTRY("WTO Error 1", 11, 1),
|
|
REG_ENTRY("ID Error 1", 12, 1),
|
|
REG_ENTRY("CRC Error 1", 13, 1),
|
|
REG_ENTRY("WRAP Error 1", 14, 1),
|
|
REG_ENTRY("HMAC Error 1", 15, 1),
|
|
}},
|
|
};
|
|
|
|
/* UG470 table 5-23 */
|
|
static const std::map<std::string, uint8_t> reg_code = {
|
|
{"CTRL0", 0x05}, // Control register 0
|
|
{"STAT", 0x07}, // Status register
|
|
{"CONF0", 0x09}, // Configuration Option 0
|
|
{"CONF1", 0x0e}, // Configuration Option 1
|
|
{"WBSTAR", 0x10}, // Warm Boot Start Address Register
|
|
{"BOOTSTS", 0x16}, // Boot history status register
|
|
{"CTRL1", 0x18}, // Control register 1
|
|
};
|
|
|
|
uint32_t Xilinx::dumpRegister(std::string reg_name)
|
|
{
|
|
uint8_t reg[4];
|
|
const uint8_t dummy[] = {0x00, 0x00, 0x00, 0x04};
|
|
/* opcode:
|
|
* 0x0: NOP
|
|
* 0x1: read
|
|
* 0x2: write
|
|
* 0x3: Reserved
|
|
*/
|
|
/* register code
|
|
* 0x05: Control register 0
|
|
* 0x07: Status register
|
|
* 0x09: Configuration Option 0
|
|
* 0x0e: Configuration Option 1
|
|
* 0x18: Control Register 1
|
|
* 0x16: Boot history Status register
|
|
*/
|
|
auto code = reg_code.find(reg_name);
|
|
if (code == reg_code.end()) {
|
|
printError("Unknown register " + reg_name);
|
|
printError("Known Register are:");
|
|
for (auto reg : reg_code)
|
|
printError("\t" + reg.first);
|
|
return 0xdeadbeef;
|
|
}
|
|
|
|
/* packet type 1 */
|
|
const uint32_t regcode = static_cast<uint32_t>(code->second);
|
|
uint32_t cfg_packets[] = {
|
|
0xAA995566, // Sync Word
|
|
0x20000000, // NOOP
|
|
((0x01 & 0x0007) << 29) | // [31:29]: Header type
|
|
((0x01 & 0x0003) << 27) | // [28:27]: opcode
|
|
((regcode & 0x3fff) << 13) | // [26:13]: register code
|
|
((0x00 & 0x0003) << 11) | // [12:11]: Reserved must be set to 0
|
|
((0x01 & 0x07ff) << 0), // [10:0 ]: word count
|
|
0x20000000, // NOOP
|
|
0x20000000, // NOOP
|
|
};
|
|
|
|
_jtag->go_test_logic_reset();
|
|
_jtag->set_state(Jtag::RUN_TEST_IDLE);
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "CFG_IN"), NULL, _irlen, Jtag::SELECT_DR_SCAN);
|
|
|
|
Jtag::tapState_t next_state = Jtag::SHIFT_DR;
|
|
for (int i = 0; i < 5; i++) {
|
|
if (i == 4)
|
|
next_state = Jtag::SELECT_IR_SCAN;
|
|
const uint32_t tmp = BitParser::reverse_32(cfg_packets[i]);
|
|
const uint8_t cfg[] = {
|
|
static_cast<uint8_t>((tmp >> 0) & 0xff),
|
|
static_cast<uint8_t>((tmp >> 8) & 0xff),
|
|
static_cast<uint8_t>((tmp >> 16) & 0xff),
|
|
static_cast<uint8_t>((tmp >> 24) & 0xff)
|
|
};
|
|
|
|
_jtag->shiftDR(cfg, NULL, 32, next_state);
|
|
}
|
|
|
|
_jtag->shiftIR(get_ircode(_ircode_map, "CFG_OUT"), NULL, _irlen, Jtag::SELECT_DR_SCAN);
|
|
_jtag->shiftDR(dummy, reg, 32);
|
|
_jtag->go_test_logic_reset();
|
|
|
|
uint32_t reg_word = char_array_to_word(reg);
|
|
reg_word = BitParser::reverse_32(reg_word);
|
|
return reg_word;
|
|
}
|
|
|
|
void Xilinx::displayRegister(const std::string reg_name, const uint32_t reg_val) {
|
|
auto reg = reg_content.find(reg_name);
|
|
if (reg == reg_content.end()) {
|
|
printError("Unknown register " + reg_name);
|
|
return;
|
|
}
|
|
|
|
std::stringstream raw_val;
|
|
raw_val << "0x" << std::hex << reg_val;
|
|
printSuccess("Register raw value: " + raw_val.str());
|
|
|
|
const std::list<reg_struct_t> regs = reg->second;
|
|
for (reg_struct_t r: regs) {
|
|
uint8_t offset = r.offset;
|
|
uint8_t size = r.size;
|
|
uint32_t mask = (1 << size) - 1;
|
|
uint32_t val = (reg_val >> offset) & mask;
|
|
std::stringstream ss, desc;
|
|
desc << r.description;
|
|
ss << std::setw(16) << std::left << r.description;
|
|
if (r.reg_cnt.size() != 0) {
|
|
ss << r.reg_cnt[val];
|
|
} else {
|
|
std::stringstream hex_val;
|
|
hex_val << "0x" << std::hex << val;
|
|
ss << hex_val.str();
|
|
}
|
|
|
|
printInfo(ss.str());
|
|
}
|
|
}
|
|
|
|
bool Xilinx::dumpFlash(uint32_t base_addr, uint32_t len)
|
|
{
|
|
if (_fpga_family == XC95_FAMILY || _fpga_family == XCF_FAMILY) {
|
|
std::string buffer;
|
|
if (_fpga_family == XC95_FAMILY) {
|
|
/* enable ISC */
|
|
flow_enable();
|
|
buffer = flow_read();
|
|
/* disable ISC */
|
|
flow_disable();
|
|
} else {
|
|
/* enable ISC */
|
|
xcf_flow_enable(0x34);
|
|
buffer = xcf_read();
|
|
/* disable ISC */
|
|
xcf_flow_disable();
|
|
}
|
|
printInfo("Open dump file ", false);
|
|
FILE *fd = fopen(_filename.c_str(), "wb");
|
|
if (!fd) {
|
|
printError("FAIL");
|
|
return false;
|
|
}
|
|
printSuccess("DONE");
|
|
|
|
printInfo("Read flash ", false);
|
|
fwrite(buffer.c_str(), sizeof(uint8_t), buffer.size(), fd);
|
|
|
|
printSuccess("DONE");
|
|
|
|
fclose(fd);
|
|
|
|
return true;
|
|
}
|
|
|
|
if (_flash_chips & PRIMARY_FLASH) {
|
|
select_flash_chip(PRIMARY_FLASH);
|
|
SPIInterface::set_filename(_filename);
|
|
if (!SPIInterface::dump(base_addr, len))
|
|
return false;
|
|
}
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
select_flash_chip(SECONDARY_FLASH);
|
|
SPIInterface::set_filename(_secondary_filename);
|
|
if (!SPIInterface::dump(base_addr, len))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Xilinx::detect_flash()
|
|
{
|
|
if (_flash_chips & PRIMARY_FLASH) {
|
|
select_flash_chip(PRIMARY_FLASH);
|
|
if (!SPIInterface::detect_flash())
|
|
return false;
|
|
}
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
select_flash_chip(SECONDARY_FLASH);
|
|
if (!SPIInterface::detect_flash())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Xilinx::protect_flash(uint32_t len)
|
|
{
|
|
if (_flash_chips & PRIMARY_FLASH) {
|
|
select_flash_chip(PRIMARY_FLASH);
|
|
if (!SPIInterface::protect_flash(len))
|
|
return false;
|
|
}
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
select_flash_chip(SECONDARY_FLASH);
|
|
if (!SPIInterface::protect_flash(len))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Xilinx::unprotect_flash()
|
|
{
|
|
if (_flash_chips & PRIMARY_FLASH) {
|
|
select_flash_chip(PRIMARY_FLASH);
|
|
if (!SPIInterface::unprotect_flash())
|
|
return false;
|
|
}
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
select_flash_chip(SECONDARY_FLASH);
|
|
if (!SPIInterface::unprotect_flash())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Xilinx::set_quad_bit(bool set_quad)
|
|
{
|
|
if (_flash_chips & PRIMARY_FLASH) {
|
|
select_flash_chip(PRIMARY_FLASH);
|
|
if (!SPIInterface::set_quad_bit(set_quad))
|
|
return false;
|
|
}
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
select_flash_chip(SECONDARY_FLASH);
|
|
if (!SPIInterface::set_quad_bit(set_quad))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Xilinx::bulk_erase_flash()
|
|
{
|
|
if (_flash_chips & PRIMARY_FLASH) {
|
|
select_flash_chip(PRIMARY_FLASH);
|
|
if (!SPIInterface::bulk_erase_flash())
|
|
return false;
|
|
}
|
|
if (_flash_chips & SECONDARY_FLASH) {
|
|
select_flash_chip(SECONDARY_FLASH);
|
|
if (!SPIInterface::bulk_erase_flash())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* flow program for xc3s (legacy mode) */
|
|
/* based on ISE spartan3/data/xx_1532.bsd files */
|
|
/* */
|
|
|
|
bool Xilinx::xc3s_flow_program(ConfigBitstreamParser *bit)
|
|
{
|
|
int byte_length = bit->getLength() / 8;
|
|
int burst_len = byte_length / 100;
|
|
const uint8_t *data = bit->getData();
|
|
int tx_len = burst_len * 8;
|
|
Jtag::tapState_t tx_end = Jtag::SHIFT_DR;
|
|
ProgressBar progress("Load SRAM", byte_length, 50, _quiet);
|
|
|
|
flow_enable();
|
|
|
|
if (_jtag->shiftIR(JPROGRAM, _irlen) < 0)
|
|
return false;
|
|
|
|
/* wait until memory cleared (DS099 v3.1 fig.30 p.52) */
|
|
uint8_t tx_buf = BYPASS, rx_buf;
|
|
do {
|
|
if (_jtag->shiftIR(&tx_buf, &rx_buf, _irlen) < 0)
|
|
return false;
|
|
} while (!(rx_buf & 0x10)); // wait until INIT
|
|
|
|
if (_jtag->shiftIR(JSHUTDOWN, _irlen) < 0)
|
|
return false;
|
|
_jtag->toggleClk(16);
|
|
if (_jtag->shiftIR(CFG_IN, _irlen) < 0)
|
|
return false;
|
|
|
|
for (int i = 0; byte_length > 0; byte_length-=burst_len, data+=burst_len) {
|
|
if (burst_len > byte_length) {
|
|
tx_len = byte_length * 8;
|
|
tx_end = Jtag::RUN_TEST_IDLE;
|
|
}
|
|
if (_jtag->shiftDR(data, NULL, tx_len, tx_end) < 0) {
|
|
progress.fail();
|
|
return false;
|
|
}
|
|
_jtag->flush();
|
|
progress.display(i);
|
|
i+= burst_len;
|
|
}
|
|
progress.done();
|
|
_jtag->toggleClk(1);
|
|
if (_jtag->shiftIR(JSTART, _irlen) < 0)
|
|
return false;
|
|
_jtag->toggleClk(32);
|
|
if (_jtag->shiftIR(BYPASS, _irlen) < 0)
|
|
return false;
|
|
uint8_t d = 0;
|
|
if (_jtag->shiftDR(&d, NULL, 1) < 0)
|
|
return false;
|
|
_jtag->toggleClk(1);
|
|
|
|
flow_disable();
|
|
uint8_t mask = 0x20; // Done bit
|
|
uint32_t idcode = _jtag->get_target_device_id();
|
|
if (fpga_list[idcode].family == "spartan3e") {
|
|
mask = 0x10; // ISC done dit
|
|
}
|
|
int retry = 100;
|
|
do {
|
|
if (_jtag->shiftIR(&tx_buf, &rx_buf, _irlen) < 0)
|
|
return false;
|
|
if (_jtag->shiftDR(data, NULL, 1) < 0)
|
|
return false;
|
|
} while (!(rx_buf & mask) && (retry-- > 0)); // wait until mask
|
|
|
|
return true;
|
|
}
|
|
|
|
void Xilinx::flow_enable()
|
|
{
|
|
uint8_t xfer_buf = 0x15;
|
|
uint8_t isc_enable = XC95_ISC_ENABLE;
|
|
int drlen = 6, tcklen = 1;
|
|
if (_fpga_family == SPARTAN3_FAMILY) {
|
|
xfer_buf = 0x00;
|
|
isc_enable = ISC_ENABLE;
|
|
drlen = 5;
|
|
tcklen = 16;
|
|
}
|
|
if (_jtag->shiftIR(isc_enable, _irlen) < 0)
|
|
return;
|
|
if (_jtag->shiftDR(&xfer_buf, NULL, drlen) < 0)
|
|
return;
|
|
_jtag->toggleClk(tcklen);
|
|
}
|
|
|
|
void Xilinx::flow_disable()
|
|
{
|
|
uint8_t isc_disable = XC95_ISC_DISABLE;
|
|
int tcklen = ((_jtag->getClkFreq() * 100) / 1000000);
|
|
|
|
if (_fpga_family == SPARTAN3_FAMILY) {
|
|
isc_disable = ISC_DISABLE;
|
|
tcklen = 16;
|
|
}
|
|
|
|
if (_jtag->shiftIR(isc_disable, _irlen) < 0)
|
|
return;
|
|
_jtag->toggleClk(tcklen);
|
|
if (_jtag->shiftIR(BYPASS, _irlen) < 0)
|
|
return;
|
|
if (_fpga_family == SPARTAN3_FAMILY) {
|
|
uint8_t xfer_buf = 0;
|
|
if (_jtag->shiftDR(&xfer_buf, NULL, 1) < 0)
|
|
return;
|
|
}
|
|
_jtag->toggleClk(1);
|
|
}
|
|
|
|
/* */
|
|
/* internal flash (xc95) */
|
|
/* based on ISE xc9500yy/data/xx_1532.bsd files */
|
|
/* */
|
|
|
|
bool Xilinx::flow_erase()
|
|
{
|
|
uint8_t xfer_buf[3] = {0x03, 0x00, 0x00};
|
|
|
|
printInfo("Erase flash ", false);
|
|
|
|
_jtag->shiftIR(XC95_ISC_ERASE, 8);
|
|
_jtag->shiftDR(xfer_buf, NULL, 18);
|
|
_jtag->toggleClk((_jtag->getClkFreq() * 400) / 1000);
|
|
_jtag->shiftDR(NULL, xfer_buf, 18);
|
|
if ((xfer_buf[0] & 0x03) != 0x01) {
|
|
printError("FAIL");
|
|
return false;
|
|
}
|
|
|
|
if (_verify) {
|
|
xfer_buf[0] = 0x03;
|
|
xfer_buf[1] = xfer_buf[2] = 0x00;
|
|
|
|
_jtag->shiftIR(XC95_XSC_BLANK_CHECK, 8);
|
|
_jtag->shiftDR(xfer_buf, NULL, 18);
|
|
_jtag->toggleClk(500);
|
|
_jtag->shiftDR(NULL, xfer_buf, 18);
|
|
if ((xfer_buf[0] & 0x03) != 0x01) {
|
|
printError("FAIL");
|
|
return false;
|
|
}
|
|
}
|
|
printSuccess("DONE");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Xilinx::flow_program(JedParser *jed)
|
|
{
|
|
uint8_t wr_buf[16+2]; // largest section length
|
|
uint8_t rd_buf[16+3];
|
|
|
|
/* enable ISC */
|
|
flow_enable();
|
|
|
|
/* erase internal flash */
|
|
if (!flow_erase())
|
|
return false;
|
|
|
|
/* xc95 internal flash is written by sector
|
|
* for each one them 15 jed sections are used
|
|
*/
|
|
size_t nb_section = jed->nb_section() / (15);
|
|
|
|
ProgressBar progress("Write Flash", nb_section, 50, _quiet);
|
|
|
|
for (size_t i = 0; i < nb_section; i++) {
|
|
uint16_t addr2 = i * 32;
|
|
for (int ii = 0; ii < 15; ii++) {
|
|
uint8_t mode = (ii == 14) ? 0x3 : 0x1;
|
|
int id = i * 15 + ii;
|
|
|
|
memcpy(wr_buf, jed->data_for_section(id)[0].c_str(),
|
|
_xc95_line_len);
|
|
wr_buf[_xc95_line_len] = (uint8_t) addr2&0xff;
|
|
wr_buf[_xc95_line_len+ 1 ] = (uint8_t)((addr2 >> 8) & 0xff);
|
|
|
|
_jtag->shiftIR(XC95_ISC_PROGRAM, 8);
|
|
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
|
|
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
|
|
|
|
if (ii == 14)
|
|
_jtag->toggleClk((_jtag->getClkFreq() * 50) / 1000);
|
|
else
|
|
_jtag->toggleClk(1);
|
|
|
|
|
|
if (ii == 14) {
|
|
mode = 0x00;
|
|
for (int loop_try = 0; loop_try < 32; loop_try++) {
|
|
_jtag->shiftIR(XC95_ISC_PROGRAM, 8);
|
|
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
|
|
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
|
|
_jtag->toggleClk((_jtag->getClkFreq() * 50) / 1000);
|
|
_jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2) + 2);
|
|
if ((rd_buf[0] & 0x03) == 0x01)
|
|
break;
|
|
}
|
|
|
|
if ((rd_buf[0] & 0x03) != 0x01) {
|
|
progress.fail();
|
|
return false;
|
|
}
|
|
}
|
|
addr2 += ((ii+1) % 0x05) ? 1 : 4;
|
|
}
|
|
progress.display(i);
|
|
}
|
|
progress.done();
|
|
|
|
/* TODO: verify */
|
|
if (_verify) {
|
|
std::string flash = flow_read();
|
|
int flash_pos = 0;
|
|
ProgressBar progress2("Verify Flash", nb_section, 50, _quiet);
|
|
for (size_t section = 0; section < nb_section; section++) {
|
|
for (size_t subsection = 0; subsection < 15; subsection++) {
|
|
int id = section * 15 + subsection;
|
|
std::string content = jed->data_for_section(id)[0];
|
|
for (int col = 0; col < _xc95_line_len; col++, flash_pos++) {
|
|
if ((uint8_t)content[col] != (uint8_t)flash[flash_pos]) {
|
|
char error[256];
|
|
progress2.fail();
|
|
snprintf(error, sizeof(error),
|
|
"Error: wrong value: read %02x instead of %02x",
|
|
(uint8_t)flash[flash_pos], (uint8_t)content[col]);
|
|
printError(error);
|
|
flow_disable();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
progress2.done();
|
|
}
|
|
|
|
/* disable ISC */
|
|
flow_disable();
|
|
|
|
return true;
|
|
}
|
|
|
|
std::string Xilinx::flow_read()
|
|
{
|
|
uint8_t mode;
|
|
std::string buffer;
|
|
uint8_t wr_buf[16+2]; // largest section length
|
|
uint8_t rd_buf[16+2];
|
|
memset(wr_buf, 0xff, sizeof(wr_buf));
|
|
|
|
/* limit JTAG clock frequency to 1MHz */
|
|
if (_jtag->getClkFreq() > 1e6)
|
|
_jtag->setClkFreq(1e6);
|
|
|
|
ProgressBar progress("Read Flash", 108, 50, _quiet);
|
|
|
|
for (size_t section = 0; section < 108; section++) {
|
|
uint16_t addr2 = section * 32;
|
|
for (int subsection = 0; subsection < 15; subsection++) {
|
|
wr_buf[_xc95_line_len ] = (uint8_t)((addr2 ) & 0xff);
|
|
wr_buf[_xc95_line_len + 1] = (uint8_t)((addr2 >> 8) & 0xff);
|
|
|
|
mode = 3;
|
|
_jtag->shiftIR(XC95_ISC_READ, 8);
|
|
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
|
|
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
|
|
|
|
_jtag->toggleClk(1);
|
|
|
|
mode = 0;
|
|
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
|
|
_jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2));
|
|
for (int pos = 0; pos < _xc95_line_len; pos++)
|
|
buffer += rd_buf[pos];
|
|
addr2 += ((subsection+1) % 0x05) ? 1 : 4;
|
|
}
|
|
progress.display(section);
|
|
}
|
|
progress.done();
|
|
|
|
return buffer;
|
|
}
|
|
|
|
/* */
|
|
/* XCF Prom */
|
|
/* */
|
|
|
|
#define XCF_FVFY3 0xE2
|
|
#define XCF_ISCTESTSTATUS 0xE3
|
|
#define XCF_ISC_ENABLE 0xE8
|
|
#define XCF_ISC_PROGRAM 0xEA
|
|
#define XCF_ISC_ADDR_SHIFT 0xEB
|
|
#define XCF_ISC_ERASE 0xEC
|
|
#define XCF_ISC_DATA_SHIFT 0xED
|
|
#define XCF_CONFIG 0xEE
|
|
#define XCF_ISC_READ 0xeF
|
|
#define XCF_ISC_DISABLE 0xF0
|
|
|
|
void Xilinx::xcf_flow_enable(uint8_t mode)
|
|
{
|
|
_jtag->shiftIR(XCF_ISC_ENABLE, 8);
|
|
_jtag->shiftDR(&mode, NULL, 6);
|
|
_jtag->toggleClk(1);
|
|
}
|
|
|
|
void Xilinx::xcf_flow_disable()
|
|
{
|
|
_jtag->shiftIR(XCF_ISC_DISABLE, 8);
|
|
_jtag->flush();
|
|
usleep(110000);
|
|
_jtag->shiftIR(BYPASS, 8);
|
|
_jtag->toggleClk(1);
|
|
}
|
|
|
|
bool Xilinx::xcf_flow_erase()
|
|
{
|
|
uint8_t xfer_buf[2] = {0x01, 0x00};
|
|
|
|
printInfo("Erase flash ", false);
|
|
xcf_flow_enable();
|
|
|
|
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
|
|
_jtag->shiftDR(xfer_buf, NULL, 16);
|
|
_jtag->toggleClk(1);
|
|
|
|
_jtag->shiftIR(XCF_ISC_ERASE, 8);
|
|
_jtag->flush();
|
|
usleep(500000);
|
|
|
|
int i;
|
|
for (i = 0; i < 32; i++) {
|
|
_jtag->shiftIR(XCF_ISCTESTSTATUS, 8);
|
|
_jtag->flush();
|
|
usleep(500000);
|
|
_jtag->shiftDR(NULL, xfer_buf, 8);
|
|
if ((xfer_buf[0] & 0x04))
|
|
break;
|
|
}
|
|
|
|
if (i == 32) {
|
|
printError("FAIL");
|
|
return false;
|
|
}
|
|
|
|
printSuccess("DONE");
|
|
|
|
xcf_flow_disable();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Xilinx::xcf_program(ConfigBitstreamParser *bitfile)
|
|
{
|
|
uint8_t tx_buf[4096 / 8];
|
|
uint16_t pkt_len =
|
|
((_jtag->get_target_device_id() == 0x05044093) ? 2048 : 4096) / 8;
|
|
if (!bitfile)
|
|
throw std::runtime_error("called with null bitstream");
|
|
const uint8_t *data = bitfile->getData();
|
|
uint32_t data_len = bitfile->getLength() / 8;
|
|
uint32_t xfer_len, offset = 0;
|
|
uint32_t addr = 0;
|
|
Jtag::tapState_t xfer_end;
|
|
|
|
/* limit JTAG clock frequency to 15MHz */
|
|
if (_jtag->getClkFreq() > 15e6)
|
|
_jtag->setClkFreq(15e6);
|
|
|
|
if (!xcf_flow_erase()) {
|
|
printError("flow erase failed");
|
|
return false;
|
|
}
|
|
|
|
xcf_flow_enable();
|
|
|
|
int blk_id = 0;
|
|
|
|
ProgressBar progress("Write PROM", (data_len / pkt_len), 50, _quiet);
|
|
|
|
while (data_len > 0) {
|
|
if (data_len < pkt_len) {
|
|
xfer_len = data_len;
|
|
xfer_end = Jtag::SHIFT_DR;
|
|
} else {
|
|
xfer_len = pkt_len;
|
|
xfer_end = Jtag::RUN_TEST_IDLE;
|
|
}
|
|
|
|
/* send data to PROM */
|
|
_jtag->shiftIR(XCF_ISC_DATA_SHIFT, 8);
|
|
_jtag->shiftDR(data+offset, NULL, xfer_len * 8, xfer_end);
|
|
if (xfer_len != pkt_len) {
|
|
uint32_t res = pkt_len - xfer_len;
|
|
memset(tx_buf, 0xff, res);
|
|
_jtag->shiftDR(tx_buf, NULL, res * 8);
|
|
}
|
|
|
|
_jtag->toggleClk(1);
|
|
|
|
/* send address */
|
|
tx_buf[0] = (addr >> 0) & 0x00ff;
|
|
tx_buf[1] = (addr >> 8) & 0x00ff;
|
|
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
|
|
_jtag->shiftDR(tx_buf, NULL, 16);
|
|
_jtag->toggleClk(1);
|
|
|
|
/* send program instruction */
|
|
_jtag->shiftIR(XCF_ISC_PROGRAM, 8);
|
|
_jtag->flush();
|
|
usleep((addr == 0) ? 14000: 500);
|
|
|
|
/* wait until bit 3 != 1 */
|
|
int i;
|
|
for (i = 0; i < 29; i++) {
|
|
_jtag->shiftIR(XCF_ISCTESTSTATUS, 8);
|
|
_jtag->flush();
|
|
usleep(500);
|
|
_jtag->shiftDR(NULL, tx_buf, 8);
|
|
if ((tx_buf[0] & 0x04))
|
|
break;
|
|
}
|
|
|
|
if (i == 29) {
|
|
progress.fail();
|
|
return false;
|
|
}
|
|
|
|
blk_id++;
|
|
offset += xfer_len;
|
|
addr += 32;
|
|
data_len -= xfer_len;
|
|
progress.display(blk_id);
|
|
}
|
|
progress.done();
|
|
|
|
/* program done */
|
|
_jtag->shiftIR(BYPASS, 8);
|
|
_jtag->toggleClk(1);
|
|
|
|
if (_verify) {
|
|
std::string flash = xcf_read();
|
|
uint32_t file_size = bitfile->getLength() / 8;
|
|
uint32_t prom_size = (uint32_t)flash.size();
|
|
|
|
uint32_t nb_bytes = (file_size > prom_size) ? prom_size : file_size;
|
|
ProgressBar progress2("Verify Flash", nb_bytes, 50, _quiet);
|
|
|
|
for (uint32_t pos = 0; pos < nb_bytes; pos++) {
|
|
if (data[pos] != (uint8_t)flash[pos]) {
|
|
progress2.fail();
|
|
char error[64];
|
|
snprintf(error, sizeof(error),
|
|
"Error: wrong value: read %02x instead of %02x",
|
|
(uint8_t)flash[pos], (uint8_t)data[pos]);
|
|
printError(error);
|
|
xcf_flow_disable();
|
|
return false;
|
|
}
|
|
progress.display(pos);
|
|
}
|
|
progress2.done();
|
|
}
|
|
|
|
_jtag->go_test_logic_reset();
|
|
|
|
xcf_flow_disable();
|
|
|
|
/* reconfigure FPGA */
|
|
_jtag->shiftIR(XCF_CONFIG, 8);
|
|
_jtag->toggleClk(1);
|
|
_jtag->shiftIR(BYPASS, 8);
|
|
_jtag->toggleClk(1);
|
|
|
|
return true;
|
|
}
|
|
|
|
std::string Xilinx::xcf_read()
|
|
{
|
|
uint32_t addr = 0;
|
|
uint8_t rx_buf[4096 / 8];
|
|
uint16_t pkt_len =
|
|
((_jtag->get_target_device_id() == 0x05044093) ? 2048 : 4096) / 8;
|
|
uint16_t nb_section =
|
|
((_jtag->get_target_device_id() == 0x05046093) ? 1024 : 512);
|
|
|
|
std::string buffer;
|
|
|
|
/* limit JTAG clock frequency to 15MHz */
|
|
if (_jtag->getClkFreq() > 15e6)
|
|
_jtag->setClkFreq(15e6);
|
|
|
|
ProgressBar progress("Read PROM", nb_section, 50, _quiet);
|
|
|
|
for (size_t section = 0; section < nb_section; section++) {
|
|
/* send address */
|
|
rx_buf[0] = (addr >> 0) & 0x00ff;
|
|
rx_buf[1] = (addr >> 8) & 0x00ff;
|
|
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
|
|
_jtag->shiftDR(rx_buf, NULL, 16);
|
|
_jtag->toggleClk(1);
|
|
|
|
/* send data to PROM */
|
|
_jtag->shiftIR(XCF_ISC_READ, 8);
|
|
_jtag->flush();
|
|
usleep(50);
|
|
_jtag->shiftDR(NULL, rx_buf, pkt_len * 8);
|
|
|
|
for (int i = 0; i < pkt_len; i++)
|
|
buffer += rx_buf[i];
|
|
|
|
progress.display(section);
|
|
addr += 32;
|
|
}
|
|
progress.done();
|
|
|
|
return buffer;
|
|
}
|
|
|
|
/*--------------------------------------------------------*/
|
|
/* xc2c */
|
|
/*--------------------------------------------------------*/
|
|
#define XC2C_IDCODE 0x01
|
|
#define XC2C_ISC_DISABLE 0xc0
|
|
#define XC2C_VERIFY 0xd1
|
|
#define XC2C_ISC_ENABLE_OTF 0xe4
|
|
#define XC2C_ISC_WRITE 0xe6
|
|
#define XC2C_ISC_SRAM_READ 0xe7
|
|
#define XC2C_ISC_ENABLE 0xe8
|
|
#define XC2C_ISC_PROGRAM 0xea
|
|
#define XC2C_ISC_ERASE 0xed
|
|
#define XC2C_ISC_READ 0xee
|
|
#define XC2C_ISC_INIT 0xf0
|
|
#define XC2C_USERCODE 0xfd
|
|
|
|
/* xilinx programmer qualification specification 6.2
|
|
* directly reversed
|
|
*/
|
|
static constexpr uint8_t _gray_code[256] = {
|
|
0x00, 0x80, 0xc0, 0x40, 0x60, 0xe0, 0xa0, 0x20,
|
|
0x30, 0xb0, 0xf0, 0x70, 0x50, 0xd0, 0x90, 0x10,
|
|
0x18, 0x98, 0xd8, 0x58, 0x78, 0xf8, 0xb8, 0x38,
|
|
0x28, 0xa8, 0xe8, 0x68, 0x48, 0xc8, 0x88, 0x08,
|
|
0x0c, 0x8c, 0xcc, 0x4c, 0x6c, 0xec, 0xac, 0x2c,
|
|
0x3c, 0xbc, 0xfc, 0x7c, 0x5c, 0xdc, 0x9c, 0x1c,
|
|
0x14, 0x94, 0xd4, 0x54, 0x74, 0xf4, 0xb4, 0x34,
|
|
0x24, 0xa4, 0xe4, 0x64, 0x44, 0xc4, 0x84, 0x04,
|
|
0x06, 0x86, 0xc6, 0x46, 0x66, 0xe6, 0xa6, 0x26,
|
|
0x36, 0xb6, 0xf6, 0x76, 0x56, 0xd6, 0x96, 0x16,
|
|
0x1e, 0x9e, 0xde, 0x5e, 0x7e, 0xfe, 0xbe, 0x3e,
|
|
0x2e, 0xae, 0xee, 0x6e, 0x4e, 0xce, 0x8e, 0x0e,
|
|
0x0a, 0x8a, 0xca, 0x4a, 0x6a, 0xea, 0xaa, 0x2a,
|
|
0x3a, 0xba, 0xfa, 0x7a, 0x5a, 0xda, 0x9a, 0x1a,
|
|
0x12, 0x92, 0xd2, 0x52, 0x72, 0xf2, 0xb2, 0x32,
|
|
0x22, 0xa2, 0xe2, 0x62, 0x42, 0xc2, 0x82, 0x02,
|
|
0x03, 0x83, 0xc3, 0x43, 0x63, 0xe3, 0xa3, 0x23,
|
|
0x33, 0xb3, 0xf3, 0x73, 0x53, 0xd3, 0x93, 0x13,
|
|
0x1b, 0x9b, 0xdb, 0x5b, 0x7b, 0xfb, 0xbb, 0x3b,
|
|
0x2b, 0xab, 0xeb, 0x6b, 0x4b, 0xcb, 0x8b, 0x0b,
|
|
0x0f, 0x8f, 0xcf, 0x4f, 0x6f, 0xef, 0xaf, 0x2f,
|
|
0x3f, 0xbf, 0xff, 0x7f, 0x5f, 0xdf, 0x9f, 0x1f,
|
|
0x17, 0x97, 0xd7, 0x57, 0x77, 0xf7, 0xb7, 0x37,
|
|
0x27, 0xa7, 0xe7, 0x67, 0x47, 0xc7, 0x87, 0x07,
|
|
0x05, 0x85, 0xc5, 0x45, 0x65, 0xe5, 0xa5, 0x25,
|
|
0x35, 0xb5, 0xf5, 0x75, 0x55, 0xd5, 0x95, 0x15,
|
|
0x1d, 0x9d, 0xdd, 0x5d, 0x7d, 0xfd, 0xbd, 0x3d,
|
|
0x2d, 0xad, 0xed, 0x6d, 0x4d, 0xcd, 0x8d, 0x0d,
|
|
0x09, 0x89, 0xc9, 0x49, 0x69, 0xe9, 0xa9, 0x29,
|
|
0x39, 0xb9, 0xf9, 0x79, 0x59, 0xd9, 0x99, 0x19,
|
|
0x11, 0x91, 0xd1, 0x51, 0x71, 0xf1, 0xb1, 0x31,
|
|
0x21, 0xa1, 0xe1, 0x61, 0x41, 0xc1, 0x81, 0x01,
|
|
};
|
|
|
|
void Xilinx::xc2c_init(uint32_t idcode)
|
|
{
|
|
_fpga_family = XC2C_FAMILY;
|
|
std::string model = fpga_list[idcode].model;
|
|
size_t underscore_pos = model.find_first_of('_', 0);
|
|
if (underscore_pos == model.npos) {
|
|
underscore_pos = model.length();
|
|
}
|
|
snprintf(_cpld_base_name, underscore_pos,
|
|
"%s", model.substr(0, underscore_pos).c_str());
|
|
switch ((idcode >> 16) & 0x3f) {
|
|
case 0x01: /* xc2c32 */
|
|
case 0x11: /* xc2c32a PC44 */
|
|
case 0x21: /* xc2c32a */
|
|
_cpld_nb_col = 260;
|
|
_cpld_nb_row = 48;
|
|
_cpld_addr_size = 6;
|
|
break;
|
|
case 0x05: /* xc2c64 */
|
|
case 0x25: /* xc2c64a */
|
|
_cpld_nb_col = 274;
|
|
_cpld_nb_row = 96;
|
|
_cpld_addr_size = 7;
|
|
break;
|
|
case 0x18: /* xc2c128 */
|
|
_cpld_nb_col = 752;
|
|
_cpld_nb_row = 80;
|
|
_cpld_addr_size = 7;
|
|
break;
|
|
case 0x14: /* xc2c256 */
|
|
_cpld_nb_col = 1364;
|
|
_cpld_nb_row = 96;
|
|
_cpld_addr_size = 7;
|
|
break;
|
|
case 0x15: /* xc2c384 */
|
|
_cpld_nb_col = 1868;
|
|
_cpld_nb_row = 120;
|
|
_cpld_addr_size = 7;
|
|
break;
|
|
case 0x17: /* xc2c512 */
|
|
_cpld_nb_col = 1980;
|
|
_cpld_nb_row = 160;
|
|
_cpld_addr_size = 8;
|
|
break;
|
|
default:
|
|
throw std::runtime_error("Error: unknown XC2C version");
|
|
}
|
|
_cpld_nb_row += 2; // 2 more row: done + sec and usercode
|
|
// datasheet table 2 p.15
|
|
}
|
|
|
|
/* reinit device
|
|
* datasheet table 47-48 p.61-62
|
|
*/
|
|
void Xilinx::xc2c_flow_reinit()
|
|
{
|
|
uint8_t c = 0;
|
|
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
|
|
_jtag->shiftIR(XC2C_ISC_INIT, 8);
|
|
_jtag->toggleClk((_jtag->getClkFreq() * 20) / 1000);
|
|
_jtag->shiftIR(XC2C_ISC_INIT, 8);
|
|
_jtag->shiftDR(&c, NULL, 8);
|
|
_jtag->toggleClk((_jtag->getClkFreq() * 800) / 1000);
|
|
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
|
|
_jtag->shiftIR(BYPASS, 8);
|
|
}
|
|
|
|
/* full flash erase (with optional blank check)
|
|
* datasheet 12.1 (table41) p.56
|
|
*/
|
|
bool Xilinx::xc2c_flow_erase()
|
|
{
|
|
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8, Jtag::UPDATE_IR);
|
|
_jtag->shiftIR(XC2C_ISC_ERASE, 8);
|
|
_jtag->toggleClk((_jtag->getClkFreq() * 100) / 1000);
|
|
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
|
|
|
|
if (_verify) {
|
|
std::string rx_buf = xc2c_flow_read();
|
|
for (auto &val : rx_buf) {
|
|
if ((uint8_t)val != 0xff) {
|
|
printError("Erase: fails to verify blank check");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* read flash full content
|
|
* return it has string buffer
|
|
* table 45 - 46 p. 59-60
|
|
*/
|
|
std::string Xilinx::xc2c_flow_read()
|
|
{
|
|
uint8_t rx_buf[249];
|
|
uint32_t delay_loop = (_jtag->getClkFreq() * 20) / 1000000;
|
|
uint16_t pos = 0;
|
|
uint8_t addr_shift = 8 - _cpld_addr_size;
|
|
|
|
std::string buffer;
|
|
buffer.resize(((_cpld_nb_col * _cpld_nb_row) + 7) / 8);
|
|
|
|
ProgressBar progress("Read Flash", _cpld_nb_row + 1, 50, _quiet);
|
|
|
|
_jtag->shiftIR(BYPASS, 8);
|
|
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
|
|
_jtag->shiftIR(XC2C_ISC_READ, 8);
|
|
|
|
/* send address
|
|
* send addr 0 before loop because each row content
|
|
* is followed by next addr (or dummy for the last row
|
|
*/
|
|
/* send address */
|
|
uint8_t addr = _gray_code[0] >> addr_shift;
|
|
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
|
|
/* wait 20us */
|
|
_jtag->toggleClk(delay_loop);
|
|
|
|
for (size_t row = 1; row <= _cpld_nb_row; row++) {
|
|
/* read nb_col bits, stay in shift_dr to send next addr */
|
|
_jtag->shiftDR(NULL, rx_buf, _cpld_nb_col, Jtag::SHIFT_DR);
|
|
/* send address */
|
|
addr = _gray_code[row] >> addr_shift;
|
|
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
|
|
/* wait 20us */
|
|
_jtag->toggleClk(delay_loop);
|
|
|
|
for (int i = 0; i < _cpld_nb_col; i++, pos++)
|
|
if (rx_buf[i >> 3] & (1 << (i & 0x07)))
|
|
buffer[pos >> 3] |= (1 << (pos & 0x07));
|
|
else
|
|
buffer[pos >> 3] &= ~(1 << (pos & 0x07));
|
|
|
|
progress.display(row);
|
|
}
|
|
progress.done();
|
|
|
|
_jtag->shiftIR(XC2C_ISC_DISABLE, Jtag::TEST_LOGIC_RESET);
|
|
|
|
return buffer;
|
|
}
|
|
|
|
bool Xilinx::xc2c_flow_program(JedParser *jed)
|
|
{
|
|
uint32_t delay_loop = (_jtag->getClkFreq() * 20) / 1000;
|
|
uint8_t shift_addr = 8 - _cpld_addr_size;
|
|
|
|
/* map jed fuse using device map */
|
|
printInfo("Map jed fuses: ", false);
|
|
XilinxMapParser *map_parser;
|
|
try {
|
|
std::string mapname = ISE_DIR "/ISE_DS/ISE/xbr/data/" +
|
|
std::string(_cpld_base_name) + ".map";
|
|
map_parser = new XilinxMapParser(mapname, _cpld_nb_row, _cpld_nb_col,
|
|
jed, 0xffffffff, _verbose);
|
|
map_parser->parse();
|
|
} catch(std::exception &e) {
|
|
printError("FAIL");
|
|
throw std::runtime_error(e.what());
|
|
}
|
|
printSuccess("DONE");
|
|
|
|
std::vector<std::string> listfuse = map_parser->cfg_data();
|
|
|
|
/* erase internal flash */
|
|
printInfo("Erase Flash: ", false);
|
|
if (!xc2c_flow_erase()) {
|
|
printError("FAIL");
|
|
throw std::runtime_error("Fail to erase interface flash");
|
|
} else {
|
|
printSuccess("DONE");
|
|
}
|
|
|
|
ProgressBar progress("Write Flash", _cpld_nb_row, 50, _quiet);
|
|
|
|
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
|
|
_jtag->shiftIR(XC2C_ISC_PROGRAM, 8);
|
|
|
|
uint16_t iter = 0;
|
|
for (const auto &row : listfuse) {
|
|
uint16_t pos = 0;
|
|
uint8_t addr = _gray_code[iter] >> shift_addr;
|
|
uint8_t wr_buf[249] = {0}; // largest section length
|
|
for (auto col : row) {
|
|
if (col)
|
|
wr_buf[pos >> 3] |= (1 << (pos & 0x07));
|
|
else
|
|
wr_buf[pos >> 3] &= ~(1 << (pos & 0x07));
|
|
pos++;
|
|
}
|
|
_jtag->shiftDR(wr_buf, NULL, _cpld_nb_col, Jtag::SHIFT_DR);
|
|
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
|
|
_jtag->toggleClk(delay_loop);
|
|
|
|
iter++;
|
|
}
|
|
|
|
/* done bit and usercode are shipped into listfuse
|
|
* so only needs to send isc disable
|
|
*/
|
|
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
|
|
|
|
if (_verify) {
|
|
std::string rx_buffer = xc2c_flow_read();
|
|
iter = 0;
|
|
for (const auto &row : listfuse) {
|
|
for (auto col : row) {
|
|
if ((rx_buffer[iter >> 3] >> (iter & 0x07)) != col) {
|
|
throw std::runtime_error("Program: verify failed");
|
|
}
|
|
iter++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* reload */
|
|
xc2c_flow_reinit();
|
|
|
|
return true;
|
|
}
|
|
|
|
/* */
|
|
/* SPI interface */
|
|
/* */
|
|
|
|
/*
|
|
* jtag : jtag interface
|
|
* cmd : opcode for SPI flash
|
|
* tx : buffer to send
|
|
* rx : buffer to fill
|
|
* len : number of byte to send/receive (cmd not comprise)
|
|
* so to send only a cmd set len to 0 (or omit this param)
|
|
*/
|
|
int Xilinx::spi_put(uint8_t cmd,
|
|
const uint8_t *tx, uint8_t *rx, uint32_t len)
|
|
{
|
|
/* SpiOverJtag v2 */
|
|
if (_soj_is_v2)
|
|
return spi_put_v2(cmd, tx, rx, len);
|
|
|
|
int xfer_len = len + 1 + ((rx == NULL) ? 0 : 1);
|
|
uint8_t jtx[xfer_len];
|
|
jtx[0] = McsParser::reverseByte(cmd);
|
|
/* uint8_t jtx[xfer_len] = {McsParser::reverseByte(cmd)}; */
|
|
uint8_t jrx[xfer_len];
|
|
if (tx != NULL) {
|
|
for (uint32_t i=0; i < len; i++)
|
|
jtx[i+1] = McsParser::reverseByte(tx[i]);
|
|
}
|
|
/* addr BSCAN user1 */
|
|
_jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen);
|
|
/* send first already stored cmd,
|
|
* in the same time store each byte
|
|
* to next
|
|
*/
|
|
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
|
|
|
|
if (rx != NULL) {
|
|
for (uint32_t i=0; i < len; i++)
|
|
rx[i] = McsParser::reverseByte(jrx[i+1] >> 1) | (jrx[i+2] & 0x01);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int Xilinx::spi_put(const uint8_t *tx, uint8_t *rx, uint32_t len)
|
|
{
|
|
int xfer_len = len + ((rx == NULL) ? 0 : 1);
|
|
uint8_t jtx[xfer_len];
|
|
uint8_t jrx[xfer_len];
|
|
if (tx != NULL) {
|
|
for (uint32_t i=0; i < len; i++)
|
|
jtx[i] = McsParser::reverseByte(tx[i]);
|
|
}
|
|
/* addr BSCAN user1 */
|
|
_jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen);
|
|
/* send first already stored cmd,
|
|
* in the same time store each byte
|
|
* to next
|
|
*/
|
|
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
|
|
|
|
if (rx != NULL) {
|
|
for (uint32_t i=0; i < len; i++)
|
|
rx[i] = McsParser::reverseByte(jrx[i] >> 1) | (jrx[i+1] & 0x01);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int Xilinx::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond,
|
|
uint32_t timeout, bool verbose)
|
|
{
|
|
uint8_t rx[2];
|
|
uint8_t tx[2];
|
|
uint8_t tmp;
|
|
uint32_t count = 0;
|
|
const uint8_t shift = _jtag_chain_len;
|
|
uint8_t idx = 0;
|
|
|
|
if (_soj_is_v2)
|
|
tx[idx++] = (0x2 << 1) | 1;
|
|
tx[idx++] = McsParser::reverseByte(cmd);
|
|
|
|
_jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen, Jtag::UPDATE_IR);
|
|
_jtag->shiftDR(tx, NULL, 8 * idx, Jtag::SHIFT_DR);
|
|
|
|
do {
|
|
_jtag->shiftDR(tx, rx, 8*2, Jtag::SHIFT_DR);
|
|
tmp = McsParser::reverseByte(rx[0 ]>> shift);
|
|
if (shift == 1)
|
|
tmp |= (0x01 & rx[1]);
|
|
else
|
|
tmp |= McsParser::reverseByte(rx[1]) >> (8 - shift);
|
|
|
|
count++;
|
|
if (count == timeout){
|
|
printf("timeout: %x %x %x\n", tmp, rx[0], rx[1]);
|
|
break;
|
|
}
|
|
if (verbose) {
|
|
printf("%x %x %x %u %02x %02x\n", tmp, mask, cond, count, rx[0], rx[1]);
|
|
}
|
|
} while ((tmp & mask) != cond);
|
|
_jtag->shiftDR(tx, rx, 8 * 2, Jtag::EXIT1_DR);
|
|
_jtag->go_test_logic_reset();
|
|
|
|
if (count == timeout) {
|
|
printf("%x\n", tmp);
|
|
std::cout << "wait: Error" << std::endl;
|
|
return -ETIME;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int Xilinx::spi_put_v2(uint8_t cmd, const uint8_t *tx, uint8_t *rx,
|
|
uint32_t len)
|
|
{
|
|
const uint32_t real_len = len + 1; // rx/tx length + cmd
|
|
uint32_t kPktLen = real_len + 2; // One header and +1 due to the needs of an additional bit/byte
|
|
uint8_t mode = 0x01;
|
|
if (real_len > 32) {
|
|
kPktLen++; // Additional header
|
|
mode = 0x00;
|
|
}
|
|
|
|
const uint32_t xfer_bit_len = (kPktLen - 1) * 8 + (rx ? 8 : 1);
|
|
|
|
uint8_t jrx[kPktLen];
|
|
uint8_t pkt[kPktLen];
|
|
uint32_t idx = 0;
|
|
|
|
pkt[idx++] = ((0x1f & real_len) << 3) | ((0x03 & mode) << 1) | 1;
|
|
if (mode == 0x00)
|
|
pkt[idx++] = 0xff & (real_len >> 5);
|
|
|
|
pkt[idx++] = McsParser::reverseByte(cmd);
|
|
if (tx) {
|
|
for (uint32_t i=0; i < len; i++)
|
|
pkt[idx++] = McsParser::reverseByte(tx[i]);
|
|
} else {
|
|
memset(&pkt[idx], 0, len);
|
|
idx += len;
|
|
}
|
|
|
|
/* addr BSCAN user1 */
|
|
_jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen);
|
|
_jtag->shiftDR(pkt, (rx == NULL) ? NULL : jrx, xfer_bit_len);
|
|
_jtag->go_test_logic_reset();
|
|
_jtag->flush();
|
|
|
|
if (_verbose) {
|
|
for (uint32_t i = 0; i < kPktLen; i++)
|
|
printf("%02x ", pkt[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
if (rx != NULL) {
|
|
if (_verbose) {
|
|
for (uint32_t i = 0; i < kPktLen; i++)
|
|
printf("%02x ", jrx[i]);
|
|
printf("\n");
|
|
for (uint32_t i = 0; i < kPktLen; i++)
|
|
printf("%02x ", McsParser::reverseByte(jrx[i]));
|
|
printf("\n");
|
|
}
|
|
idx = (mode == 0 ? 3 : 2);
|
|
const uint8_t shift = _jtag_chain_len;
|
|
for (uint32_t i = 0; i < len; i++) {
|
|
rx[i] = McsParser::reverseByte(jrx[i + idx] >> shift);
|
|
if (shift == 1)
|
|
rx[i] |= (jrx[i + idx + 1] & 0x01);
|
|
else
|
|
rx[i] |= McsParser::reverseByte(jrx[i + idx + 1]) >> (8 - shift);
|
|
if (_verbose)
|
|
printf("%02x ", rx[i]);
|
|
}
|
|
if (_verbose)
|
|
printf("\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void Xilinx::select_flash_chip(xilinx_flash_chip_t flash_chip) {
|
|
switch (flash_chip) {
|
|
case SECONDARY_FLASH:
|
|
_user_instruction = "USER2";
|
|
break;
|
|
case PRIMARY_FLASH:
|
|
default:
|
|
_user_instruction = "USER1";
|
|
break;
|
|
}
|
|
}
|