openFPGALoader/src/xilinx.cpp

1211 lines
30 KiB
C++
Raw Normal View History

2021-06-26 15:24:07 +02:00
// SPDX-License-Identifier: Apache-2.0
/*
* Copyright (C) 2019 Gwenhael Goavec-Merou <gwenhael.goavec-merou@trabucayre.com>
*/
#include <unistd.h>
#include <cstring>
2019-09-26 18:29:20 +02:00
#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>
2019-09-26 18:29:20 +02:00
#include "jtag.hpp"
2019-09-26 18:29:20 +02:00
#include "bitparser.hpp"
#include "configBitstreamParser.hpp"
#include "jedParser.hpp"
#include "mcsParser.hpp"
#include "spiFlash.hpp"
#include "rawParser.hpp"
2019-09-26 18:29:20 +02:00
#include "display.hpp"
2019-09-26 18:29:20 +02:00
#include "xilinx.hpp"
#include "xilinxMapParser.hpp"
#include "part.hpp"
#include "progressBar.hpp"
2019-09-26 18:29:20 +02:00
Xilinx::Xilinx(Jtag *jtag, const std::string &filename,
const std::string &file_type,
Device::prog_type_t prg_type,
const std::string &device_package, bool verify, int8_t verbose):
Device(jtag, filename, file_type, verify, verbose),
SPIInterface(filename, verbose, 256, verify),
_device_package(device_package)
2019-11-21 09:26:43 +01:00
{
2021-06-25 11:28:19 +02:00
if (prg_type == Device::RD_FLASH) {
_mode = Device::READ_MODE;
} else if (!_file_extension.empty()) {
if (_file_extension == "mcs") {
_mode = Device::SPI_MODE;
2021-02-04 07:29:35 +01:00
} else if (_file_extension == "bit" || _file_extension == "bin") {
2021-02-18 21:09:34 +01:00
if (prg_type == Device::WR_SRAM)
_mode = Device::MEM_MODE;
else
_mode = Device::SPI_MODE;
} else if (_file_extension == "jed") {
_mode = Device::FLASH_MODE;
} else {
_mode = Device::SPI_MODE;
}
2019-09-26 18:29:20 +02:00
}
uint32_t idcode = _jtag->get_target_device_id();
std::string family = fpga_list[idcode].family;
if (family.substr(0, 5) == "artix") {
_fpga_family = ARTIX_FAMILY;
} else if (family == "spartan7") {
_fpga_family = SPARTAN7_FAMILY;
} else if (family == "zynq") {
_fpga_family = ZYNQ_FAMILY;
} else if (family == "kintex7") {
_fpga_family = KINTEX_FAMILY;
2021-08-30 15:08:11 +02:00
} else if (family == "spartan3") {
_fpga_family = SPARTAN3_FAMILY;
if (_mode != Device::MEM_MODE) {
throw std::runtime_error("Error: Only load to mem is supported");
}
} else if (family == "xcf") {
_fpga_family = XCF_FAMILY;
if (_mode == Device::MEM_MODE) {
throw std::runtime_error("Error: Only write or read is supported");
}
} else if (family == "spartan6") {
_fpga_family = SPARTAN6_FAMILY;
} else if (family == "xc2c") {
xc2c_init(idcode);
} else if (family == "xc9500xl") {
_fpga_family = XC95_FAMILY;
switch (idcode) {
case 0x09602093:
_xc95_line_len = 2;
break;
case 0x09604093:
_xc95_line_len = 4;
break;
case 0x09608093:
_xc95_line_len = 8;
break;
case 0x09616093:
_xc95_line_len = 16;
break;
}
} else {
_fpga_family = UNKNOWN_FAMILY;
}
2019-09-26 18:29:20 +02:00
}
Xilinx::~Xilinx() {}
#define USER1 0x02
2019-09-26 18:29:20 +02:00
#define CFG_IN 0x05
#define USERCODE 0x08
#define IDCODE 0x09
#define ISC_ENABLE 0x10
#define JPROGRAM 0x0B
#define JSTART 0x0C
#define JSHUTDOWN 0x0D
2021-08-30 15:08:11 +02:00
#define ISC_PROGRAM 0x11
2019-09-26 18:29:20 +02:00
#define ISC_DISABLE 0x16
#define BYPASS 0xff
/* xc95 instructions set */
#define XC95_IDCODE 0xfe
#define XC95_ISC_ERASE 0xed
#define XC95_ISC_ENABLE 0xe9
#define XC95_ISC_DISABLE 0xf0
#define XC95_XSC_BLANK_CHECK 0xe5
#define XC95_ISC_PROGRAM 0xea
#define XC95_ISC_READ 0xee
2019-09-26 18:29:20 +02:00
void Xilinx::reset()
{
_jtag->shiftIR(JSHUTDOWN, 6);
_jtag->shiftIR(JPROGRAM, 6);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(10000*12);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
2019-09-26 18:29:20 +02:00
_jtag->toggleClk(2000);
_jtag->shiftIR(BYPASS, 6);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2000);
2019-09-26 18:29:20 +02:00
}
int Xilinx::idCode()
{
int id = 0;
unsigned char tx_data[4]= {0x00, 0x00, 0x00, 0x00};
2019-09-26 18:29:20 +02:00
unsigned char rx_data[4];
_jtag->go_test_logic_reset();
_jtag->shiftIR(IDCODE, 6);
_jtag->shiftDR(tx_data, rx_data, 32);
id = ((rx_data[0] & 0x000000ff) |
2019-09-26 18:29:20 +02:00
((rx_data[1] << 8) & 0x0000ff00) |
((rx_data[2] << 16) & 0x00ff0000) |
((rx_data[3] << 24) & 0xff000000));
/* workaround for XC95 with different
* IR length and IDCODE value
*/
if (id == 0) {
_jtag->go_test_logic_reset();
_jtag->shiftIR(XC95_IDCODE, 8);
_jtag->shiftDR(tx_data, rx_data, 32);
id = ((rx_data[0] & 0x000000ff) |
((rx_data[1] << 8) & 0x0000ff00) |
((rx_data[2] << 16) & 0x00ff0000) |
((rx_data[3] << 24) & 0xff000000));
}
return id;
2019-09-26 18:29:20 +02:00
}
void Xilinx::program(unsigned int offset, bool unprotect_flash)
{
2021-02-04 07:29:35 +01:00
ConfigBitstreamParser *bit;
bool reverse = false;
/* nothing to do */
2021-06-25 11:28:19 +02:00
if (_mode == Device::NONE_MODE || _mode == Device::READ_MODE)
2021-02-04 07:29:35 +01:00
return;
if (_mode == Device::FLASH_MODE && _file_extension == "jed") {
JedParser *jed;
printInfo("Open file ", false);
jed = new JedParser(_filename, _verbose);
if (jed->parse() == EXIT_FAILURE) {
printError("FAIL");
return;
}
printSuccess("DONE");
if (_fpga_family == XC95_FAMILY)
flow_program(jed);
else if (_fpga_family == XC2C_FAMILY)
xc2c_flow_program(jed);
else
throw std::runtime_error("Error: jed only supported for xc95 and xc2c");
return;
}
if (_fpga_family == XC95_FAMILY) {
printError("Only jed file and flash mode supported for XC95 CPLD");
return;
}
2021-08-30 15:08:11 +02:00
if (_mode == Device::MEM_MODE || _fpga_family == XCF_FAMILY)
2021-02-04 07:29:35 +01:00
reverse = true;
printInfo("Open file ", false);
2021-02-04 07:29:35 +01:00
try {
if (_file_extension == "bit")
bit = new BitParser(_filename, reverse, _verbose);
else if (_file_extension == "mcs")
bit = new McsParser(_filename, reverse, _verbose);
else
bit = new RawParser(_filename, reverse);
} catch (std::exception &e) {
printError("FAIL");
return;
}
2021-02-04 07:29:35 +01:00
printSuccess("DONE");
printInfo("Parse file ", false);
if (bit->parse() == EXIT_FAILURE) {
printError("FAIL");
2021-02-04 07:29:35 +01:00
delete bit;
return;
} else {
printSuccess("DONE");
}
if (_verbose)
bit->displayHeader();
2021-08-30 15:08:11 +02:00
if (_fpga_family == XCF_FAMILY) {
xcf_program(bit);
delete bit;
2021-08-30 15:08:11 +02:00
return;
}
if (_mode == Device::SPI_MODE)
program_spi(bit, offset, unprotect_flash);
else
2021-02-04 07:29:35 +01:00
program_mem(bit);
delete bit;
}
2021-06-25 11:28:19 +02:00
bool Xilinx::load_bridge()
2021-02-04 07:29:35 +01:00
{
if (_device_package.empty()) {
printError("Can't program SPI flash: missing device-package information");
2021-06-25 11:28:19 +02:00
return false;
}
2021-02-04 07:29:35 +01:00
// DATA_DIR is defined at compile time.
std::string bitname = DATA_DIR "/openFPGALoader/spiOverJtag_";
2021-12-19 17:34:14 +01:00
bitname += _device_package + ".bit.gz";
std::cout << "use: " << bitname << std::endl;
2021-02-04 07:29:35 +01:00
/* first: load spi over jtag */
try {
BitParser bridge(bitname, true, _verbose);
bridge.parse();
program_mem(&bridge);
} catch (std::exception &e) {
printError(e.what());
throw std::runtime_error(e.what());
}
2021-06-25 11:28:19 +02:00
return true;
}
void Xilinx::program_spi(ConfigBitstreamParser * bit, unsigned int offset,
bool unprotect_flash)
2021-06-25 11:28:19 +02:00
{
uint8_t *data = bit->getData();
int length = bit->getLength() / 8;
SPIInterface::write(offset, data, length, unprotect_flash);
}
2021-02-04 07:29:35 +01:00
void Xilinx::program_mem(ConfigBitstreamParser *bitfile)
2019-09-26 18:29:20 +02:00
{
std::cout << "load program" << std::endl;
unsigned char tx_buf, rx_buf;
/* comment TDI TMS TCK
* 1: On power-up, place a logic 1 on the TMS,
* and clock the TCK five times. This ensures X 1 5
* starting in the TLR (Test-Logic-Reset) state.
*/
_jtag->go_test_logic_reset();
/*
* 2: Move into the RTI state. X 0 1
* 3: Move into the SELECT-IR state. X 1 2
* 4: Enter the SHIFT-IR state. X 0 2
* 5: Start loading the JPROGRAM instruction, 01011(4) 0 5
* LSB first:
* 6: Load the MSB of the JPROGRAM instruction
* when exiting SHIFT-IR, as defined in the 0 1 1
* IEEE standard.
* 7: Place a logic 1 on the TMS and clock the
* TCK five times. This ensures starting in X 1 5
* the TLR (Test-Logic-Reset) state.
*/
_jtag->shiftIR(JPROGRAM, 6);
2019-09-26 18:29:20 +02:00
/* test */
tx_buf = BYPASS;
do {
_jtag->shiftIR(&tx_buf, &rx_buf, 6);
} while (!(rx_buf &0x01));
/*
* 8: Move into the RTI state. X 0 10,000(1)
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
2019-09-26 18:29:20 +02:00
_jtag->toggleClk(10000*12);
/*
* 9: Start loading the CFG_IN instruction,
* LSB first: 00101 0 5
* 10: Load the MSB of CFG_IN instruction when
* exiting SHIFT-IR, as defined in the 0 1 1
* IEEE standard.
*/
_jtag->shiftIR(CFG_IN, 6);
2019-09-26 18:29:20 +02:00
/*
* 11: Enter the SELECT-DR state. X 1 2
*/
_jtag->set_state(Jtag::SELECT_DR_SCAN);
2019-09-26 18:29:20 +02:00
/*
* 13: Shift in the FPGA bitstream. Bitn (MSB)
* is the first bit in the bitstream(2). bit1...bitn 0 (bits in bitstream)-1
* 14: Shift in the last bit of the bitstream.
* Bit0 (LSB) shifts on the transition to bit0 1 1
* EXIT1-DR.
*/
/* GGM: TODO */
2021-02-04 07:29:35 +01:00
int byte_length = bitfile->getLength() / 8;
uint8_t *data = bitfile->getData();
int tx_len, tx_end;
int burst_len = byte_length / 100;
ProgressBar progress("Flash SRAM", byte_length, 50, _quiet);
for (int i=0; i < byte_length; i+=burst_len) {
if (i + burst_len > byte_length) {
tx_len = (byte_length - i) * 8;
2021-05-15 18:43:54 +02:00
/*
* 15: Enter UPDATE-DR state. X 1 1
*/
tx_end = Jtag::UPDATE_DR;
} else {
tx_len = burst_len * 8;
2021-05-15 18:43:54 +02:00
/*
* 12: Enter the SHIFT-DR state. X 0 2
*/
tx_end = Jtag::SHIFT_DR;
}
2021-05-15 18:43:54 +02:00
_jtag->shiftDR(data+i, NULL, tx_len, tx_end);
_jtag->flush();
progress.display(i);
}
progress.done();
2019-09-26 18:29:20 +02:00
/*
* 16: Move into RTI state. X 0 1
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
2019-09-26 18:29:20 +02:00
/*
* 17: Enter the SELECT-IR state. X 1 2
* 18: Move to the SHIFT-IR state. X 0 2
* 19: Start loading the JSTART instruction
* (optional). The JSTART instruction 01100 0 5
* initializes the startup sequence.
* 20: Load the last bit of the JSTART instruction. 0 1 1
* 21: Move to the UPDATE-IR state. X 1 1
*/
_jtag->shiftIR(JSTART, 6, Jtag::UPDATE_IR);
2019-09-26 18:29:20 +02:00
/*
* 22: Move to the RTI state and clock the
* startup sequence by applying a minimum X 0 2000
* of 2000 clock cycles to the TCK.
*/
_jtag->set_state(Jtag::RUN_TEST_IDLE);
2019-09-26 18:29:20 +02:00
_jtag->toggleClk(2000);
/*
* 23: Move to the TLR state. The device is
* now functional. X 1 3
*/
_jtag->go_test_logic_reset();
}
bool Xilinx::dumpFlash(uint32_t base_addr, uint32_t len)
2021-06-25 11:28:19 +02:00
{
2021-08-30 15:08:11 +02:00
if (_fpga_family == XC95_FAMILY || _fpga_family == XCF_FAMILY) {
std::string buffer;
if (_fpga_family == XC95_FAMILY) {
/* enable ISC */
flow_enable();
buffer = flow_read();
/* disable ISC */
flow_disable();
} else {
/* enable ISC */
xcf_flow_enable(0x34);
buffer = xcf_read();
/* disable ISC */
xcf_flow_disable();
}
printInfo("Open dump file ", false);
FILE *fd = fopen(_filename.c_str(), "wb");
if (!fd) {
printError("FAIL");
return false;
}
printSuccess("DONE");
printInfo("Read flash ", false);
fwrite(buffer.c_str(), sizeof(uint8_t), buffer.size(), fd);
printSuccess("DONE");
fclose(fd);
return true;
}
/* dump SPI Flash */
return SPIInterface::dump(base_addr, len);
2021-06-25 11:28:19 +02:00
}
/* */
/* internal flash (xc95) */
/* based on ISE xx_1532.bsd files */
/* */
void Xilinx::flow_enable()
{
uint8_t xfer_buf = 0x15;
_jtag->shiftIR(XC95_ISC_ENABLE, 8);
_jtag->shiftDR(&xfer_buf, NULL, 6);
_jtag->toggleClk(1);
}
void Xilinx::flow_disable()
{
_jtag->shiftIR(XC95_ISC_DISABLE, 8);
_jtag->toggleClk((_jtag->getClkFreq() * 100) / 1000000);
_jtag->shiftIR(BYPASS, 8);
_jtag->toggleClk(1);
}
bool Xilinx::flow_erase()
{
uint8_t xfer_buf[3] = {0x03, 0x00, 0x00};
printInfo("Erase flash ", false);
_jtag->shiftIR(XC95_ISC_ERASE, 8);
_jtag->shiftDR(xfer_buf, NULL, 18);
_jtag->toggleClk((_jtag->getClkFreq() * 400) / 1000);
_jtag->shiftDR(NULL, xfer_buf, 18);
if ((xfer_buf[0] & 0x03) != 0x01) {
printError("FAIL");
return false;
}
if (_verify) {
xfer_buf[0] = 0x03;
xfer_buf[1] = xfer_buf[2] = 0x00;
_jtag->shiftIR(XC95_XSC_BLANK_CHECK, 8);
_jtag->shiftDR(xfer_buf, NULL, 18);
_jtag->toggleClk(500);
_jtag->shiftDR(NULL, xfer_buf, 18);
if ((xfer_buf[0] & 0x03) != 0x01) {
printError("FAIL");
return false;
}
}
printSuccess("DONE");
return true;
}
bool Xilinx::flow_program(JedParser *jed)
{
uint8_t wr_buf[16+2]; // largest section length
uint8_t rd_buf[16+3];
/* enable ISC */
flow_enable();
/* erase internal flash */
if (!flow_erase())
return false;
/* xc95 internal flash is written by sector
* for each one them 15 jed sections are used
*/
size_t nb_section = jed->nb_section() / (15);
ProgressBar progress("Write Flash", nb_section, 50, _quiet);
for (size_t i = 0; i < nb_section; i++) {
uint16_t addr2 = i * 32;
for (int ii = 0; ii < 15; ii++) {
uint8_t mode = (ii == 14) ? 0x3 : 0x1;
int id = i * 15 + ii;
memcpy(wr_buf, jed->data_for_section(id)[0].c_str(),
_xc95_line_len);
wr_buf[_xc95_line_len] = (uint8_t) addr2&0xff;
wr_buf[_xc95_line_len+ 1 ] = (uint8_t)((addr2 >> 8) & 0xff);
_jtag->shiftIR(XC95_ISC_PROGRAM, 8);
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
if (ii == 14)
_jtag->toggleClk(20000);
else
_jtag->toggleClk(1);
if (ii == 14) {
mode = 0x00;
for (int loop_try = 0; loop_try < 32; loop_try++) {
_jtag->shiftIR(XC95_ISC_PROGRAM, 8);
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
_jtag->toggleClk((_jtag->getClkFreq() * 50) / 1000);
_jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2) + 2);
if ((rd_buf[0] & 0x03) == 0x01)
break;
}
if ((rd_buf[0] & 0x03) != 0x01) {
progress.fail();
return false;
}
}
addr2 += ((ii+1) % 0x05) ? 1 : 4;
}
progress.display(i);
}
progress.done();
/* TODO: verify */
if (_verify) {
std::string flash = flow_read();
int flash_pos = 0;
ProgressBar progress2("Verify Flash", nb_section, 50, _quiet);
for (size_t section = 0; section < 108; section++) {
for (size_t subsection = 0; subsection < 15; subsection++) {
int id = section * 15 + subsection;
std::string content = jed->data_for_section(id)[0];
for (int col = 0; col < _xc95_line_len; col++, flash_pos++) {
if ((uint8_t)content[col] != (uint8_t)flash[flash_pos]) {
char error[256];
progress2.fail();
snprintf(error, sizeof(error),
"Error: wrong value: read %02x instead of %02x",
(uint8_t)flash[flash_pos], (uint8_t)content[col]);
printError(error);
flow_disable();
return false;
}
}
}
}
progress2.done();
}
/* disable ISC */
flow_disable();
return true;
}
std::string Xilinx::flow_read()
{
uint8_t mode;
std::string buffer;
uint8_t wr_buf[16+2]; // largest section length
uint8_t rd_buf[16+2];
memset(wr_buf, 0xff, 16);
/* limit JTAG clock frequency to 1MHz */
if (_jtag->getClkFreq() > 1e6)
_jtag->setClkFreq(1e6);
ProgressBar progress("Read Flash", 108, 50, _quiet);
for (size_t section = 0; section < 108; section++) {
uint16_t addr2 = section * 32;
for (int subsection = 0; subsection < 15; subsection++) {
wr_buf[_xc95_line_len ] = (uint8_t)((addr2 ) & 0xff);
wr_buf[_xc95_line_len + 1] = (uint8_t)((addr2 >> 8) & 0xff);
mode = 3;
_jtag->shiftIR(XC95_ISC_READ, 8);
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
_jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2));
_jtag->toggleClk(1);
mode = 0;
_jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR);
_jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2));
for (int pos = 0; pos < _xc95_line_len; pos++)
buffer += rd_buf[pos];
addr2 += ((subsection+1) % 0x05) ? 1 : 4;
}
progress.display(section);
}
progress.done();
return buffer;
}
2021-08-30 15:08:11 +02:00
/* */
/* XCF Prom */
/* */
#define XCF_FVFY3 0xE2
#define XCF_ISCTESTSTATUS 0xE3
#define XCF_ISC_ENABLE 0xE8
#define XCF_ISC_PROGRAM 0xEA
#define XCF_ISC_ADDR_SHIFT 0xEB
#define XCF_ISC_ERASE 0xEC
#define XCF_ISC_DATA_SHIFT 0xED
#define XCF_CONFIG 0xEE
2021-08-30 15:08:11 +02:00
#define XCF_ISC_READ 0xeF
#define XCF_ISC_DISABLE 0xF0
void Xilinx::xcf_flow_enable(uint8_t mode)
{
_jtag->shiftIR(XCF_ISC_ENABLE, 8);
_jtag->shiftDR(&mode, NULL, 6);
_jtag->toggleClk(1);
}
void Xilinx::xcf_flow_disable()
{
_jtag->shiftIR(XCF_ISC_DISABLE, 8);
usleep(110000);
_jtag->shiftIR(BYPASS, 8);
_jtag->toggleClk(1);
}
bool Xilinx::xcf_flow_erase()
{
uint8_t xfer_buf[2] = {0x01, 0x00};
printInfo("Erase flash ", false);
xcf_flow_enable();
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
_jtag->shiftDR(xfer_buf, NULL, 16);
_jtag->toggleClk(1);
_jtag->shiftIR(XCF_ISC_ERASE, 8);
usleep(500000);
int i;
for (i = 0; i < 32; i++) {
_jtag->shiftIR(XCF_ISCTESTSTATUS, 8);
usleep(500000);
_jtag->shiftDR(NULL, xfer_buf, 8);
if ((xfer_buf[0] & 0x04))
break;
}
if (i == 32) {
printError("FAIL");
return false;
}
printSuccess("DONE");
xcf_flow_disable();
return true;
}
bool Xilinx::xcf_program(ConfigBitstreamParser *bitfile)
{
uint8_t tx_buf[4096 / 8];
uint16_t pkt_len =
((_jtag->get_target_device_id() == 0x05044093) ? 2048 : 4096) / 8;
uint8_t *data = bitfile->getData();
uint32_t data_len = bitfile->getLength() / 8;
uint32_t xfer_len, offset = 0;
uint32_t addr = 0;
int xfer_end;
/* limit JTAG clock frequency to 15MHz */
if (_jtag->getClkFreq() > 15e6)
_jtag->setClkFreq(15e6);
if (!xcf_flow_erase()) {
printError("flow erase failed");
return false;
}
xcf_flow_enable();
int blk_id = 0;
ProgressBar progress("Write PROM", (data_len / pkt_len), 50, _quiet);
while (data_len > 0) {
if (data_len < pkt_len) {
xfer_len = data_len;
xfer_end = Jtag::SHIFT_DR;
} else {
xfer_len = pkt_len;
xfer_end = Jtag::RUN_TEST_IDLE;
}
/* send data to PROM */
_jtag->shiftIR(XCF_ISC_DATA_SHIFT, 8);
_jtag->shiftDR(data+offset, NULL, xfer_len * 8, xfer_end);
if (xfer_len != pkt_len) {
uint32_t res = pkt_len - xfer_len;
memset(tx_buf, 0xff, res);
_jtag->shiftDR(tx_buf, NULL, res * 8);
}
_jtag->toggleClk(1);
/* send address */
tx_buf[0] = (addr >> 0) & 0x00ff;
tx_buf[1] = (addr >> 8) & 0x00ff;
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
_jtag->shiftDR(tx_buf, NULL, 16);
_jtag->toggleClk(1);
/* send program instruction */
_jtag->shiftIR(XCF_ISC_PROGRAM, 8);
usleep((addr == 0) ? 14000: 500);
/* wait until bit 3 != 1 */
int i;
for (i = 0; i < 29; i++) {
_jtag->shiftIR(XCF_ISCTESTSTATUS, 8);
usleep(500);
_jtag->shiftDR(NULL, tx_buf, 8);
if ((tx_buf[0] & 0x04))
break;
}
if (i == 29) {
progress.fail();
return false;
}
blk_id++;
offset += xfer_len;
addr += 32;
data_len -= xfer_len;
progress.display(blk_id);
}
progress.done();
/* program done */
_jtag->shiftIR(BYPASS, 8);
_jtag->toggleClk(1);
if (_verify) {
std::string flash = xcf_read();
uint32_t file_size = bitfile->getLength() / 8;
uint32_t prom_size = (uint32_t)flash.size();
uint32_t nb_bytes = (file_size > prom_size) ? prom_size : file_size;
ProgressBar progress2("Verify Flash", nb_bytes, 50, _quiet);
for (uint32_t pos = 0; pos < nb_bytes; pos++) {
if (data[pos] != (uint8_t)flash[pos]) {
progress2.fail();
char error[64];
snprintf(error, sizeof(error),
"Error: wrong value: read %02x instead of %02x",
(uint8_t)flash[pos], (uint8_t)data[pos]);
printError(error);
xcf_flow_disable();
return false;
}
progress.display(pos);
}
progress2.done();
}
_jtag->go_test_logic_reset();
xcf_flow_disable();
/* reconfigure FPGA */
_jtag->shiftIR(XCF_CONFIG, 8);
_jtag->toggleClk(1);
_jtag->shiftIR(BYPASS, 8);
_jtag->toggleClk(1);
2021-08-30 15:08:11 +02:00
return true;
}
std::string Xilinx::xcf_read()
{
uint32_t addr = 0;
uint8_t rx_buf[4096 / 8];
uint16_t pkt_len =
((_jtag->get_target_device_id() == 0x05044093) ? 2048 : 4096) / 8;
uint16_t nb_section =
((_jtag->get_target_device_id() == 0x05046093) ? 1024 : 512);
std::string buffer;
/* limit JTAG clock frequency to 15MHz */
if (_jtag->getClkFreq() > 15e6)
_jtag->setClkFreq(15e6);
ProgressBar progress("Read PROM", nb_section, 50, _quiet);
for (size_t section = 0; section < nb_section; section++) {
/* send address */
rx_buf[0] = (addr >> 0) & 0x00ff;
rx_buf[1] = (addr >> 8) & 0x00ff;
_jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8);
_jtag->shiftDR(rx_buf, NULL, 16);
_jtag->toggleClk(1);
/* send data to PROM */
_jtag->shiftIR(XCF_ISC_READ, 8);
usleep(50);
_jtag->shiftDR(NULL, rx_buf, pkt_len * 8);
for (int i = 0; i < pkt_len; i++)
buffer += rx_buf[i];
progress.display(section);
addr += 32;
}
progress.done();
return buffer;
}
/*--------------------------------------------------------*/
/* xc2c */
/*--------------------------------------------------------*/
#define XC2C_IDCODE 0x01
#define XC2C_ISC_DISABLE 0xc0
#define XC2C_VERIFY 0xd1
#define XC2C_ISC_ENABLE_OTF 0xe4
#define XC2C_ISC_WRITE 0xe6
#define XC2C_ISC_SRAM_READ 0xe7
#define XC2C_ISC_ENABLE 0xe8
#define XC2C_ISC_PROGRAM 0xea
#define XC2C_ISC_ERASE 0xed
#define XC2C_ISC_READ 0xee
#define XC2C_ISC_INIT 0xf0
#define XC2C_USERCODE 0xfd
/* xilinx programmer qualification specification 6.2
* directly reversed
*/
static constexpr uint8_t _gray_code[256] = {
0x00, 0x80, 0xc0, 0x40, 0x60, 0xe0, 0xa0, 0x20,
0x30, 0xb0, 0xf0, 0x70, 0x50, 0xd0, 0x90, 0x10,
0x18, 0x98, 0xd8, 0x58, 0x78, 0xf8, 0xb8, 0x38,
0x28, 0xa8, 0xe8, 0x68, 0x48, 0xc8, 0x88, 0x08,
0x0c, 0x8c, 0xcc, 0x4c, 0x6c, 0xec, 0xac, 0x2c,
0x3c, 0xbc, 0xfc, 0x7c, 0x5c, 0xdc, 0x9c, 0x1c,
0x14, 0x94, 0xd4, 0x54, 0x74, 0xf4, 0xb4, 0x34,
0x24, 0xa4, 0xe4, 0x64, 0x44, 0xc4, 0x84, 0x04,
0x06, 0x86, 0xc6, 0x46, 0x66, 0xe6, 0xa6, 0x26,
0x36, 0xb6, 0xf6, 0x76, 0x56, 0xd6, 0x96, 0x16,
0x1e, 0x9e, 0xde, 0x5e, 0x7e, 0xfe, 0xbe, 0x3e,
0x2e, 0xae, 0xee, 0x6e, 0x4e, 0xce, 0x8e, 0x0e,
0x0a, 0x8a, 0xca, 0x4a, 0x6a, 0xea, 0xaa, 0x2a,
0x3a, 0xba, 0xfa, 0x7a, 0x5a, 0xda, 0x9a, 0x1a,
0x12, 0x92, 0xd2, 0x52, 0x72, 0xf2, 0xb2, 0x32,
0x22, 0xa2, 0xe2, 0x62, 0x42, 0xc2, 0x82, 0x02,
0x03, 0x83, 0xc3, 0x43, 0x63, 0xe3, 0xa3, 0x23,
0x33, 0xb3, 0xf3, 0x73, 0x53, 0xd3, 0x93, 0x13,
0x1b, 0x9b, 0xdb, 0x5b, 0x7b, 0xfb, 0xbb, 0x3b,
0x2b, 0xab, 0xeb, 0x6b, 0x4b, 0xcb, 0x8b, 0x0b,
0x0f, 0x8f, 0xcf, 0x4f, 0x6f, 0xef, 0xaf, 0x2f,
0x3f, 0xbf, 0xff, 0x7f, 0x5f, 0xdf, 0x9f, 0x1f,
0x17, 0x97, 0xd7, 0x57, 0x77, 0xf7, 0xb7, 0x37,
0x27, 0xa7, 0xe7, 0x67, 0x47, 0xc7, 0x87, 0x07,
0x05, 0x85, 0xc5, 0x45, 0x65, 0xe5, 0xa5, 0x25,
0x35, 0xb5, 0xf5, 0x75, 0x55, 0xd5, 0x95, 0x15,
0x1d, 0x9d, 0xdd, 0x5d, 0x7d, 0xfd, 0xbd, 0x3d,
0x2d, 0xad, 0xed, 0x6d, 0x4d, 0xcd, 0x8d, 0x0d,
0x09, 0x89, 0xc9, 0x49, 0x69, 0xe9, 0xa9, 0x29,
0x39, 0xb9, 0xf9, 0x79, 0x59, 0xd9, 0x99, 0x19,
0x11, 0x91, 0xd1, 0x51, 0x71, 0xf1, 0xb1, 0x31,
0x21, 0xa1, 0xe1, 0x61, 0x41, 0xc1, 0x81, 0x01,
};
void Xilinx::xc2c_init(uint32_t idcode)
{
_fpga_family = XC2C_FAMILY;
std::string model = fpga_list[idcode].model;
int underscore_pos = model.find_first_of('_', 0);
snprintf(_cpld_base_name, underscore_pos,
"%s", model.substr(0, underscore_pos).c_str());
switch ((idcode >> 16) & 0x3f) {
case 0x01: /* xc2c32 */
case 0x11: /* xc2c32a PC44 */
case 0x21: /* xc2c32a */
_cpld_nb_col = 260;
_cpld_nb_row = 48;
_cpld_addr_size = 6;
break;
case 0x05: /* xc2c64 */
case 0x25: /* xc2c64a */
_cpld_nb_col = 274;
_cpld_nb_row = 96;
_cpld_addr_size = 7;
break;
case 0x18: /* xc2c128 */
_cpld_nb_col = 752;
_cpld_nb_row = 80;
_cpld_addr_size = 7;
break;
case 0x14: /* xc2c256 */
_cpld_nb_col = 1364;
_cpld_nb_row = 96;
_cpld_addr_size = 7;
break;
case 0x15: /* xc2c384 */
_cpld_nb_col = 1868;
_cpld_nb_row = 120;
_cpld_addr_size = 7;
break;
case 0x17: /* xc2c512 */
_cpld_nb_col = 1980;
_cpld_nb_row = 160;
_cpld_addr_size = 8;
break;
default:
throw std::runtime_error("Error: unknown XC2C version");
}
_cpld_nb_row += 2; // 2 more row: done + sec and usercode
// datasheet table 2 p.15
}
/* reinit device
* datasheet table 47-48 p.61-62
*/
void Xilinx::xc2c_flow_reinit()
{
uint8_t c = 0;
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
_jtag->shiftIR(XC2C_ISC_INIT, 8);
_jtag->toggleClk((_jtag->getClkFreq() * 20) / 1000);
_jtag->shiftIR(XC2C_ISC_INIT, 8);
_jtag->shiftDR(&c, NULL, 8);
_jtag->toggleClk((_jtag->getClkFreq() * 800) / 1000);
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
_jtag->shiftIR(BYPASS, 8);
}
/* full flash erase (with optional blank check)
* datasheet 12.1 (table41) p.56
*/
bool Xilinx::xc2c_flow_erase()
{
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8, Jtag::UPDATE_IR);
_jtag->shiftIR(XC2C_ISC_ERASE, 8);
_jtag->toggleClk((_jtag->getClkFreq() * 100) / 1000);
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
if (_verify) {
std::string rx_buf = xc2c_flow_read();
for (auto &val : rx_buf) {
if ((uint8_t)val != 0xff) {
printError("Erase: fails to verify blank check");
return false;
}
}
}
return true;
}
/* read flash full content
* return it has string buffer
* table 45 - 46 p. 59-60
*/
std::string Xilinx::xc2c_flow_read()
{
uint8_t rx_buf[249];
uint32_t delay_loop = (_jtag->getClkFreq() * 20) / 1000000;
uint16_t pos = 0;
uint8_t addr_shift = 8 - _cpld_addr_size;
std::string buffer;
buffer.resize(((_cpld_nb_col * _cpld_nb_row) + 7) / 8);
ProgressBar progress("Read Flash", _cpld_nb_row + 1, 50, _quiet);
_jtag->shiftIR(BYPASS, 8);
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
_jtag->shiftIR(XC2C_ISC_READ, 8);
/* send address
* send addr 0 before loop because each row content
* is followed by next addr (or dummy for the last row
*/
/* send address */
uint8_t addr = _gray_code[0] >> addr_shift;
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
/* wait 20us */
_jtag->toggleClk(delay_loop);
for (size_t row = 1; row <= _cpld_nb_row; row++) {
/* read nb_col bits, stay in shift_dr to send next addr */
_jtag->shiftDR(NULL, rx_buf, _cpld_nb_col, Jtag::SHIFT_DR);
/* send address */
addr = _gray_code[row] >> addr_shift;
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
/* wait 20us */
_jtag->toggleClk(delay_loop);
for (int i = 0; i < _cpld_nb_col; i++, pos++)
if (rx_buf[i >> 3] & (1 << (i & 0x07)))
buffer[pos >> 3] |= (1 << (pos & 0x07));
else
buffer[pos >> 3] &= ~(1 << (pos & 0x07));
progress.display(row);
}
progress.done();
_jtag->shiftIR(XC2C_ISC_DISABLE, Jtag::TEST_LOGIC_RESET);
return buffer;
}
bool Xilinx::xc2c_flow_program(JedParser *jed)
{
uint8_t wr_buf[249]; // largest section length
uint32_t delay_loop = (_jtag->getClkFreq() * 20) / 1000;
uint8_t shift_addr = 8 - _cpld_addr_size;
/* map jed fuse using device map */
printInfo("Map jed fuses: ", false);
XilinxMapParser *map_parser;
try {
std::string mapname = ISE_DIR "/ISE_DS/ISE/xbr/data/" +
std::string(_cpld_base_name) + ".map";
map_parser = new XilinxMapParser(mapname, _cpld_nb_row, _cpld_nb_col,
jed, 0xffffffff, _verbose);
map_parser->parse();
} catch(std::exception &e) {
printError("FAIL");
throw std::runtime_error(e.what());
}
printSuccess("DONE");
std::vector<std::string> listfuse = map_parser->cfg_data();
/* erase internal flash */
printInfo("Erase Flash: ", false);
if (!xc2c_flow_erase()) {
printError("FAIL");
throw std::runtime_error("Fail to erase interface flash");
} else {
printSuccess("DONE");
}
ProgressBar progress("Write Flash", _cpld_nb_row, 50, _quiet);
_jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8);
_jtag->shiftIR(XC2C_ISC_PROGRAM, 8);
uint16_t iter = 0;
for (auto row : listfuse) {
uint16_t pos = 0;
uint8_t addr = _gray_code[iter] >> shift_addr;
for (auto col : row) {
if (col)
wr_buf[pos >> 3] |= (1 << (pos & 0x07));
else
wr_buf[pos >> 3] &= ~(1 << (pos & 0x07));
pos++;
}
_jtag->shiftDR(wr_buf, NULL, _cpld_nb_col, Jtag::SHIFT_DR);
_jtag->shiftDR(&addr, NULL, _cpld_addr_size);
_jtag->toggleClk(delay_loop);
iter++;
}
/* done bit and usercode are shipped into listfuse
* so only needs to send isc disable
*/
_jtag->shiftIR(XC2C_ISC_DISABLE, 8);
if (_verify) {
std::string rx_buffer = xc2c_flow_read();
iter = 0;
for (auto row : listfuse) {
for (auto col : row) {
if ((rx_buffer[iter >> 3] >> (iter & 0x07)) != col) {
throw std::runtime_error("Program: verify failed");
}
iter++;
}
}
}
/* reload */
xc2c_flow_reinit();
return true;
}
/* */
/* SPI interface */
/* */
/*
* jtag : jtag interface
* cmd : opcode for SPI flash
* tx : buffer to send
* rx : buffer to fill
* len : number of byte to send/receive (cmd not comprise)
* so to send only a cmd set len to 0 (or omit this param)
*/
int Xilinx::spi_put(uint8_t cmd,
uint8_t *tx, uint8_t *rx, uint32_t len)
{
int xfer_len = len + 1 + ((rx == NULL) ? 0 : 1);
uint8_t jtx[xfer_len];
jtx[0] = McsParser::reverseByte(cmd);
/* uint8_t jtx[xfer_len] = {McsParser::reverseByte(cmd)}; */
uint8_t jrx[xfer_len];
if (tx != NULL) {
for (uint32_t i=0; i < len; i++)
jtx[i+1] = McsParser::reverseByte(tx[i]);
}
/* addr BSCAN user1 */
_jtag->shiftIR(USER1, 6);
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = McsParser::reverseByte(jrx[i+1] >> 1) | (jrx[i+2] & 0x01);
}
return 0;
}
int Xilinx::spi_put(uint8_t *tx, uint8_t *rx, uint32_t len)
{
int xfer_len = len + ((rx == NULL) ? 0 : 1);
uint8_t jtx[xfer_len];
uint8_t jrx[xfer_len];
if (tx != NULL) {
for (uint32_t i=0; i < len; i++)
jtx[i] = McsParser::reverseByte(tx[i]);
}
/* addr BSCAN user1 */
_jtag->shiftIR(USER1, 6);
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = McsParser::reverseByte(jrx[i] >> 1) | (jrx[i+1] & 0x01);
}
return 0;
}
int Xilinx::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond,
uint32_t timeout, bool verbose)
{
uint8_t rx[2];
uint8_t dummy[2];
uint8_t tmp;
uint8_t tx = McsParser::reverseByte(cmd);
uint32_t count = 0;
_jtag->shiftIR(USER1, 6, Jtag::UPDATE_IR);
2021-05-15 18:43:54 +02:00
_jtag->shiftDR(&tx, NULL, 8, Jtag::SHIFT_DR);
do {
2021-05-15 18:43:54 +02:00
_jtag->shiftDR(dummy, rx, 8*2, Jtag::SHIFT_DR);
tmp = (McsParser::reverseByte(rx[0]>>1)) | (0x01 & rx[1]);
count++;
if (count == timeout){
printf("timeout: %x %x %x\n", tmp, rx[0], rx[1]);
break;
}
if (verbose) {
2020-08-19 16:57:07 +02:00
printf("%x %x %x %u\n", tmp, mask, cond, count);
}
} while ((tmp & mask) != cond);
2021-05-15 18:43:54 +02:00
_jtag->shiftDR(dummy, rx, 8*2, Jtag::EXIT1_DR);
_jtag->go_test_logic_reset();
if (count == timeout) {
printf("%x\n", tmp);
std::cout << "wait: Error" << std::endl;
return -ETIME;
} else {
return 0;
}
}