OpenRAM/compiler/modules/bank.py

935 lines
40 KiB
Python
Raw Normal View History

2016-11-08 18:57:35 +01:00
import sys
from tech import drc, parameter
2016-11-08 18:57:35 +01:00
import debug
import design
import math
from math import log,sqrt,ceil
import contact
2016-11-08 18:57:35 +01:00
from pinv import pinv
from pnand2 import pnand2
from pnor2 import pnor2
2016-11-08 18:57:35 +01:00
from vector import vector
from pinvbuf import pinvbuf
2016-11-08 18:57:35 +01:00
from globals import OPTS
class bank(design.design):
"""
Dynamically generated a single bank including bitcell array,
hierarchical_decoder, precharge, (optional column_mux and column decoder),
write driver and sense amplifiers.
2016-11-08 18:57:35 +01:00
"""
def __init__(self, sram_config, name=""):
2016-11-08 18:57:35 +01:00
sram_config.set_local_config(self)
2016-11-08 18:57:35 +01:00
if name == "":
name = "bank_{0}_{1}".format(self.word_size, self.num_words)
design.design.__init__(self, name)
debug.info(2, "create sram of size {0} with {1} words".format(self.word_size,self.num_words))
2016-11-08 18:57:35 +01:00
self.total_write = OPTS.num_rw_ports + OPTS.num_w_ports
self.total_read = OPTS.num_rw_ports + OPTS.num_r_ports
self.total_ports = OPTS.num_rw_ports + OPTS.num_w_ports + OPTS.num_r_ports
2017-09-14 00:46:41 +02:00
# The local control signals are gated when we have bank select logic,
# so this prefix will be added to all of the input signals to create
# the internal gated signals.
2017-09-14 00:46:41 +02:00
if self.num_banks>1:
self.prefix="gated_"
else:
self.prefix=""
self.create_netlist()
if not OPTS.netlist_only:
self.create_layout()
def create_netlist(self):
2016-11-08 18:57:35 +01:00
self.compute_sizes()
2017-09-14 00:46:41 +02:00
self.add_pins()
2016-11-08 18:57:35 +01:00
self.add_modules()
self.create_modules()
def create_layout(self):
self.place_modules()
self.setup_routing_constraints()
2018-03-05 22:49:22 +01:00
self.route_layout()
# Can remove the following, but it helps for debug!
#self.add_lvs_correspondence_points()
# Remember the bank center for further placement
self.bank_center=self.offset_all_coordinates().scale(-1,-1)
2016-11-08 18:57:35 +01:00
self.DRC_LVS()
2016-11-08 18:57:35 +01:00
def add_pins(self):
self.read_index = []
port_number = 0
for port in range(OPTS.num_rw_ports):
self.read_index.append("{}".format(port_number))
port_number += 1
for port in range(OPTS.num_w_ports):
port_number += 1
for port in range(OPTS.num_r_ports):
self.read_index.append("{}".format(port_number))
port_number += 1
2016-11-08 18:57:35 +01:00
""" Adding pins for Bank module"""
for port in range(self.total_read):
for bit in range(self.word_size):
self.add_pin("dout{0}[{1}]".format(self.read_index[port],bit),"OUT")
for port in range(self.total_write):
for bit in range(self.word_size):
self.add_pin("din{0}[{1}]".format(port,bit),"IN")
for port in range(self.total_ports):
for bit in range(self.addr_size):
self.add_pin("addr{0}[{1}]".format(port,bit),"INPUT")
2016-11-08 18:57:35 +01:00
# For more than one bank, we have a bank select and name
# the signals gated_*.
2018-03-05 22:49:22 +01:00
if self.num_banks > 1:
2018-09-04 02:35:00 +02:00
for port in range(self.total_ports):
self.add_pin("bank_sel{}".format(port),"INPUT")
for port in range(self.total_read):
self.add_pin("s_en{0}".format(self.read_index[port]), "INPUT")
for port in range(self.total_write):
self.add_pin("w_en{0}".format(port), "INPUT")
for pin in ["clk_buf_bar","clk_buf"]:
self.add_pin(pin,"INPUT")
self.add_pin("vdd","POWER")
self.add_pin("gnd","GROUND")
2016-11-08 18:57:35 +01:00
def route_layout(self):
2016-11-08 18:57:35 +01:00
""" Create routing amoung the modules """
self.route_central_bus()
self.route_precharge_to_bitcell_array()
self.route_col_mux_to_bitcell_array()
self.route_sense_amp_to_col_mux_or_bitcell_array()
self.route_sense_amp_out()
self.route_wordline_driver()
2018-04-18 18:37:33 +02:00
self.route_write_driver()
self.route_row_decoder()
2016-11-08 18:57:35 +01:00
self.route_column_address_lines()
self.route_control_lines()
2018-03-05 22:49:22 +01:00
if self.num_banks > 1:
self.route_bank_select()
2018-04-16 19:15:36 +02:00
self.route_vdd_gnd()
2017-10-05 03:05:45 +02:00
def create_modules(self):
""" Add modules. The order should not matter! """
# Above the bitcell array
self.create_bitcell_array()
self.create_precharge_array()
# Below the bitcell array
self.create_column_mux_array()
self.create_sense_amp_array()
self.create_write_driver_array()
# To the left of the bitcell array
self.create_row_decoder()
self.create_wordline_driver()
self.create_column_decoder()
self.create_bank_select()
def place_modules(self):
""" Add modules. The order should not matter! """
# Above the bitcell array
self.place_bitcell_array()
self.place_precharge_array()
# Below the bitcell array
self.place_column_mux_array()
self.place_sense_amp_array()
self.place_write_driver_array()
2016-11-08 18:57:35 +01:00
# To the left of the bitcell array
self.place_row_decoder()
self.place_wordline_driver()
self.place_column_decoder()
self.place_bank_select()
2016-11-08 18:57:35 +01:00
def compute_sizes(self):
""" Computes the required sizes to create the bank """
self.num_cols = int(self.words_per_row*self.word_size)
self.num_rows = int(self.num_words / self.words_per_row)
2016-11-08 18:57:35 +01:00
self.row_addr_size = int(log(self.num_rows, 2))
self.col_addr_size = int(log(self.words_per_row, 2))
self.addr_size = self.col_addr_size + self.row_addr_size
debug.check(self.num_rows*self.num_cols==self.word_size*self.num_words,"Invalid bank sizes.")
debug.check(self.addr_size==self.col_addr_size + self.row_addr_size,"Invalid address break down.")
2016-11-08 18:57:35 +01:00
# Width for the vdd/gnd rails
self.supply_rail_width = 4*self.m2_width
2018-03-19 23:57:26 +01:00
# FIXME: This spacing should be width dependent...
self.supply_rail_pitch = self.supply_rail_width + 4*self.m2_space
2016-11-08 18:57:35 +01:00
# Number of control lines in the bus
self.num_control_lines = 4
# The order of the control signals on the control bus:
self.input_control_signals = ["clk_buf", "clk_buf_bar", "w_en0", "s_en0"]
# These will be outputs of the gaters if this is multibank, if not, normal signals.
2018-03-05 22:49:22 +01:00
if self.num_banks > 1:
2017-09-14 00:46:41 +02:00
self.control_signals = ["gated_"+str for str in self.input_control_signals]
else:
self.control_signals = self.input_control_signals
# The central bus is the column address (one hot) and row address (binary)
if self.col_addr_size>0:
self.num_col_addr_lines = 2**self.col_addr_size
else:
self.num_col_addr_lines = 0
2016-11-08 18:57:35 +01:00
# The width of this bus is needed to place other modules (e.g. decoder)
2018-03-19 23:57:26 +01:00
# A width on each side too
self.central_bus_width = self.m2_pitch * self.num_control_lines + 2*self.m2_width
# A space for wells or jogging m2
self.m2_gap = max(2*drc["pwell_to_nwell"] + drc["well_enclosure_active"],
2*self.m2_pitch)
2016-11-08 18:57:35 +01:00
def add_modules(self):
2016-11-08 18:57:35 +01:00
""" Create all the modules using the class loader """
mod_list = ["bitcell", "decoder", "ms_flop_array", "wordline_driver",
"bitcell_array", "sense_amp_array", "precharge_array",
"column_mux_array", "write_driver_array",
"dff", "bank_select"]
from importlib import reload
for mod_name in mod_list:
config_mod_name = getattr(OPTS, mod_name)
class_file = reload(__import__(config_mod_name))
mod_class = getattr(class_file , config_mod_name)
setattr (self, "mod_"+mod_name, mod_class)
self.bitcell = self.mod_bitcell()
self.bitcell_array = self.mod_bitcell_array(cols=self.num_cols,
rows=self.num_rows)
2016-11-08 18:57:35 +01:00
self.add_mod(self.bitcell_array)
# create arrays of bitline and bitline_bar names for read, write, or all ports
self.read_bl_list = self.bitcell.list_read_bl_names()
self.read_br_list = self.bitcell.list_read_br_names()
self.write_bl_list = self.bitcell.list_write_bl_names()
self.write_br_list = self.bitcell.list_write_br_names()
self.total_bl_list = self.bitcell.list_all_bl_names()
self.total_br_list = self.bitcell.list_all_br_names()
self.total_wl_list = self.bitcell.list_all_wl_names()
self.total_bitline_list = self.bitcell.list_all_bitline_names()
2016-11-08 18:57:35 +01:00
self.precharge_array = []
for port in range(self.total_read):
self.precharge_array.append(self.mod_precharge_array(columns=self.num_cols, bitcell_bl=self.read_bl_list[port], bitcell_br=self.read_br_list[port]))
self.add_mod(self.precharge_array[port])
2016-11-08 18:57:35 +01:00
2018-03-05 22:49:22 +01:00
if self.col_addr_size > 0:
self.column_mux_array = self.mod_column_mux_array(columns=self.num_cols,
2016-11-08 18:57:35 +01:00
word_size=self.word_size)
self.add_mod(self.column_mux_array)
self.sense_amp_array = self.mod_sense_amp_array(word_size=self.word_size,
words_per_row=self.words_per_row)
self.add_mod(self.sense_amp_array)
2016-11-08 18:57:35 +01:00
self.write_driver_array = self.mod_write_driver_array(columns=self.num_cols,
word_size=self.word_size)
self.add_mod(self.write_driver_array)
self.row_decoder = self.mod_decoder(rows=self.num_rows)
self.add_mod(self.row_decoder)
2016-11-08 18:57:35 +01:00
self.wordline_driver = self.mod_wordline_driver(rows=self.num_rows)
2016-11-08 18:57:35 +01:00
self.add_mod(self.wordline_driver)
self.inv = pinv()
2016-11-08 18:57:35 +01:00
self.add_mod(self.inv)
2018-03-05 22:49:22 +01:00
if(self.num_banks > 1):
self.bank_select = self.mod_bank_select()
self.add_mod(self.bank_select)
2016-11-08 18:57:35 +01:00
def create_bitcell_array(self):
""" Creating Bitcell Array """
2016-11-08 18:57:35 +01:00
self.bitcell_array_inst=self.add_inst(name="bitcell_array",
mod=self.bitcell_array)
2016-11-08 18:57:35 +01:00
temp = []
for col in range(self.num_cols):
for bitline in self.total_bitline_list:
temp.append(bitline+"[{0}]".format(col))
for row in range(self.num_rows):
for wordline in self.total_wl_list:
temp.append(wordline+"[{0}]".format(row))
temp.append("vdd")
temp.append("gnd")
2016-11-08 18:57:35 +01:00
self.connect_inst(temp)
def place_bitcell_array(self):
""" Placing Bitcell Array """
self.bitcell_array_inst.place(vector(0,0))
def create_precharge_array(self):
""" Creating Precharge """
self.precharge_array_inst = []
for port in range(self.total_read):
self.precharge_array_inst.append(self.add_inst(name="precharge_array{}".format(port),
mod=self.precharge_array[port]))
temp = []
for i in range(self.num_cols):
temp.append(self.read_bl_list[port]+"[{0}]".format(i))
temp.append(self.read_br_list[port]+"[{0}]".format(i))
temp.extend([self.prefix+"clk_buf_bar", "vdd"])
self.connect_inst(temp)
2016-11-08 18:57:35 +01:00
def place_precharge_array(self):
""" Placing Precharge """
# FIXME: place for multiport
for port in range(self.total_read):
# The wells must be far enough apart
# The enclosure is for the well and the spacing is to the bitcell wells
y_offset = self.bitcell_array.height + self.m2_gap
self.precharge_array_inst[port].place(vector(0,y_offset))
def create_column_mux_array(self):
""" Creating Column Mux when words_per_row > 1 . """
if self.col_addr_size == 0:
return
2016-11-08 18:57:35 +01:00
self.col_mux_array_inst = []
for port in range(self.total_ports):
self.col_mux_array_inst.append(self.add_inst(name="column_mux_array{}".format(port),
mod=self.column_mux_array))
temp = []
for col in range(self.num_cols):
temp.append(self.total_bl_list[port]+"[{0}]".format(col))
temp.append(self.total_br_list[port]+"[{0}]".format(col))
for word in range(self.words_per_row):
temp.append("sel{0}[{1}]".format(port,word))
for bit in range(self.word_size):
temp.append(self.total_bl_list[port]+"_out[{0}]".format(bit))
temp.append(self.total_br_list[port]+"_out[{0}]".format(bit))
temp.append("gnd")
self.connect_inst(temp)
2016-11-08 18:57:35 +01:00
def place_column_mux_array(self):
""" Placing Column Mux when words_per_row > 1 . """
if self.col_addr_size > 0:
self.column_mux_height = self.column_mux_array.height + self.m2_gap
else:
self.column_mux_height = 0
return
2016-11-08 18:57:35 +01:00
for port in range(self.total_ports):
y_offset = self.column_mux_height
self.col_mux_array_inst[port].place(vector(0,y_offset).scale(-1,-1))
def create_sense_amp_array(self):
""" Creating Sense amp """
self.sense_amp_array_inst = []
for port in range(self.total_read):
self.sense_amp_array_inst.append(self.add_inst(name="sense_amp_array{}".format(port),
mod=self.sense_amp_array))
temp = []
for bit in range(self.word_size):
temp.append("dout{0}[{1}]".format(self.read_index[port],bit))
if self.words_per_row == 1:
temp.append(self.read_bl_list[port]+"[{0}]".format(bit))
temp.append(self.read_br_list[port]+"[{0}]".format(bit))
else:
temp.append(self.read_bl_list[port]+"_out[{0}]".format(bit))
temp.append(self.read_br_list[port]+"_out[{0}]".format(bit))
temp.extend([self.prefix+"s_en{0}".format(port), "vdd", "gnd"])
self.connect_inst(temp)
2016-11-08 18:57:35 +01:00
def place_sense_amp_array(self):
""" Placing Sense amp """
2016-11-08 18:57:35 +01:00
# FIXME: place for multiport
for port in range(self.total_read):
y_offset = self.column_mux_height + self.sense_amp_array.height + self.m2_gap
self.sense_amp_array_inst[port].place(vector(0,y_offset).scale(-1,-1))
def create_write_driver_array(self):
""" Creating Write Driver """
self.write_driver_array_inst = []
for port in range(self.total_write):
self.write_driver_array_inst.append(self.add_inst(name="write_driver_array{}".format(port),
mod=self.write_driver_array))
temp = []
for bit in range(self.word_size):
temp.append("din{0}[{1}]".format(port,bit))
for bit in range(self.word_size):
if (self.words_per_row == 1):
temp.append(self.write_bl_list[port]+"[{0}]".format(bit))
temp.append(self.write_br_list[port]+"[{0}]".format(bit))
else:
temp.append(self.write_bl_list[port]+"_out[{0}]".format(bit))
temp.append(self.write_br_list[port]+"_out[{0}]".format(bit))
temp.extend([self.prefix+"w_en{0}".format(port), "vdd", "gnd"])
self.connect_inst(temp)
2016-11-08 18:57:35 +01:00
def place_write_driver_array(self):
""" Placing Write Driver """
2016-11-08 18:57:35 +01:00
# FIXME: place for multiport
for port in range(self.total_write):
y_offset = self.sense_amp_array.height + self.column_mux_height \
+ self.m2_gap + self.write_driver_array.height
self.write_driver_array_inst[port].place(vector(0,y_offset).scale(-1,-1))
2016-11-08 18:57:35 +01:00
def create_row_decoder(self):
""" Create the hierarchical row decoder """
self.row_decoder_inst = []
for port in range(self.total_ports):
self.row_decoder_inst.append(self.add_inst(name="row_decoder{}".format(port),
mod=self.row_decoder))
2016-11-08 18:57:35 +01:00
temp = []
for bit in range(self.row_addr_size):
temp.append("addr{0}[{1}]".format(port,bit+self.col_addr_size))
for row in range(self.num_rows):
temp.append("dec_out{0}[{1}]".format(port,row))
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
2016-11-08 18:57:35 +01:00
def place_row_decoder(self):
""" Place the hierarchical row decoder """
2016-11-08 18:57:35 +01:00
# The address and control bus will be in between decoder and the main memory array
# This bus will route address bits to the decoder input and column mux inputs.
# The wires are actually routed after we placed the stuff on both sides.
# The predecoder is below the x-axis and the main decoder is above the x-axis
# The address flop and decoder are aligned in the x coord.
# FIXME: place for multiport
for port in range(self.total_ports):
x_offset = -(self.row_decoder.width + self.central_bus_width + self.wordline_driver.width)
self.row_decoder_inst[port].place(vector(x_offset,0))
def create_wordline_driver(self):
""" Create the Wordline Driver """
self.wordline_driver_inst = []
for port in range(self.total_ports):
self.wordline_driver_inst.append(self.add_inst(name="wordline_driver{}".format(port),
mod=self.wordline_driver))
2016-11-08 18:57:35 +01:00
temp = []
for row in range(self.num_rows):
temp.append("dec_out{0}[{1}]".format(port,row))
for row in range(self.num_rows):
temp.append(self.total_wl_list[port]+"[{0}]".format(row))
temp.append(self.prefix+"clk_buf")
temp.append("vdd")
temp.append("gnd")
self.connect_inst(temp)
2016-11-08 18:57:35 +01:00
def place_wordline_driver(self):
""" Place the Wordline Driver """
# FIXME: place for multiport
for port in range(self.total_ports):
# The wordline driver is placed to the right of the main decoder width.
x_offset = -(self.central_bus_width + self.wordline_driver.width) + self.m2_pitch
self.wordline_driver_inst[port].place(vector(x_offset,0))
2017-10-05 03:05:45 +02:00
def create_column_decoder(self):
"""
Create a 2:4 or 3:8 column address decoder.
"""
if self.col_addr_size == 0:
return
elif self.col_addr_size == 1:
self.col_decoder = pinvbuf(height=self.mod_dff.height)
self.add_mod(self.col_decoder)
elif self.col_addr_size == 2:
self.col_decoder = self.row_decoder.pre2_4
elif self.col_addr_size == 3:
self.col_decoder = self.row_decoder.pre3_8
else:
# No error checking before?
debug.error("Invalid column decoder?",-1)
self.col_decoder_inst = []
for port in range(self.total_ports):
self.col_decoder_inst.append(self.add_inst(name="col_address_decoder{}".format(port),
mod=self.col_decoder))
temp = []
for bit in range(self.col_addr_size):
temp.append("addr{0}[{1}]".format(port,bit))
for bit in range(self.num_col_addr_lines):
temp.append("sel{0}[{1}]".format(port,bit))
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def place_column_decoder(self):
"""
Place a 2:4 or 3:8 column address decoder.
"""
if self.col_addr_size == 0:
return
# FIXME: place for multiport
for port in range(self.total_ports):
# Place the col decoder right aligned with row decoder
x_off = -(self.central_bus_width + self.wordline_driver.width + self.col_decoder.width)
y_off = -(self.col_decoder.height + 2*drc["well_to_well"])
self.col_decoder_inst[port].place(vector(x_off,y_off))
def create_bank_select(self):
""" Create the bank select logic. """
if not self.num_banks > 1:
return
self.bank_select_inst = []
for port in range(self.total_ports):
2018-09-04 02:35:00 +02:00
self.bank_select_inst.append(self.add_inst(name="bank_select{}".format(port),
mod=self.bank_select))
temp = []
temp.extend(self.input_control_signals)
2018-09-04 02:35:00 +02:00
temp.append("bank_sel{}".format(port))
temp.extend(self.control_signals)
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
2017-09-14 00:46:41 +02:00
def place_bank_select(self):
""" Place the bank select logic. """
if not self.num_banks > 1:
return
# FIXME: place for multiport
for port in range(self.total_ports):
x_off = -(self.row_decoder.width + self.central_bus_width + self.wordline_driver.width)
if self.col_addr_size > 0:
y_off = min(self.col_decoder_inst[0].by(), self.col_mux_array_inst[0].by())
else:
y_off = self.row_decoder_inst[0].by()
y_off -= (self.bank_select.height + drc["well_to_well"])
self.bank_select_pos = vector(x_off,y_off)
self.bank_select_inst[port].place(self.bank_select_pos)
2018-04-16 19:15:36 +02:00
def route_vdd_gnd(self):
""" Propagate all vdd/gnd pins up to this level for all modules """
# These are the instances that every bank has
top_instances = [self.bitcell_array_inst]
for port in range(self.total_read):
#top_instances.append(self.precharge_array_inst[port])
top_instances.append(self.sense_amp_array_inst[port])
for port in range(self.total_write):
top_instances.append(self.write_driver_array_inst[port])
for port in range(self.total_ports):
top_instances.extend([self.row_decoder_inst[port],
self.wordline_driver_inst[port]])
# Add these if we use the part...
if self.col_addr_size > 0:
top_instances.append(self.col_decoder_inst[port])
#top_instances.append(self.col_mux_array_inst[port])
2018-04-16 19:15:36 +02:00
if self.num_banks > 1:
top_instances.append(self.bank_select_inst[port])
if self.col_addr_size > 0:
for port in range(self.total_ports):
self.copy_layout_pin(self.col_mux_array_inst[port], "gnd")
for port in range(self.total_read):
self.copy_layout_pin(self.precharge_array_inst[port], "vdd")
2018-04-16 19:15:36 +02:00
for inst in top_instances:
2018-04-18 18:37:33 +02:00
# Column mux has no vdd
#if self.col_addr_size==0 or (self.col_addr_size>0 and inst != self.col_mux_array_inst[0]):
self.copy_layout_pin(inst, "vdd")
2018-04-16 19:15:36 +02:00
# Precharge has no gnd
#if inst != self.precharge_array_inst[port]:
self.copy_layout_pin(inst, "gnd")
2018-04-16 19:15:36 +02:00
2018-03-05 22:49:22 +01:00
def route_bank_select(self):
""" Route the bank select logic. """
for port in range(self.total_ports):
for input_name in self.input_control_signals+["bank_sel"]:
self.copy_layout_pin(self.bank_select_inst[port], input_name)
for gated_name in self.control_signals:
# Connect the inverter output to the central bus
out_pos = self.bank_select_inst[port].get_pin(gated_name).rc()
bus_pos = vector(self.bus_xoffset[gated_name].x, out_pos.y)
self.add_path("metal3",[out_pos, bus_pos])
self.add_via_center(layers=("metal2", "via2", "metal3"),
offset=bus_pos,
rotate=90)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=out_pos,
rotate=90)
self.add_via_center(layers=("metal2", "via2", "metal3"),
offset=out_pos,
rotate=90)
2018-03-05 22:49:22 +01:00
def setup_routing_constraints(self):
"""
After the modules are instantiated, find the dimensions for the
control bus, power ring, etc.
"""
#The minimum point is either the bottom of the address flops,
#the column decoder (if there is one).
write_driver_min_y_offset = self.write_driver_array_inst[0].by() - 3*self.m2_pitch
row_decoder_min_y_offset = self.row_decoder_inst[0].by()
if self.col_addr_size > 0:
col_decoder_min_y_offset = self.col_decoder_inst[0].by()
else:
col_decoder_min_y_offset = row_decoder_min_y_offset
if self.num_banks>1:
# The control gating logic is below the decoder
# Min of the control gating logic and write driver.
self.min_y_offset = min(col_decoder_min_y_offset - self.bank_select.height, write_driver_min_y_offset)
2017-09-14 00:46:41 +02:00
else:
# Just the min of the decoder logic logic and write driver.
self.min_y_offset = min(col_decoder_min_y_offset, write_driver_min_y_offset)
2017-09-14 00:46:41 +02:00
# The max point is always the top of the precharge bitlines
# Add a vdd and gnd power rail above the array
# FIXME: Update multiport
self.max_y_offset = self.precharge_array_inst[0].uy() + 3*self.m1_width
self.max_x_offset = self.bitcell_array_inst.ur().x + 3*self.m1_width
self.min_x_offset = self.row_decoder_inst[0].lx()
2018-04-21 00:51:19 +02:00
# # Create the core bbox for the power rings
ur = vector(self.max_x_offset, self.max_y_offset)
ll = vector(self.min_x_offset, self.min_y_offset)
self.core_bbox = [ll, ur]
2018-04-21 00:51:19 +02:00
self.height = ur.y - ll.y
self.width = ur.x - ll.x
2016-11-08 18:57:35 +01:00
def route_central_bus(self):
""" Create the address, supply, and control signal central bus lines. """
# Overall central bus width. It includes all the column mux lines,
# and control lines.
# The bank is at (0,0), so this is to the left of the y-axis.
# 2 pitches on the right for vias/jogs to access the inputs
control_bus_offset = vector(-self.m2_pitch * self.num_control_lines - self.m2_width, self.min_y_offset)
control_bus_length = self.max_y_offset - self.min_y_offset
self.bus_xoffset = self.create_bus(layer="metal2",
pitch=self.m2_pitch,
offset=control_bus_offset,
names=self.control_signals,
length=control_bus_length,
vertical=True,
make_pins=(self.num_banks==1))
2016-11-08 18:57:35 +01:00
def route_precharge_to_bitcell_array(self):
2016-11-08 18:57:35 +01:00
""" Routing of BL and BR between pre-charge and bitcell array """
# FIXME: Update for multiport
for port in range(self.total_read):
for col in range(self.num_cols):
precharge_bl = self.precharge_array_inst[port].get_pin("bl[{}]".format(col)).bc()
precharge_br = self.precharge_array_inst[port].get_pin("br[{}]".format(col)).bc()
bitcell_bl = self.bitcell_array_inst.get_pin(self.read_bl_list[port]+"[{}]".format(col)).uc()
bitcell_br = self.bitcell_array_inst.get_pin(self.read_br_list[port]+"[{}]".format(col)).uc()
yoffset = 0.5*(precharge_bl.y+bitcell_bl.y)
self.add_path("metal2",[precharge_bl, vector(precharge_bl.x,yoffset),
vector(bitcell_bl.x,yoffset), bitcell_bl])
self.add_path("metal2",[precharge_br, vector(precharge_br.x,yoffset),
vector(bitcell_br.x,yoffset), bitcell_br])
2018-04-18 18:37:33 +02:00
def route_col_mux_to_bitcell_array(self):
""" Routing of BL and BR between col mux and bitcell array """
# Only do this if we have a column mux!
if self.col_addr_size==0:
return
# FIXME: Update for multiport
for port in range(self.total_ports):
for col in range(self.num_cols):
col_mux_bl = self.col_mux_array_inst[port].get_pin("bl[{}]".format(col)).uc()
col_mux_br = self.col_mux_array_inst[port].get_pin("br[{}]".format(col)).uc()
bitcell_bl = self.bitcell_array_inst.get_pin(self.total_bl_list[port]+"[{}]".format(col)).bc()
bitcell_br = self.bitcell_array_inst.get_pin(self.total_br_list[port]+"[{}]".format(col)).bc()
yoffset = 0.5*(col_mux_bl.y+bitcell_bl.y)
self.add_path("metal2",[col_mux_bl, vector(col_mux_bl.x,yoffset),
vector(bitcell_bl.x,yoffset), bitcell_bl])
self.add_path("metal2",[col_mux_br, vector(col_mux_br.x,yoffset),
vector(bitcell_br.x,yoffset), bitcell_br])
def route_sense_amp_to_col_mux_or_bitcell_array(self):
""" Routing of BL and BR between sense_amp and column mux or bitcell array """
for port in range(self.total_read):
for bit in range(self.word_size):
sense_amp_bl = self.sense_amp_array_inst[port].get_pin("bl[{}]".format(bit)).uc()
sense_amp_br = self.sense_amp_array_inst[port].get_pin("br[{}]".format(bit)).uc()
if self.col_addr_size>0:
# Sense amp is connected to the col mux
connect_bl = self.col_mux_array_inst[port].get_pin("bl_out[{}]".format(bit)).bc()
connect_br = self.col_mux_array_inst[port].get_pin("br_out[{}]".format(bit)).bc()
else:
# Sense amp is directly connected to the bitcell array
connect_bl = self.bitcell_array_inst.get_pin(self.read_bl_list[port]+"[{}]".format(bit)).bc()
connect_br = self.bitcell_array_inst.get_pin(self.read_br_list[port]+"[{}]".format(bit)).bc()
yoffset = 0.5*(sense_amp_bl.y+connect_bl.y)
self.add_path("metal2",[sense_amp_bl, vector(sense_amp_bl.x,yoffset),
vector(connect_bl.x,yoffset), connect_bl])
self.add_path("metal2",[sense_amp_br, vector(sense_amp_br.x,yoffset),
vector(connect_br.x,yoffset), connect_br])
2018-04-18 18:37:33 +02:00
def route_sense_amp_out(self):
""" Add pins for the sense amp output """
# FIXME: Update for multiport
for bit in range(self.word_size):
data_pin = self.sense_amp_array_inst[0].get_pin("data[{}]".format(bit))
self.add_layout_pin_rect_center(text="dout0[{}]".format(bit),
2018-07-17 23:24:44 +02:00
layer=data_pin.layer,
offset=data_pin.center(),
height=data_pin.height(),
width=data_pin.width())
2016-11-08 18:57:35 +01:00
def route_row_decoder(self):
""" Routes the row decoder inputs and supplies """
# FIXME: Update for multiport
# Create inputs for the row address lines
for row in range(self.row_addr_size):
addr_idx = row + self.col_addr_size
decoder_name = "addr[{}]".format(row)
addr_name = "addr0[{}]".format(addr_idx)
self.copy_layout_pin(self.row_decoder_inst[0], decoder_name, addr_name)
2018-04-18 18:37:33 +02:00
def route_write_driver(self):
""" Connecting write driver """
for row in range(self.word_size):
data_name = "data[{}]".format(row)
din_name = "din0[{}]".format(row)
self.copy_layout_pin(self.write_driver_array_inst[0], data_name, din_name)
def route_wordline_driver(self):
2016-11-08 18:57:35 +01:00
""" Connecting Wordline driver output to Bitcell WL connection """
for row in range(self.num_rows):
# The pre/post is to access the pin from "outside" the cell to avoid DRCs
decoder_out_pos = self.row_decoder_inst[0].get_pin("decode[{}]".format(row)).rc()
driver_in_pos = self.wordline_driver_inst[0].get_pin("in[{}]".format(row)).lc()
mid1 = decoder_out_pos.scale(0.5,1)+driver_in_pos.scale(0.5,0)
mid2 = decoder_out_pos.scale(0.5,0)+driver_in_pos.scale(0.5,1)
self.add_path("metal1", [decoder_out_pos, mid1, mid2, driver_in_pos])
# The mid guarantees we exit the input cell to the right.
driver_wl_pos = self.wordline_driver_inst[0].get_pin("wl[{}]".format(row)).rc()
bitcell_wl_pos = self.bitcell_array_inst.get_pin(self.total_wl_list[0]+"[{}]".format(row)).lc()
mid1 = driver_wl_pos.scale(0.5,1)+bitcell_wl_pos.scale(0.5,0)
mid2 = driver_wl_pos.scale(0.5,0)+bitcell_wl_pos.scale(0.5,1)
self.add_path("metal1", [driver_wl_pos, mid1, mid2, bitcell_wl_pos])
2016-11-08 18:57:35 +01:00
def route_column_address_lines(self):
""" Connecting the select lines of column mux to the address bus """
if not self.col_addr_size>0:
return
if self.col_addr_size == 1:
# Connect to sel[0] and sel[1]
decode_names = ["Zb", "Z"]
# The Address LSB
self.copy_layout_pin(self.col_decoder_inst[0], "A", "addr0[0]")
elif self.col_addr_size > 1:
decode_names = []
for i in range(self.num_col_addr_lines):
decode_names.append("out[{}]".format(i))
for i in range(self.col_addr_size):
decoder_name = "in[{}]".format(i)
addr_name = "addr0[{}]".format(i)
self.copy_layout_pin(self.col_decoder_inst[0], decoder_name, addr_name)
2016-11-08 18:57:35 +01:00
# This will do a quick "river route" on two layers.
# When above the top select line it will offset "inward" again to prevent conflicts.
# This could be done on a single layer, but we follow preferred direction rules for later routing.
top_y_offset = self.col_mux_array_inst[0].get_pin("sel[{}]".format(self.num_col_addr_lines-1)).cy()
for (decode_name,i) in zip(decode_names,range(self.num_col_addr_lines)):
mux_name = "sel[{}]".format(i)
mux_addr_pos = self.col_mux_array_inst[0].get_pin(mux_name).lc()
decode_out_pos = self.col_decoder_inst[0].get_pin(decode_name).center()
# To get to the edge of the decoder and one track out
delta_offset = self.col_decoder_inst[0].rx() - decode_out_pos.x + self.m2_pitch
if decode_out_pos.y > top_y_offset:
mid1_pos = vector(decode_out_pos.x + delta_offset + i*self.m2_pitch,decode_out_pos.y)
else:
mid1_pos = vector(decode_out_pos.x + delta_offset + (self.num_col_addr_lines-i)*self.m2_pitch,decode_out_pos.y)
mid2_pos = vector(mid1_pos.x,mux_addr_pos.y)
#self.add_wire(("metal1","via1","metal2"),[decode_out_pos, mid1_pos, mid2_pos, mux_addr_pos])
self.add_path("metal1",[decode_out_pos, mid1_pos, mid2_pos, mux_addr_pos])
2016-11-08 18:57:35 +01:00
def add_lvs_correspondence_points(self):
""" This adds some points for easier debugging if LVS goes wrong.
These should probably be turned off by default though, since extraction
will show these as ports in the extracted netlist.
"""
# Add the wordline names
for i in range(self.num_rows):
wl_name = "wl[{}]".format(i)
wl_pin = self.bitcell_array_inst.get_pin(wl_name)
self.add_label(text=wl_name,
layer="metal1",
offset=wl_pin.center())
# Add the bitline names
for i in range(self.num_cols):
bl_name = "bl[{}]".format(i)
br_name = "br[{}]".format(i)
bl_pin = self.bitcell_array_inst.get_pin(bl_name)
br_pin = self.bitcell_array_inst.get_pin(br_name)
self.add_label(text=bl_name,
layer="metal2",
offset=bl_pin.center())
self.add_label(text=br_name,
layer="metal2",
offset=br_pin.center())
# # Add the data output names to the sense amp output
# for i in range(self.word_size):
# data_name = "data[{}]".format(i)
# data_pin = self.sense_amp_array_inst.get_pin(data_name)
# self.add_label(text="sa_out[{}]".format(i),
# layer="metal2",
# offset=data_pin.center())
# Add labels on the decoder
for i in range(self.word_size):
data_name = "dec_out[{}]".format(i)
pin_name = "in[{}]".format(i)
data_pin = self.wordline_driver_inst[0].get_pin(pin_name)
self.add_label(text=data_name,
layer="metal1",
offset=data_pin.center())
2016-11-08 18:57:35 +01:00
def route_control_lines(self):
""" Route the control lines of the entire bank """
2016-11-08 18:57:35 +01:00
# Make a list of tuples that we will connect.
# From control signal to the module pin
# Connection from the central bus to the main control block crosses
# pre-decoder and this connection is in metal3
connection = []
connection.append((self.prefix+"clk_buf_bar", self.precharge_array_inst[0].get_pin("en").lc()))
connection.append((self.prefix+"w_en0", self.write_driver_array_inst[0].get_pin("en").lc()))
connection.append((self.prefix+"s_en0", self.sense_amp_array_inst[0].get_pin("en").lc()))
for (control_signal, pin_pos) in connection:
control_pos = vector(self.bus_xoffset[control_signal].x ,pin_pos.y)
self.add_path("metal1", [control_pos, pin_pos])
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=control_pos,
rotate=90)
# clk to wordline_driver
control_signal = self.prefix+"clk_buf"
pin_pos = self.wordline_driver_inst[0].get_pin("en").uc()
mid_pos = pin_pos + vector(0,self.m1_pitch)
control_x_offset = self.bus_xoffset[control_signal].x
control_pos = vector(control_x_offset + self.m1_width, mid_pos.y)
self.add_wire(("metal1","via1","metal2"),[pin_pos, mid_pos, control_pos])
control_via_pos = vector(control_x_offset, mid_pos.y)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=control_via_pos,
rotate=90)
def analytical_delay(self, slew, load):
""" return analytical delay of the bank"""
decoder_delay = self.row_decoder.analytical_delay(slew, self.wordline_driver.input_load())
word_driver_delay = self.wordline_driver.analytical_delay(decoder_delay.slew, self.bitcell_array.input_load())
bitcell_array_delay = self.bitcell_array.analytical_delay(word_driver_delay.slew)
bl_t_data_out_delay = self.sense_amp_array.analytical_delay(bitcell_array_delay.slew,
self.bitcell_array.output_load())
# output load of bitcell_array is set to be only small part of bl for sense amp.
result = decoder_delay + word_driver_delay + bitcell_array_delay + bl_t_data_out_delay
return result