Clean up binning. Fix mults to 1 for certain gates.

This commit is contained in:
mrg 2020-07-15 17:15:42 -07:00
parent bb8157b3b7
commit c7bc01c3a9
8 changed files with 70 additions and 63 deletions

View File

@ -372,66 +372,78 @@ class pgate(design.design):
self.width = width
@staticmethod
def bin_width(tx_type, target_width):
def best_bin(tx_type, target_width):
"""
Determine the width transistor that meets the accuracy requirement and is larger than target_width.
"""
# Find all of the relavent scaled bins and multiples
scaled_bins = pgate.scaled_bins(tx_type, target_width)
for (scaled_width, multiple) in scaled_bins:
if abs(target_width - scaled_width) / target_width <= 1 - OPTS.accuracy_requirement:
break
else:
debug.error("failed to bin tx size {}, try reducing accuracy requirement".format(target_width), 1)
debug.info(2, "binning {0} tx, target: {4}, found {1} x {2} = {3}".format(tx_type,
multiple,
scaled_width / multiple,
scaled_width,
target_width))
return(scaled_width / multiple, multiple)
@staticmethod
def scaled_bins(tx_type, target_width):
"""
Determine a set of widths and multiples that could be close to the right size
sorted by the fewest number of fingers.
"""
if tx_type == "nmos":
bins = nmos_bins[drc("minwidth_poly")]
elif tx_type == "pmos":
bins = pmos_bins[drc("minwidth_poly")]
else:
debug.error("invalid tx type")
# Prune out bins that are too big, except for one bigger
bins = bins[0:bisect_left(bins, target_width) + 1]
# Determine multiple of target width for each bin
if len(bins) == 1:
selected_bin = bins[0]
scaling_factor = math.ceil(target_width / selected_bin)
scaled_bin = bins[0] * scaling_factor
scaled_bins = [(bins[0], math.ceil(target_width / bins[0]))]
else:
base_bins = []
scaled_bins = []
scaling_factors = []
# Add the biggest size as 1x multiple
scaled_bins.append((bins[-1], 1))
# Compute discrete multiple of other sizes
for width in reversed(bins[:-1]):
multiple = math.ceil(target_width / width)
scaled_bins.append((multiple * width, multiple))
for width in bins:
m = math.ceil(target_width / width)
base_bins.append(width)
scaling_factors.append(m)
scaled_bins.append(m * width)
select = -1
for i in reversed(range(0, len(scaled_bins))):
if abs(target_width - scaled_bins[i])/target_width <= 1-OPTS.accuracy_requirement:
select = i
break
if select == -1:
debug.error("failed to bin tx size {}, try reducing accuracy requirement".format(target_width), 1)
scaling_factor = scaling_factors[select]
scaled_bin = scaled_bins[select]
selected_bin = base_bins[select]
debug.info(2, "binning {0} tx, target: {4}, found {1} x {2} = {3}".format(tx_type, selected_bin, scaling_factor, selected_bin * scaling_factor, target_width))
return(selected_bin, scaling_factor)
def permute_widths(self, tx_type, target_width):
return(scaled_bins)
@staticmethod
def nearest_bin(tx_type, target_width):
"""
Determine the nearest width to the given target_width
while assuming a single multiple.
"""
if tx_type == "nmos":
bins = nmos_bins[drc("minwidth_poly")]
elif tx_type == "pmos":
bins = pmos_bins[drc("minwidth_poly")]
else:
debug.error("invalid tx type")
bins = bins[0:bisect_left(bins, target_width) + 1]
if len(bins) == 1:
scaled_bins = [(bins[0], math.ceil(target_width / bins[0]))]
else:
scaled_bins = []
scaled_bins.append((bins[-1], 1))
for width in bins[:-1]:
m = math.ceil(target_width / width)
scaled_bins.append((m * width, m))
debug.error("invalid tx type")
return(scaled_bins)
def bin_accuracy(self, ideal_width, width):
return 1-abs((ideal_width - width)/ideal_width)
# Find the next larger bin
bin_loc = bisect_left(bins, target_width)
if bin_loc < len(bins):
return bins[bin_loc]
else:
return bins[-1]
@staticmethod
def bin_accuracy(ideal_width, width):
return 1 - abs((ideal_width - width) / ideal_width)

View File

@ -14,15 +14,11 @@ from vector import vector
from math import ceil
from globals import OPTS
from utils import round_to_grid
from bisect import bisect_left
import logical_effort
from sram_factory import factory
from errors import drc_error
if(OPTS.tech_name == "sky130"):
from tech import nmos_bins, pmos_bins
class pinv(pgate.pgate):
"""
Pinv generates gds of a parametrically sized inverter. The
@ -164,8 +160,8 @@ class pinv(pgate.pgate):
else:
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
nmos_bins = self.permute_widths("nmos", self.nmos_width)
pmos_bins = self.permute_widths("pmos", self.pmos_width)
nmos_bins = self.scaled_bins("nmos", self.nmos_width)
pmos_bins = self.scaled_bins("pmos", self.pmos_width)
valid_pmos = []
for bin in pmos_bins:

View File

@ -13,6 +13,7 @@ from vector import vector
from globals import OPTS
from sram_factory import factory
class pinv_dec(pinv.pinv):
"""
This is another version of pinv but with layout for the decoder.
@ -50,9 +51,8 @@ class pinv_dec(pinv.pinv):
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
if OPTS.tech_name == "sky130":
(self.nmos_width, self.tx_mults) = self.bin_width("nmos", self.nmos_width)
(self.pmos_width, self.tx_mults) = self.bin_width("pmos", self.pmos_width)
return
self.nmos_width = self.nearest_bin("nmos", self.nmos_width)
self.pmos_width = self.nearest_bin("pmos", self.pmos_width)
# Over-ride the route input gate to call the horizontal version.
# Other top-level netlist and layout functions are not changed.

View File

@ -39,8 +39,8 @@ class pnand2(pgate.pgate):
self.tx_mults = 1
if OPTS.tech_name == "sky130":
(self.nmos_width, self.tx_mults) = self.bin_width("nmos", self.nmos_width)
(self.pmos_width, self.tx_mults) = self.bin_width("pmos", self.pmos_width)
self.nmos_width = self.nearest_bin("nmos", self.nmos_width)
self.pmos_width = self.nearest_bin("pmos", self.pmos_width)
# Creates the netlist and layout
pgate.pgate.__init__(self, name, height, add_wells)

View File

@ -42,8 +42,8 @@ class pnand3(pgate.pgate):
self.tx_mults = 1
if OPTS.tech_name == "sky130":
(self.nmos_width, self.tx_mults) = self.bin_width("nmos", self.nmos_width)
(self.pmos_width, self.tx_mults) = self.bin_width("pmos", self.pmos_width)
self.nmos_width = self.nearest_bin("nmos", self.nmos_width)
self.pmos_width = self.nearest_bin("pmos", self.pmos_width)
# Creates the netlist and layout
pgate.pgate.__init__(self, name, height, add_wells)

View File

@ -38,8 +38,8 @@ class pnor2(pgate.pgate):
self.tx_mults = 1
if OPTS.tech_name == "sky130":
(self.nmos_width, self.tx_mults) = self.bin_width("nmos", self.nmos_width)
(self.pmos_width, self.tx_mults) = self.bin_width("pmos", self.pmos_width)
self.nmos_width = self.nearest_bin("nmos", self.nmos_width)
self.pmos_width = self.nearest_bin("pmos", self.pmos_width)
# Creates the netlist and layout
pgate.pgate.__init__(self, name, height, add_wells)

View File

@ -9,11 +9,10 @@ import contact
import design
import debug
from pgate import pgate
from tech import parameter
from tech import parameter, drc
from vector import vector
from globals import OPTS
from sram_factory import factory
from tech import drc, layer
class precharge(design.design):
@ -81,7 +80,7 @@ class precharge(design.design):
Initializes the upper and lower pmos
"""
if(OPTS.tech_name == "sky130"):
(self.ptx_width, self.ptx_mults) = pgate.bin_width("pmos", self.ptx_width)
self.ptx_width = pgate.nearest_bin("pmos", self.ptx_width)
self.pmos = factory.create(module_type="ptx",
width=self.ptx_width,
mults=self.ptx_mults,

View File

@ -131,7 +131,7 @@ class ptx(design.design):
perimeter_sd = 2 * self.poly_width + 2 * self.tx_width
if OPTS.tech_name == "sky130" and OPTS.lvs_exe and OPTS.lvs_exe[0] == "calibre":
# sky130 simulation cannot use the mult parameter in simulation
(self.tx_width, self.mults) = pgate.bin_width(self.tx_type, self.tx_width)
(self.tx_width, self.mults) = pgate.best_bin(self.tx_type, self.tx_width)
main_str = "M{{0}} {{1}} {0} m={1} w={2} l={3} ".format(spice[self.tx_type],
self.mults,
self.tx_width,