OpenRAM/compiler/pgates/pnand2.py

333 lines
14 KiB
Python
Raw Normal View History

# See LICENSE for licensing information.
#
2021-01-22 20:23:28 +01:00
# Copyright (c) 2016-2021 Regents of the University of California and The Board
2019-06-14 17:43:41 +02:00
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import pgate
import debug
from tech import drc, parameter, spice
from vector import vector
import logical_effort
from sram_factory import factory
2020-06-14 23:17:04 +02:00
import contact
2020-10-28 17:54:15 +01:00
from tech import cell_properties as cell_props
class pnand2(pgate.pgate):
"""
This module generates gds of a parametrically sized 2-input nand.
This model use ptx to generate a 2-input nand within a cetrain height.
"""
def __init__(self, name, size=1, height=None, add_wells=True):
""" Creates a cell for a simple 2 input nand """
debug.info(2,
"creating pnand2 structure {0} with size of {1}".format(name,
size))
self.add_comment("size: {}".format(size))
self.size = size
self.nmos_size = 2 * size
self.pmos_size = parameter["beta"] * size
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
# FIXME: Allow these to be sized
debug.check(size == 1, "Size 1 pnand2 is only supported now.")
self.tx_mults = 1
2020-10-28 17:54:15 +01:00
if cell_props.ptx.bin_spice_models:
self.nmos_width = self.nearest_bin("nmos", self.nmos_width)
self.pmos_width = self.nearest_bin("pmos", self.pmos_width)
2020-11-03 15:29:17 +01:00
# Creates the netlist and layout
2020-08-06 20:33:26 +02:00
super().__init__(name, height, add_wells)
2020-11-03 15:29:17 +01:00
def create_netlist(self):
self.add_pins()
self.add_ptx()
self.create_ptx()
2020-11-03 15:29:17 +01:00
def create_layout(self):
""" Calls all functions related to the generation of the layout """
self.setup_layout_constants()
self.place_ptx()
if self.add_wells:
self.add_well_contacts()
self.route_output()
self.determine_width()
self.route_supply_rails()
self.connect_rails()
self.extend_wells()
self.route_inputs()
2020-04-22 00:21:57 +02:00
self.add_boundary()
2020-11-03 15:29:17 +01:00
def add_pins(self):
""" Adds pins for spice netlist """
pin_list = ["A", "B", "Z", "vdd", "gnd"]
2019-08-06 23:14:09 +02:00
dir_list = ["INPUT", "INPUT", "OUTPUT", "POWER", "GROUND"]
self.add_pin_list(pin_list, dir_list)
def add_ptx(self):
""" Create the PMOS and NMOS transistors. """
self.nmos_left = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact=self.route_layer,
add_drain_contact="active")
self.add_mod(self.nmos_left)
2020-11-03 15:29:17 +01:00
self.nmos_right = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact="active",
add_drain_contact=self.route_layer)
self.add_mod(self.nmos_right)
self.pmos_left = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer)
self.add_mod(self.pmos_left)
self.pmos_right = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer)
self.add_mod(self.pmos_right)
2020-11-03 15:29:17 +01:00
def setup_layout_constants(self):
""" Pre-compute some handy layout parameters. """
# Compute the other pmos2 location,
# but determining offset to overlap the
# source and drain pins
self.overlap_offset = self.pmos_left.get_pin("D").center() - self.pmos_left.get_pin("S").center()
def create_ptx(self):
"""
Add PMOS and NMOS to the netlist.
"""
self.pmos1_inst = self.add_inst(name="pnand2_pmos1",
mod=self.pmos_left)
self.connect_inst(["vdd", "A", "Z", "vdd"])
self.pmos2_inst = self.add_inst(name="pnand2_pmos2",
mod=self.pmos_right)
self.connect_inst(["Z", "B", "vdd", "vdd"])
self.nmos1_inst = self.add_inst(name="pnand2_nmos1",
mod=self.nmos_left)
self.connect_inst(["Z", "B", "net1", "gnd"])
self.nmos2_inst = self.add_inst(name="pnand2_nmos2",
mod=self.nmos_right)
self.connect_inst(["net1", "A", "gnd", "gnd"])
def place_ptx(self):
"""
Place PMOS and NMOS to the layout at the upper-most and lowest position
to provide maximum routing in channel
"""
pmos1_pos = vector(self.pmos_left.active_offset.x,
self.height - self.pmos_left.active_height \
- self.top_bottom_space)
self.pmos1_inst.place(pmos1_pos)
self.pmos2_pos = pmos1_pos + self.overlap_offset
self.pmos2_inst.place(self.pmos2_pos)
nmos1_pos = vector(self.pmos_left.active_offset.x,
self.top_bottom_space)
self.nmos1_inst.place(nmos1_pos)
self.nmos2_pos = nmos1_pos + self.overlap_offset
self.nmos2_inst.place(self.nmos2_pos)
def add_well_contacts(self):
"""
Add n/p well taps to the layout and connect to supplies
AFTER the wells are created
"""
self.add_nwell_contact(self.pmos_right, self.pmos2_pos)
self.add_pwell_contact(self.nmos_left, self.nmos2_pos)
2020-11-03 15:29:17 +01:00
def connect_rails(self):
""" Connect the nmos and pmos to its respective power rails """
self.connect_pin_to_rail(self.nmos1_inst, "S", "gnd")
self.connect_pin_to_rail(self.pmos1_inst, "S", "vdd")
self.connect_pin_to_rail(self.pmos2_inst, "D", "vdd")
def route_inputs(self):
""" Route the A and B inputs """
# Top of NMOS drain
2020-06-14 23:17:04 +02:00
bottom_pin = self.nmos1_inst.get_pin("D")
# active contact metal to poly contact metal spacing
active_contact_to_poly_contact = bottom_pin.uy() + self.route_layer_space + 0.5 * contact.poly_contact.second_layer_height
2020-06-14 23:17:04 +02:00
# active diffusion to poly contact spacing
# doesn't use nmos uy because that is calculated using offset + poly height
active_top = self.nmos1_inst.by() + self.nmos1_inst.mod.active_height
active_to_poly_contact = active_top + self.poly_to_active + 0.5 * contact.poly_contact.first_layer_height
active_to_poly_contact2 = active_top + self.poly_contact_to_gate + 0.5 * self.route_layer_width
2020-06-14 23:17:04 +02:00
self.inputA_yoffset = max(active_contact_to_poly_contact,
active_to_poly_contact,
active_to_poly_contact2)
2020-11-03 15:29:17 +01:00
2020-06-24 20:55:44 +02:00
apin = self.route_input_gate(self.pmos1_inst,
self.nmos1_inst,
self.inputA_yoffset,
"A",
position="center")
2020-11-03 15:29:17 +01:00
self.inputB_yoffset = self.inputA_yoffset + 2 * self.m3_pitch
# # active contact metal to poly contact metal spacing
# active_contact_to_poly_contact = self.output_yoffset - self.route_layer_space - 0.5 * contact.poly_contact.second_layer_height
# active_bottom = self.pmos1_inst.by()
# active_to_poly_contact = active_bottom - self.poly_to_active - 0.5 * contact.poly_contact.first_layer_height
# active_to_poly_contact2 = active_bottom - self.poly_contact_to_gate - 0.5 * self.route_layer_width
# self.inputB_yoffset = min(active_contact_to_poly_contact,
# active_to_poly_contact,
# active_to_poly_contact2)
# This will help with the wells and the input/output placement
2020-06-24 20:55:44 +02:00
bpin = self.route_input_gate(self.pmos2_inst,
self.nmos2_inst,
self.inputB_yoffset,
"B",
position="center")
2020-10-28 17:54:15 +01:00
if cell_props.pgate.add_implants:
2020-06-24 20:55:44 +02:00
self.add_enclosure([apin, bpin], "npc", drc("npc_enclose_poly"))
def route_output(self):
""" Route the Z output """
2020-11-03 15:29:17 +01:00
# One routing track layer below the PMOS contacts
route_layer_offset = 0.5 * contact.poly_contact.second_layer_height + self.route_layer_space
2020-06-14 23:17:04 +02:00
self.output_yoffset = self.pmos1_inst.get_pin("D").by() - route_layer_offset
# PMOS1 drain
pmos_pin = self.pmos1_inst.get_pin("D")
top_pin_offset = pmos_pin.bc()
# NMOS2 drain
nmos_pin = self.nmos2_inst.get_pin("D")
bottom_pin_offset = nmos_pin.uc()
2020-11-03 15:29:17 +01:00
# Output pin
out_offset = vector(nmos_pin.cx() + self.route_layer_pitch,
2020-06-14 23:17:04 +02:00
self.output_yoffset)
# This routes on M2
# # Midpoints of the L routes go horizontal first then vertical
# mid1_offset = vector(out_offset.x, top_pin_offset.y)
# mid2_offset = vector(out_offset.x, bottom_pin_offset.y)
# # Non-preferred active contacts
# self.add_via_center(layers=self.m1_stack,
# directions=("V", "H"),
# offset=pmos_pin.center())
# # Non-preferred active contacts
# self.add_via_center(layers=self.m1_stack,
# directions=("V", "H"),
# offset=nmos_pin.center())
# self.add_via_center(layers=self.m1_stack,
# offset=out_offset)
2020-11-03 15:29:17 +01:00
# # PMOS1 to mid-drain to NMOS2 drain
# self.add_path("m2",
# [top_pin_offset, mid1_offset, out_offset,
# mid2_offset, bottom_pin_offset])
# This routes on route_layer
# Midpoints of the L routes goes vertical first then horizontal
top_mid_offset = vector(top_pin_offset.x, out_offset.y)
# Top transistors
self.add_path(self.route_layer,
[top_pin_offset, top_mid_offset, out_offset])
bottom_mid_offset = bottom_pin_offset + vector(0, self.route_layer_pitch)
# Bottom transistors
self.add_path(self.route_layer,
[out_offset, bottom_mid_offset, bottom_pin_offset])
2020-11-03 15:29:17 +01:00
# This extends the output to the edge of the cell
self.add_layout_pin_rect_center(text="Z",
layer=self.route_layer,
offset=out_offset)
def analytical_power(self, corner, load):
"""Returns dynamic and leakage power. Results in nW"""
c_eff = self.calculate_effective_capacitance(load)
freq = spice["default_event_frequency"]
power_dyn = self.calc_dynamic_power(corner, c_eff, freq)
power_leak = spice["nand2_leakage"]
2020-11-03 15:29:17 +01:00
total_power = self.return_power(power_dyn, power_leak)
return total_power
2020-11-03 15:29:17 +01:00
def calculate_effective_capacitance(self, load):
"""Computes effective capacitance. Results in fF"""
c_load = load
# In fF
c_para = spice["min_tx_drain_c"] * (self.nmos_size / parameter["min_tx_size"])
transition_prob = 0.1875
return transition_prob * (c_load + c_para)
def input_load(self):
"""Return the relative input capacitance of a single input"""
return self.nmos_size + self.pmos_size
2020-11-03 15:29:17 +01:00
def get_stage_effort(self, cout, inp_is_rise=True):
"""
Returns an object representing the parameters for delay in tau units.
Optional is_rise refers to the input direction rise/fall.
Input inverted by this stage.
"""
parasitic_delay = 2
return logical_effort.logical_effort(self.name,
self.size,
self.input_load(),
cout,
parasitic_delay,
not inp_is_rise)
def build_graph(self, graph, inst_name, port_nets):
"""
Adds edges based on inputs/outputs.
Overrides base class function.
"""
self.add_graph_edges(graph, port_nets)
def is_non_inverting(self):
"""Return input to output polarity for module"""
return False
def get_on_resistance(self):
"""On resistance of pnand, defined by stacked NMOS"""
is_nchannel = True
stack = 2
is_cell = False
return self.tr_r_on(self.nmos_width, is_nchannel, stack, is_cell)
def get_input_capacitance(self):
"""Input cap of input, passes width of gates to gate cap function"""
return self.gate_c(self.nmos_width+self.pmos_width)