iverilog/netlist.cc

1901 lines
40 KiB
C++
Raw Normal View History

1998-11-04 00:28:49 +01:00
/*
* Copyright (c) 1998-1999 Stephen Williams (steve@icarus.com)
1998-11-04 00:28:49 +01:00
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
1999-09-23 05:56:57 +02:00
#ident "$Id: netlist.cc,v 1.69 1999/09/23 03:56:57 steve Exp $"
1998-11-04 00:28:49 +01:00
#endif
# include <cassert>
# include <typeinfo>
1998-11-04 00:28:49 +01:00
# include "netlist.h"
ostream& operator<< (ostream&o, NetNet::Type t)
{
switch (t) {
case NetNet::IMPLICIT:
o << "wire /*implicit*/";
break;
case NetNet::IMPLICIT_REG:
o << "reg /*implicit*/";
break;
case NetNet::INTEGER:
o << "integer";
break;
case NetNet::REG:
o << "reg";
break;
case NetNet::SUPPLY0:
o << "supply0";
break;
case NetNet::SUPPLY1:
o << "supply1";
break;
case NetNet::TRI:
o << "tri";
break;
case NetNet::TRI0:
o << "tri0";
break;
case NetNet::TRI1:
o << "tri1";
break;
case NetNet::TRIAND:
o << "triand";
break;
case NetNet::TRIOR:
o << "trior";
break;
case NetNet::WAND:
o << "wand";
break;
case NetNet::WOR:
o << "wor";
break;
case NetNet::WIRE:
o << "wire";
break;
}
return o;
}
1998-11-04 00:28:49 +01:00
void connect(NetObj::Link&l, NetObj::Link&r)
{
NetObj::Link* cur = &l;
do {
NetObj::Link*tmp = cur->next_;
// Pull cur out of left list...
cur->prev_->next_ = cur->next_;
cur->next_->prev_ = cur->prev_;
// Put cur in right list
cur->next_ = r.next_;
cur->prev_ = &r;
cur->next_->prev_ = cur;
cur->prev_->next_ = cur;
// Go to the next item in the left list.
cur = tmp;
} while (cur != &l);
}
bool NetObj::Link::is_linked(const NetObj&that) const
{
for (const Link*idx = next_ ; this != idx ; idx = idx->next_)
if (idx->node_ == &that)
return true;
return false;
}
bool NetObj::Link::is_linked(const NetObj::Link&that) const
{
for (const Link*idx = next_ ; this != idx ; idx = idx->next_)
if (idx == &that)
return true;
return false;
}
bool connected(const NetObj&l, const NetObj&r)
{
for (unsigned idx = 0 ; idx < l.pin_count() ; idx += 1)
if (! l.pin(idx).is_linked(r))
return false;
return true;
}
unsigned count_inputs(const NetObj::Link&pin)
{
unsigned count = (pin.get_dir() == NetObj::Link::INPUT)? 1 : 0;
const NetObj*cur;
unsigned cpin;
pin.next_link(cur, cpin);
while (cur->pin(cpin) != pin) {
if (cur->pin(cpin).get_dir() == NetObj::Link::INPUT)
count += 1;
cur->pin(cpin).next_link(cur, cpin);
}
return count;
}
unsigned count_outputs(const NetObj::Link&pin)
{
unsigned count = (pin.get_dir() == NetObj::Link::OUTPUT)? 1 : 0;
const NetObj*cur;
unsigned cpin;
pin.next_link(cur, cpin);
while (cur->pin(cpin) != pin) {
if (cur->pin(cpin).get_dir() == NetObj::Link::OUTPUT)
count += 1;
cur->pin(cpin).next_link(cur, cpin);
}
return count;
}
unsigned count_signals(const NetObj::Link&pin)
{
unsigned count = 0;
if (dynamic_cast<const NetNet*>(pin.get_obj()))
count += 1;
const NetObj*cur;
unsigned cpin;
pin.next_link(cur, cpin);
while (cur->pin(cpin) != pin) {
if (dynamic_cast<const NetNet*>(cur))
count += 1;
cur->pin(cpin).next_link(cur, cpin);
}
return count;
}
1998-11-04 00:28:49 +01:00
const NetNet* find_link_signal(const NetObj*net, unsigned pin, unsigned&bidx)
{
const NetObj*cur;
unsigned cpin;
net->pin(pin).next_link(cur, cpin);
while (cur != net) {
const NetNet*sig = dynamic_cast<const NetNet*>(cur);
if (sig) {
bidx = cpin;
return sig;
}
cur->pin(cpin).next_link(cur, cpin);
}
return 0;
}
NetObj::NetObj(const string&n, unsigned np)
: name_(n), npins_(np), delay1_(0), delay2_(0), delay3_(0), mark_(false)
1998-11-04 00:28:49 +01:00
{
pins_ = new Link[npins_];
for (unsigned idx = 0 ; idx < npins_ ; idx += 1) {
pins_[idx].node_ = this;
pins_[idx].pin_ = idx;
}
}
NetObj::~NetObj()
{
delete[]pins_;
}
void NetObj::set_attributes(const map<string,string>&attr)
{
assert(attributes_.size() == 0);
attributes_ = attr;
}
string NetObj::attribute(const string&key) const
{
map<string,string>::const_iterator idx = attributes_.find(key);
if (idx == attributes_.end())
return "";
return (*idx).second;
}
void NetObj::attribute(const string&key, const string&value)
{
attributes_[key] = value;
}
bool NetObj::has_compat_attributes(const NetObj&that) const
{
map<string,string>::const_iterator idx;
for (idx = that.attributes_.begin()
; idx != that.attributes_.end() ; idx ++) {
map<string,string>::const_iterator cur;
cur = attributes_.find((*idx).first);
if (cur == attributes_.end())
return false;
if ((*cur).second != (*idx).second)
return false;
}
return true;
}
NetObj::Link& NetObj::pin(unsigned idx)
{
assert(idx < npins_);
return pins_[idx];
}
const NetObj::Link& NetObj::pin(unsigned idx) const
{
assert(idx < npins_);
return pins_[idx];
}
1998-11-04 00:28:49 +01:00
NetNode::~NetNode()
{
if (design_)
design_->del_node(this);
}
NetNet::NetNet(const string&n, Type t, unsigned npins)
: NetObj(n, npins), sig_next_(0), sig_prev_(0), design_(0),
type_(t), port_type_(NOT_A_PORT), msb_(npins-1), lsb_(0),
local_flag_(false)
{
ivalue_ = new verinum::V[npins];
for (unsigned idx = 0 ; idx < npins ; idx += 1)
ivalue_[idx] = verinum::Vz;
}
NetNet::NetNet(const string&n, Type t, long ms, long ls)
: NetObj(n, ((ms>ls)?ms-ls:ls-ms) + 1), sig_next_(0),
sig_prev_(0), design_(0), type_(t), port_type_(NOT_A_PORT),
msb_(ms), lsb_(ls), local_flag_(false)
{
ivalue_ = new verinum::V[pin_count()];
for (unsigned idx = 0 ; idx < pin_count() ; idx += 1)
ivalue_[idx] = verinum::Vz;
}
1998-11-04 00:28:49 +01:00
NetNet::~NetNet()
{
if (design_)
design_->del_signal(this);
}
unsigned NetNet::sb_to_idx(long sb) const
{
if (msb_ >= lsb_)
return sb - lsb_;
else
return lsb_ - sb;
}
1998-11-04 00:28:49 +01:00
NetProc::~NetProc()
{
}
NetProcTop::NetProcTop(Type t, NetProc*st)
: type_(t), statement_(st)
{
}
NetProcTop::~NetProcTop()
{
delete statement_;
}
NetProc* NetProcTop::statement()
{
return statement_;
}
const NetProc* NetProcTop::statement() const
{
return statement_;
}
1999-09-03 06:28:38 +02:00
/*
* The NetAddSub class represents an LPM ADD_SUB device. The pinout is
* assigned like so:
* 0 -- Add_Sub
* 1 -- Aclr
* 2 -- Clock
* 3 -- Cin
* 4 -- Cout
* 5 -- Overflow
* 6 -- DataA[0]
* 7 -- DataB[0]
* 8 -- Result[0]
*/
NetAddSub::NetAddSub(const string&n, unsigned w)
: NetNode(n, w*3+6)
{
pin(0).set_dir(NetObj::Link::INPUT);
pin(1).set_dir(NetObj::Link::INPUT);
pin(2).set_dir(NetObj::Link::INPUT);
pin(3).set_dir(NetObj::Link::INPUT);
pin(4).set_dir(NetObj::Link::OUTPUT);
pin(5).set_dir(NetObj::Link::OUTPUT);
for (unsigned idx = 0 ; idx < w ; idx += 1) {
pin_DataA(idx).set_dir(NetObj::Link::INPUT);
pin_DataB(idx).set_dir(NetObj::Link::INPUT);
pin_Result(idx).set_dir(NetObj::Link::OUTPUT);
}
}
NetAddSub::~NetAddSub()
{
}
1999-09-04 03:57:15 +02:00
unsigned NetAddSub::width()const
{
return (pin_count() - 6) / 3;
}
1999-09-03 06:28:38 +02:00
NetObj::Link& NetAddSub::pin_DataA(unsigned idx)
{
idx = 6 + idx*3;
assert(idx < pin_count());
return pin(idx);
}
NetObj::Link& NetAddSub::pin_DataB(unsigned idx)
{
idx = 7 + idx*3;
assert(idx < pin_count());
return pin(idx);
}
NetObj::Link& NetAddSub::pin_Result(unsigned idx)
{
idx = 8 + idx*3;
assert(idx < pin_count());
return pin(idx);
}
NetAssign_::NetAssign_(const string&n, unsigned w)
: NetNode(n, w)
1998-11-04 00:28:49 +01:00
{
for (unsigned idx = 0 ; idx < pin_count() ; idx += 1)
pin(idx).set_dir(NetObj::Link::OUTPUT);
}
NetAssign_::~NetAssign_()
{
}
NetAssign::NetAssign(const string&n, Design*des, unsigned w, NetExpr*rv)
: NetAssign_(n, w), rval_(rv)
{
1998-11-04 00:28:49 +01:00
}
NetAssign::~NetAssign()
{
delete rval_;
1998-11-04 00:28:49 +01:00
}
NetAssignNB::NetAssignNB(const string&n, Design*des, unsigned w, NetExpr*rv)
: NetAssign_(n, w), rval_(rv), bmux_(0)
{
bool flag = rval_->set_width(w);
if (flag == false) {
cerr << rv->get_line() << ": Expression bit width" <<
" conflicts with l-value bit width." << endl;
des->errors += 1;
}
}
NetAssignNB::NetAssignNB(const string&n, Design*des, unsigned w,
NetExpr*mu, NetExpr*rv)
: NetAssign_(n, w), rval_(rv), bmux_(mu)
{
bool flag = rval_->set_width(1);
if (flag == false) {
cerr << rv->get_line() << ": Expression bit width" <<
" conflicts with l-value bit width." << endl;
des->errors += 1;
}
}
NetAssignNB::~NetAssignNB()
{
delete rval_;
delete bmux_;
}
NetAssignMem_::NetAssignMem_(NetMemory*m, NetExpr*i, NetExpr*r)
: mem_(m), index_(i), rval_(r)
{
}
NetAssignMem_::~NetAssignMem_()
{
}
NetAssignMem::NetAssignMem(NetMemory*m, NetExpr*i, NetExpr*r)
: NetAssignMem_(m, i, r)
{
}
NetAssignMem::~NetAssignMem()
{
}
NetAssignMemNB::NetAssignMemNB(NetMemory*m, NetExpr*i, NetExpr*r)
: NetAssignMem_(m, i, r)
{
}
NetAssignMemNB::~NetAssignMemNB()
{
}
/*
* This method looks at the objects connected to me, and searches for
* a signal that I am fully connected to. Return that signal, and the
* range of bits that I use.
*/
void NetAssign::find_lval_range(const NetNet*&net, unsigned&msb,
unsigned&lsb) const
{
const NetObj*cur;
unsigned cpin;
for (pin(0).next_link(cur,cpin) ; pin(0) != cur->pin(cpin)
; cur->pin(cpin).next_link(cur, cpin)) {
const NetNet*s = dynamic_cast<const NetNet*>(cur);
if (s == 0)
continue;
if (!connected(*this, *s))
continue;
unsigned idx;
for (idx = 1 ; idx < pin_count() ; idx += 1) {
if (idx+cpin > s->pin_count())
break;
if (! connected(pin(idx), s->pin(idx+cpin)))
break;
}
if (idx < pin_count())
continue;
net = s;
lsb = cpin;
msb = cpin+pin_count()-1;
return;
}
assert(0); // No suitable signals??
}
1998-11-04 00:28:49 +01:00
NetBlock::~NetBlock()
{
}
void NetBlock::append(NetProc*cur)
{
if (last_ == 0) {
last_ = cur;
cur->next_ = cur;
} else {
cur->next_ = last_->next_;
last_->next_ = cur;
last_ = cur;
}
}
NetCase::NetCase(NetExpr*ex, unsigned cnt)
: expr_(ex), nitems_(cnt)
{
assert(expr_);
items_ = new Item[nitems_];
for (unsigned idx = 0 ; idx < nitems_ ; idx += 1) {
items_[idx].statement = 0;
}
}
NetCase::~NetCase()
{
delete expr_;
for (unsigned idx = 0 ; idx < nitems_ ; idx += 1) {
delete items_[idx].guard;
if (items_[idx].statement) delete items_[idx].statement;
}
delete[]items_;
}
void NetCase::set_case(unsigned idx, NetExpr*e, NetProc*p)
{
assert(idx < nitems_);
items_[idx].guard = e;
items_[idx].statement = p;
if (items_[idx].guard)
items_[idx].guard->set_width(expr_->expr_width());
}
NetCondit::NetCondit(NetExpr*ex, NetProc*i, NetProc*e)
: expr_(ex), if_(i), else_(e)
{
}
NetCondit::~NetCondit()
{
delete expr_;
if (if_) delete if_;
if (else_) delete else_;
}
const NetExpr* NetCondit::expr() const
{
return expr_;
}
NetExpr* NetCondit::expr()
{
return expr_;
}
NetProc* NetCondit::if_clause()
{
return if_;
}
NetProc* NetCondit::else_clause()
{
return else_;
}
NetFuncDef::NetFuncDef(const string&n, const svector<NetNet*>&po)
: name_(n), statement_(0), ports_(po)
1999-08-26 00:22:41 +02:00
{
}
NetFuncDef::~NetFuncDef()
{
}
const string& NetFuncDef::name() const
{
return name_;
}
void NetFuncDef::set_proc(NetProc*st)
{
assert(statement_ == 0);
assert(st != 0);
statement_ = st;
}
const NetProc* NetFuncDef::proc() const
{
return statement_;
}
unsigned NetFuncDef::port_count() const
{
return ports_.count();
}
const NetNet* NetFuncDef::port(unsigned idx) const
{
assert(idx < ports_.count());
return ports_[idx];
}
NetNEvent::NetNEvent(const string&ev, unsigned wid, Type e, NetPEvent*pe)
: NetNode(ev, wid), sref<NetPEvent,NetNEvent>(pe), edge_(e)
{
}
NetNEvent::~NetNEvent()
{
}
NetPEvent::NetPEvent(const string&n, NetProc*st)
: name_(n), statement_(st)
{
}
NetPEvent::~NetPEvent()
{
svector<NetNEvent*>*back = back_list();
if (back) {
for (unsigned idx = 0 ; idx < back->count() ; idx += 1) {
NetNEvent*ne = (*back)[idx];
delete ne;
}
delete back;
}
delete statement_;
}
NetProc* NetPEvent::statement()
{
return statement_;
}
const NetProc* NetPEvent::statement() const
{
return statement_;
}
1999-07-03 04:12:51 +02:00
NetSTask::NetSTask(const string&na, const svector<NetExpr*>&pa)
: name_(na), parms_(pa)
1998-11-04 00:28:49 +01:00
{
1999-07-03 04:12:51 +02:00
assert(name_[0] == '$');
}
NetSTask::~NetSTask()
{
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1)
delete parms_[idx];
1999-07-03 04:12:51 +02:00
}
const NetExpr* NetSTask::parm(unsigned idx) const
{
return parms_[idx];
}
NetEUFunc::NetEUFunc(NetFuncDef*def, NetESignal*res, svector<NetExpr*>&p)
: func_(def), result_(res), parms_(p)
{
expr_width(result_->expr_width());
}
NetEUFunc::~NetEUFunc()
{
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1)
delete parms_[idx];
}
const string& NetEUFunc::name() const
{
return func_->name();
}
const NetESignal*NetEUFunc::result() const
{
return result_;
}
unsigned NetEUFunc::parm_count() const
{
return parms_.count();
}
const NetExpr* NetEUFunc::parm(unsigned idx) const
{
assert(idx < parms_.count());
return parms_[idx];
}
const NetFuncDef* NetEUFunc::definition() const
{
return func_;
}
NetEUFunc* NetEUFunc::dup_expr() const
{
assert(0);
return 0;
}
1999-07-24 04:11:19 +02:00
NetUTask::NetUTask(NetTaskDef*def)
: task_(def)
1999-07-03 04:12:51 +02:00
{
}
NetUTask::~NetUTask()
{
1998-11-04 00:28:49 +01:00
}
1999-09-20 04:21:10 +02:00
NetExpr::NetExpr(unsigned w)
: width_(w)
{
}
1998-11-04 00:28:49 +01:00
NetExpr::~NetExpr()
{
}
NetEBAdd::NetEBAdd(char op, NetExpr*l, NetExpr*r)
: NetEBinary(op, l, r)
{
1999-09-16 06:18:15 +02:00
if (l->expr_width() > r->expr_width())
r->set_width(l->expr_width());
if (r->expr_width() > l->expr_width())
l->set_width(r->expr_width());
if (l->expr_width() < r->expr_width())
r->set_width(l->expr_width());
if (r->expr_width() < l->expr_width())
l->set_width(r->expr_width());
if (r->expr_width() != l->expr_width())
expr_width(0);
else
expr_width(l->expr_width());
}
NetEBAdd::~NetEBAdd()
{
}
NetEBBits::NetEBBits(char op, NetExpr*l, NetExpr*r)
: NetEBinary(op, l, r)
{
}
NetEBBits::~NetEBBits()
{
}
NetEBComp::NetEBComp(char op, NetExpr*l, NetExpr*r)
: NetEBinary(op, l, r)
{
1999-09-16 02:33:45 +02:00
expr_width(1);
}
NetEBComp::~NetEBComp()
{
}
NetEBinary::NetEBinary(char op, NetExpr*l, NetExpr*r)
: op_(op), left_(l), right_(r)
{
switch (op_) {
case '^':
case '&':
case '|':
case '%':
case '/':
1999-07-17 21:50:59 +02:00
if (l->expr_width() > r->expr_width())
r->set_width(l->expr_width());
if (r->expr_width() > l->expr_width())
l->set_width(r->expr_width());
if (l->expr_width() < r->expr_width())
r->set_width(l->expr_width());
if (r->expr_width() < l->expr_width())
l->set_width(r->expr_width());
assert(l->expr_width() == r->expr_width());
1999-07-17 21:50:59 +02:00
expr_width(l->expr_width());
break;
}
}
NetEBinary::~NetEBinary()
1998-11-04 00:28:49 +01:00
{
delete left_;
delete right_;
}
NetEBinary* NetEBinary::dup_expr() const
{
assert(0);
}
NetEBLogic::NetEBLogic(char op, NetExpr*l, NetExpr*r)
: NetEBinary(op, l, r)
{
expr_width(1);
}
NetEBLogic::~NetEBLogic()
{
}
1999-09-23 05:56:57 +02:00
NetEBShift::NetEBShift(char op, NetExpr*l, NetExpr*r)
: NetEBinary(op, l, r)
{
expr_width(l->expr_width());
}
NetEBShift::~NetEBShift()
{
}
1999-09-16 06:18:15 +02:00
NetEConcat::NetEConcat(unsigned cnt, unsigned r)
: parms_(cnt), repeat_(r)
{
expr_width(0);
}
NetEConcat::~NetEConcat()
{
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1)
delete parms_[idx];
}
void NetEConcat::set(unsigned idx, NetExpr*e)
{
assert(idx < parms_.count());
assert(parms_[idx] == 0);
parms_[idx] = e;
1999-09-20 04:21:10 +02:00
expr_width( expr_width() + repeat_*e->expr_width() );
}
NetEConcat* NetEConcat::dup_expr() const
{
1999-09-20 04:21:10 +02:00
NetEConcat*dup = new NetEConcat(parms_.count(), repeat_);
1999-09-16 06:18:15 +02:00
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1)
if (parms_[idx]) {
assert(parms_[idx]->dup_expr());
dup->parms_[idx] = parms_[idx]->dup_expr();
}
dup->expr_width(expr_width());
return dup;
}
1999-09-20 04:21:10 +02:00
NetEConst::NetEConst(const verinum&val)
: NetExpr(val.len()), value_(val)
{
}
NetEConst::~NetEConst()
{
}
NetEConst* NetEConst::dup_expr() const
{
NetEConst*tmp = new NetEConst(value_);
tmp->set_line(*this);
return tmp;
}
NetEIdent* NetEIdent::dup_expr() const
{
assert(0);
}
NetEMemory::NetEMemory(NetMemory*m, NetExpr*i)
: mem_(m), idx_(i)
{
}
NetEMemory::~NetEMemory()
{
}
NetMemory::NetMemory(const string&n, long w, long s, long e)
: name_(n), width_(w), idxh_(s), idxl_(e)
{
}
unsigned NetMemory::count() const
{
if (idxh_ < idxl_)
return idxl_ - idxh_ + 1;
else
return idxh_ - idxl_ + 1;
}
unsigned NetMemory::index_to_address(long idx) const
{
if (idxh_ < idxl_)
return idx - idxh_;
else
return idx - idxl_;
}
void NetMemory::set_attributes(const map<string,string>&attr)
{
assert(attributes_.size() == 0);
attributes_ = attr;
}
NetEMemory* NetEMemory::dup_expr() const
{
assert(0);
}
1999-09-20 04:21:10 +02:00
NetEParam::NetEParam()
: des_(0)
1999-09-20 04:21:10 +02:00
{
}
NetEParam::NetEParam(Design*d, const string&p, const string&n)
: des_(d), path_(p), name_(n)
1999-09-20 04:21:10 +02:00
{
}
NetEParam::~NetEParam()
{
}
NetEParam* NetEParam::dup_expr() const
{
return 0;
}
NetESignal::NetESignal(NetNet*n)
: NetExpr(n->pin_count()), NetNode(n->name(), n->pin_count())
{
1999-06-02 17:38:46 +02:00
set_line(*n);
for (unsigned idx = 0 ; idx < n->pin_count() ; idx += 1) {
connect(pin(idx), n->pin(idx));
}
}
1999-07-17 05:08:31 +02:00
NetESignal::NetESignal(const string&n, unsigned np)
: NetExpr(np), NetNode(n, np)
{
expr_width(pin_count());
1999-07-17 05:08:31 +02:00
}
NetESignal::~NetESignal()
{
}
NetESignal* NetESignal::dup_expr() const
{
assert(0);
}
1999-04-25 02:44:10 +02:00
NetESubSignal::NetESubSignal(NetESignal*sig, NetExpr*ex)
: sig_(sig), idx_(ex)
{
1999-07-16 06:33:41 +02:00
// This suppots mux type indexing of an expression, so the
// with is by definition 1 bit.
expr_width(1);
1999-04-25 02:44:10 +02:00
}
NetESubSignal::~NetESubSignal()
{
delete idx_;
}
NetESubSignal* NetESubSignal::dup_expr() const
{
assert(0);
1999-04-25 02:44:10 +02:00
}
1999-07-17 21:50:59 +02:00
NetETernary::NetETernary(NetExpr*c, NetExpr*t, NetExpr*f)
: cond_(c), true_val_(t), false_val_(f)
{
expr_width(true_val_->expr_width());
}
NetETernary::~NetETernary()
{
delete cond_;
delete true_val_;
delete false_val_;
}
const NetExpr* NetETernary::cond_expr() const
{
return cond_;
}
const NetExpr* NetETernary::true_expr() const
{
return true_val_;
}
const NetExpr* NetETernary::false_expr() const
{
return false_val_;
}
1999-07-17 21:50:59 +02:00
NetETernary* NetETernary::dup_expr() const
{
assert(0);
}
NetEUnary::~NetEUnary()
{
delete expr_;
}
NetEUnary* NetEUnary::dup_expr() const
{
assert(0);
}
NetForever::NetForever(NetProc*p)
: statement_(p)
{
}
NetForever::~NetForever()
{
delete statement_;
}
NetLogic::NetLogic(const string&n, unsigned pins, TYPE t)
: NetNode(n, pins), type_(t)
{
pin(0).set_dir(Link::OUTPUT);
for (unsigned idx = 1 ; idx < pins ; idx += 1)
pin(idx).set_dir(Link::INPUT);
}
NetRepeat::NetRepeat(NetExpr*e, NetProc*p)
: expr_(e), statement_(p)
{
}
NetRepeat::~NetRepeat()
{
delete expr_;
delete statement_;
}
const NetExpr* NetRepeat::expr() const
{
return expr_;
}
1999-07-24 04:11:19 +02:00
NetTaskDef::NetTaskDef(const string&n, NetProc*p, const svector<NetNet*>&po)
: name_(n), proc_(p), ports_(po)
1999-07-03 04:12:51 +02:00
{
}
NetTaskDef::~NetTaskDef()
{
delete proc_;
}
1999-07-24 04:11:19 +02:00
NetNet* NetTaskDef::port(unsigned idx)
{
assert(idx < ports_.count());
return ports_[idx];
}
NetUDP::NetUDP(const string&n, unsigned pins, bool sequ)
: NetNode(n, pins), sequential_(sequ), init_('x')
{
pin(0).set_dir(Link::OUTPUT);
for (unsigned idx = 1 ; idx < pins ; idx += 1)
pin(idx).set_dir(Link::INPUT);
}
NetUDP::state_t_* NetUDP::find_state_(const string&str)
{
map<string,state_t_*>::iterator cur = fsm_.find(str);
if (cur != fsm_.end())
return (*cur).second;
state_t_*st = fsm_[str];
if (st == 0) {
st = new state_t_(pin_count());
st->out = str[0];
fsm_[str] = st;
}
return st;
}
/*
* This method takes the input string, which contains exactly one
* edge, and connects it to the correct output state. The output state
* will be generated if needed, and the value compared.
*/
bool NetUDP::set_sequ_(const string&input, char output)
{
if (output == '-')
output = input[0];
string frm = input;
string to = input;
to[0] = output;
unsigned edge = frm.find_first_not_of("01x");
assert(frm.find_last_not_of("01x") == edge);
switch (input[edge]) {
case 'r':
frm[edge] = '0';
to[edge] = '1';
break;
case 'R':
frm[edge] = 'x';
to[edge] = '1';
break;
case 'f':
frm[edge] = '1';
to[edge] = '0';
break;
case 'F':
frm[edge] = 'x';
to[edge] = '0';
break;
case 'P':
frm[edge] = '0';
to[edge] = 'x';
break;
case 'N':
frm[edge] = '1';
to[edge] = 'x';
break;
default:
assert(0);
}
state_t_*sfrm = find_state_(frm);
state_t_*sto = find_state_(to);
switch (to[edge]) {
case '0':
// Notice that I might have caught this edge already
if (sfrm->pins[edge].zer != sto) {
assert(sfrm->pins[edge].zer == 0);
sfrm->pins[edge].zer = sto;
}
break;
case '1':
// Notice that I might have caught this edge already
if (sfrm->pins[edge].one != sto) {
assert(sfrm->pins[edge].one == 0);
sfrm->pins[edge].one = sto;
}
break;
case 'x':
// Notice that I might have caught this edge already
if (sfrm->pins[edge].xxx != sto) {
assert(sfrm->pins[edge].xxx == 0);
sfrm->pins[edge].xxx = sto;
}
break;
}
return true;
}
bool NetUDP::sequ_glob_(string input, char output)
{
for (unsigned idx = 0 ; idx < input.length() ; idx += 1)
switch (input[idx]) {
case '0':
case '1':
case 'x':
case 'r':
case 'R':
case 'f':
case 'F':
case 'P':
case 'N':
break;
case '?': // Iterate over all the levels
input[idx] = '0';
sequ_glob_(input, output);
input[idx] = '1';
sequ_glob_(input, output);
input[idx] = 'x';
sequ_glob_(input, output);
return true;
case 'n': // Iterate over (n) edges
input[idx] = 'f';
sequ_glob_(input, output);
input[idx] = 'F';
sequ_glob_(input, output);
input[idx] = 'N';
sequ_glob_(input, output);
return true;
case 'p': // Iterate over (p) edges
input[idx] = 'r';
sequ_glob_(input, output);
input[idx] = 'R';
sequ_glob_(input, output);
input[idx] = 'P';
sequ_glob_(input, output);
return true;
case '_': // Iterate over (?0) edges
input[idx] = 'f';
sequ_glob_(input, output);
input[idx] = 'F';
sequ_glob_(input, output);
return true;
case '*': // Iterate over all the edges
input[idx] = 'r';
sequ_glob_(input, output);
input[idx] = 'R';
sequ_glob_(input, output);
input[idx] = 'f';
sequ_glob_(input, output);
input[idx] = 'F';
sequ_glob_(input, output);
input[idx] = 'P';
sequ_glob_(input, output);
input[idx] = 'N';
sequ_glob_(input, output);
return true;
default:
assert(0);
}
return set_sequ_(input, output);
}
bool NetUDP::set_table(const string&input, char output)
{
assert((output == '0') || (output == '1') || (sequential_ &&
(output == '-')));
if (sequential_) {
assert(input.length() == pin_count());
/* XXXX Need to check to make sure that the input vector
contains a legal combination of characters. */
return sequ_glob_(input, output);
} else {
assert(input.length() == (pin_count()-1));
/* XXXX Need to check to make sure that the input vector
contains a legal combination of characters. In
combinational UDPs, only 0, 1 and x are allowed. */
assert(0);
return true;
}
}
void NetUDP::cleanup_table()
{
for (FSM_::iterator idx = fsm_.begin() ; idx != fsm_.end() ; idx++) {
string str = (*idx).first;
state_t_*st = (*idx).second;
assert(str[0] == st->out);
for (unsigned pin = 0 ; pin < pin_count() ; pin += 1) {
if (st->pins[pin].zer && st->pins[pin].zer->out == 'x')
st->pins[pin].zer = 0;
if (st->pins[pin].one && st->pins[pin].one->out == 'x')
st->pins[pin].one = 0;
if (st->pins[pin].xxx && st->pins[pin].xxx->out == 'x')
st->pins[pin].xxx = 0;
}
}
for (FSM_::iterator idx = fsm_.begin() ; idx != fsm_.end() ; ) {
FSM_::iterator cur = idx;
idx ++;
state_t_*st = (*cur).second;
if (st->out != 'x')
continue;
for (unsigned pin = 0 ; pin < pin_count() ; pin += 1) {
if (st->pins[pin].zer)
goto break_label;
if (st->pins[pin].one)
goto break_label;
if (st->pins[pin].xxx)
goto break_label;
}
//delete st;
fsm_.erase(cur);
break_label:;
}
}
char NetUDP::table_lookup(const string&from, char to, unsigned pin) const
{
assert(pin <= pin_count());
assert(from.length() == pin_count());
FSM_::const_iterator idx = fsm_.find(from);
if (idx == fsm_.end())
return 'x';
state_t_*next;
switch (to) {
case '0':
next = (*idx).second->pins[pin].zer;
break;
case '1':
next = (*idx).second->pins[pin].one;
break;
case 'x':
next = (*idx).second->pins[pin].xxx;
break;
default:
assert(0);
next = 0;
}
return next? next->out : 'x';
}
void NetUDP::set_initial(char val)
{
assert(sequential_);
assert((val == '0') || (val == '1') || (val == 'x'));
init_ = val;
}
1999-02-21 18:01:57 +01:00
void Design::set_parameter(const string&key, NetExpr*expr)
{
parameters_[key] = expr;
}
1999-08-06 06:05:28 +02:00
/*
* Find a parameter from within a specified context. If the name is
* not here, keep looking up until I run out of up to look at.
*/
const NetExpr* Design::find_parameter(const string&path,
const string&name) const
1999-02-21 18:01:57 +01:00
{
1999-08-06 06:05:28 +02:00
string root = path;
for (;;) {
string fulname = root + "." + name;
map<string,NetExpr*>::const_iterator cur
= parameters_.find(fulname);
if (cur != parameters_.end())
return (*cur).second;
unsigned pos = root.rfind('.');
if (pos > root.length())
break;
root = root.substr(0, pos);
}
return 0;
1999-02-21 18:01:57 +01:00
}
string Design::get_flag(const string&key) const
{
map<string,string>::const_iterator tmp = flags_.find(key);
if (tmp == flags_.end())
return "";
else
return (*tmp).second;
}
1998-11-04 00:28:49 +01:00
void Design::add_signal(NetNet*net)
{
assert(net->design_ == 0);
if (signals_ == 0) {
net->sig_next_ = net;
net->sig_prev_ = net;
} else {
net->sig_next_ = signals_->sig_next_;
net->sig_prev_ = signals_;
net->sig_next_->sig_prev_ = net;
net->sig_prev_->sig_next_ = net;
}
signals_ = net;
net->design_ = this;
}
void Design::del_signal(NetNet*net)
{
assert(net->design_ == this);
if (signals_ == net)
signals_ = net->sig_prev_;
if (signals_ == net) {
signals_ = 0;
} else {
net->sig_prev_->sig_next_ = net->sig_next_;
net->sig_next_->sig_prev_ = net->sig_prev_;
}
net->design_ = 0;
}
/*
* This method looks for a string given a current context as a
* starting point.
*/
NetNet* Design::find_signal(const string&path, const string&name)
1998-11-04 00:28:49 +01:00
{
if (signals_ == 0)
return 0;
string root = path;
for (;;) {
1998-11-04 00:28:49 +01:00
string fulname = root + "." + name;
NetNet*cur = signals_;
do {
if (cur->name() == fulname)
return cur;
cur = cur->sig_prev_;
} while (cur != signals_);
unsigned pos = root.rfind('.');
if (pos > root.length())
break;
root = root.substr(0, pos);
}
1998-11-04 00:28:49 +01:00
return 0;
}
void Design::add_memory(NetMemory*mem)
{
memories_[mem->name()] = mem;
}
NetMemory* Design::find_memory(const string&key)
{
map<string,NetMemory*>::const_iterator cur = memories_.find(key);
if (cur == memories_.end())
return 0;
return (*cur).second;
}
1999-08-26 00:22:41 +02:00
void Design::add_function(const string&key, NetFuncDef*def)
{
funcs_[key] = def;
}
NetFuncDef* Design::find_function(const string&path, const string&name)
{
string root = path;
for (;;) {
string key = root + "." + name;
map<string,NetFuncDef*>::const_iterator cur = funcs_.find(key);
if (cur != funcs_.end())
return (*cur).second;
unsigned pos = root.rfind('.');
if (pos > root.length())
break;
root = root.substr(0, pos);
}
return 0;
}
NetFuncDef* Design::find_function(const string&key)
{
map<string,NetFuncDef*>::const_iterator cur = funcs_.find(key);
if (cur != funcs_.end())
return (*cur).second;
return 0;
}
1999-07-03 04:12:51 +02:00
void Design::add_task(const string&key, NetTaskDef*def)
{
tasks_[key] = def;
}
NetTaskDef* Design::find_task(const string&key)
{
map<string,NetTaskDef*>::const_iterator cur = tasks_.find(key);
if (cur == tasks_.end())
return 0;
return (*cur).second;
}
1998-11-04 00:28:49 +01:00
void Design::add_node(NetNode*net)
{
assert(net->design_ == 0);
if (nodes_ == 0) {
net->node_next_ = net;
net->node_prev_ = net;
} else {
net->node_next_ = nodes_->node_next_;
net->node_prev_ = nodes_;
net->node_next_->node_prev_ = net;
net->node_prev_->node_next_ = net;
}
nodes_ = net;
net->design_ = this;
}
void Design::del_node(NetNode*net)
{
assert(net->design_ == this);
if (nodes_ == net)
nodes_ = net->node_prev_;
if (nodes_ == net) {
nodes_ = 0;
} else {
net->node_next_->node_prev_ = net->node_prev_;
net->node_prev_->node_next_ = net->node_next_;
}
net->design_ = 0;
}
void Design::add_process(NetProcTop*pro)
{
pro->next_ = procs_;
procs_ = pro;
}
void Design::delete_process(NetProcTop*top)
{
assert(top);
if (procs_ == top) {
procs_ = top->next_;
} else {
NetProcTop*cur = procs_;
while (cur->next_ != top) {
assert(cur->next_);
cur = cur->next_;
}
cur->next_ = top->next_;
}
if (procs_idx_ == top)
procs_idx_ = top->next_;
delete top;
}
void Design::clear_node_marks()
{
if (nodes_ == 0)
return;
NetNode*cur = nodes_;
do {
cur->set_mark(false);
cur = cur->node_next_;
} while (cur != nodes_);
}
void Design::clear_signal_marks()
{
if (signals_ == 0)
return;
NetNet*cur = signals_;
do {
cur->set_mark(false);
cur = cur->sig_next_;
} while (cur != signals_);
}
NetNode* Design::find_node(bool (*func)(const NetNode*))
{
if (nodes_ == 0)
return 0;
NetNode*cur = nodes_->node_next_;
do {
if ((cur->test_mark() == false) && func(cur))
return cur;
cur = cur->node_next_;
} while (cur != nodes_->node_next_);
return 0;
}
1998-11-04 00:28:49 +01:00
NetNet* Design::find_signal(bool (*func)(const NetNet*))
{
if (signals_ == 0)
return 0;
NetNet*cur = signals_->sig_next_;
do {
if ((cur->test_mark() == false) && func(cur))
return cur;
cur = cur->sig_next_;
} while (cur != signals_->sig_next_);
return 0;
}
1998-11-04 00:28:49 +01:00
/*
* $Log: netlist.cc,v $
1999-09-23 05:56:57 +02:00
* Revision 1.69 1999/09/23 03:56:57 steve
* Support shift operators.
*
* Revision 1.68 1999/09/23 00:21:54 steve
* Move set_width methods into a single file,
* Add the NetEBLogic class for logic expressions,
* Fix error setting with of && in if statements.
*
* Revision 1.67 1999/09/21 00:13:40 steve
* Support parameters that reference other paramters.
*
1999-09-20 04:21:10 +02:00
* Revision 1.66 1999/09/20 02:21:10 steve
* Elaborate parameters in phases.
*
* Revision 1.65 1999/09/18 01:53:08 steve
* Detect constant lessthen-equal expressions.
*
1999-09-16 06:18:15 +02:00
* Revision 1.64 1999/09/16 04:18:15 steve
* elaborate concatenation repeats.
*
1999-09-16 02:33:45 +02:00
* Revision 1.63 1999/09/16 00:33:45 steve
* Handle implicit !=0 in if statements.
*
* Revision 1.62 1999/09/15 01:55:06 steve
* Elaborate non-blocking assignment to memories.
*
* Revision 1.61 1999/09/13 03:10:59 steve
* Clarify msb/lsb in context of netlist. Properly
* handle part selects in lval and rval of expressions,
* and document where the least significant bit goes
* in NetNet objects.
*
1999-09-12 03:16:51 +02:00
* Revision 1.60 1999/09/12 01:16:51 steve
* Pad r-values in certain assignments.
*
* Revision 1.59 1999/09/11 04:43:17 steve
* Support ternary and <= operators in vvm.
*
* Revision 1.58 1999/09/08 04:05:30 steve
* Allow assign to not match rvalue width.
*
1999-09-04 03:57:15 +02:00
* Revision 1.57 1999/09/04 01:57:15 steve
* Generate fake adder code in vvm.
*
1999-09-03 06:28:38 +02:00
* Revision 1.56 1999/09/03 04:28:38 steve
* elaborate the binary plus operator.
*
* Revision 1.55 1999/09/01 20:46:19 steve
* Handle recursive functions and arbitrary function
* references to other functions, properly pass
* function parameters and save function results.
*
* Revision 1.54 1999/08/31 22:38:29 steve
* Elaborate and emit to vvm procedural functions.
*
1999-08-26 00:22:41 +02:00
* Revision 1.53 1999/08/25 22:22:41 steve
* elaborate some aspects of functions.
*
1999-08-06 06:05:28 +02:00
* Revision 1.52 1999/08/06 04:05:28 steve
* Handle scope of parameters.
*
* Revision 1.51 1999/08/01 21:48:11 steve
* set width of procedural r-values when then
* l-value is a memory word.
*
* Revision 1.50 1999/07/31 19:14:47 steve
* Add functions up to elaboration (Ed Carter)
*
* Revision 1.49 1999/07/31 03:16:54 steve
* move binary operators to derived classes.
*
1999-07-24 04:11:19 +02:00
* Revision 1.48 1999/07/24 02:11:20 steve
* Elaborate task input ports.
*
* Revision 1.47 1999/07/18 21:17:50 steve
* Add support for CE input to XNF DFF, and do
* complete cleanup of replaced design nodes.
*
* Revision 1.46 1999/07/18 05:52:46 steve
* xnfsyn generates DFF objects for XNF output, and
* properly rewrites the Design netlist in the process.
*
1999-07-17 21:50:59 +02:00
* Revision 1.45 1999/07/17 19:51:00 steve
* netlist support for ternary operator.
*
* Revision 1.44 1999/07/17 18:06:02 steve
* Better handling of bit width of + operators.
*
1999-07-17 05:08:31 +02:00
* Revision 1.43 1999/07/17 03:08:31 steve
* part select in expressions.
*
1999-07-16 06:33:41 +02:00
* Revision 1.42 1999/07/16 04:33:41 steve
* set_width for NetESubSignal.
*
1999-07-03 04:12:51 +02:00
* Revision 1.41 1999/07/03 02:12:51 steve
* Elaborate user defined tasks.
*
* Revision 1.40 1999/06/24 05:02:36 steve
* Properly terminate signal matching scan.
*
* Revision 1.39 1999/06/24 04:24:18 steve
* Handle expression widths for EEE and NEE operators,
* add named blocks and scope handling,
* add registers declared in named blocks.
*
* Revision 1.38 1999/06/19 21:06:16 steve
* Elaborate and supprort to vvm the forever
* and repeat statements.
*
* Revision 1.37 1999/06/13 23:51:16 steve
* l-value part select for procedural assignments.
*
* Revision 1.36 1999/06/13 16:30:06 steve
* Unify the NetAssign constructors a bit.
*
1999-06-10 07:33:28 +02:00
* Revision 1.35 1999/06/10 05:33:28 steve
* Handle a few more operator bit widths.
*
* Revision 1.34 1999/06/09 03:00:06 steve
* Add support for procedural concatenation expression.
*
* Revision 1.33 1999/06/07 02:23:31 steve
* Support non-blocking assignment down to vvm.
*
* Revision 1.32 1999/06/06 20:45:38 steve
* Add parse and elaboration of non-blocking assignments,
* Replace list<PCase::Item*> with an svector version,
* Add integer support.
*
* Revision 1.31 1999/06/03 05:16:25 steve
* Compile time evalutation of constant expressions.
*
1999-06-02 17:38:46 +02:00
* Revision 1.30 1999/06/02 15:38:46 steve
* Line information with nets.
*
* Revision 1.29 1999/05/30 01:11:46 steve
* Exressions are trees that can duplicate, and not DAGS.
*
* Revision 1.28 1999/05/27 04:13:08 steve
* Handle expression bit widths with non-fatal errors.
*
* Revision 1.27 1999/05/20 05:07:37 steve
* Line number info with match error message.
*
* Revision 1.26 1999/05/16 05:08:42 steve
* Redo constant expression detection to happen
* after parsing.
*
* Parse more operators and expressions.
*
* Revision 1.25 1999/05/13 04:02:09 steve
* More precise handling of verinum bit lengths.
*
* Revision 1.24 1999/05/12 04:03:19 steve
* emit NetAssignMem objects in vvm target.
*
* Revision 1.23 1999/05/10 00:16:58 steve
* Parse and elaborate the concatenate operator
* in structural contexts, Replace vector<PExpr*>
* and list<PExpr*> with svector<PExpr*>, evaluate
* constant expressions with parameters, handle
* memories as lvalues.
*
* Parse task declarations, integer types.
*
* Revision 1.22 1999/05/01 02:57:53 steve
* Handle much more complex event expressions.
*
1999-04-25 02:44:10 +02:00
* Revision 1.21 1999/04/25 00:44:10 steve
* Core handles subsignal expressions.
*
* Revision 1.20 1999/04/19 01:59:36 steve
* Add memories to the parse and elaboration phases.
*
* Revision 1.19 1999/03/15 02:43:32 steve
* Support more operators, especially logical.
*
* Revision 1.18 1999/03/01 03:27:53 steve
* Prevent the duplicate allocation of ESignal objects.
*
1999-02-21 18:01:57 +01:00
* Revision 1.17 1999/02/21 17:01:57 steve
* Add support for module parameters.
*
* Revision 1.16 1999/02/08 02:49:56 steve
* Turn the NetESignal into a NetNode so
* that it can connect to the netlist.
* Implement the case statement.
* Convince t-vvm to output code for
* the case statement.
*
* Revision 1.15 1999/02/03 04:20:11 steve
* Parse and elaborate the Verilog CASE statement.
*
* Revision 1.14 1998/12/18 05:16:25 steve
* Parse more UDP input edge descriptions.
*
* Revision 1.13 1998/12/17 23:54:58 steve
* VVM support for small sequential UDP objects.
*
* Revision 1.12 1998/12/14 02:01:35 steve
* Fully elaborate Sequential UDP behavior.
*
* Revision 1.11 1998/12/07 04:53:17 steve
* Generate OBUF or IBUF attributes (and the gates
* to garry them) where a wire is a pad. This involved
* figuring out enough of the netlist to know when such
* was needed, and to generate new gates and signales
* to handle what's missing.
*
* Revision 1.10 1998/12/02 04:37:13 steve
* Add the nobufz function to eliminate bufz objects,
* Object links are marked with direction,
* constant propagation is more careful will wide links,
* Signal folding is aware of attributes, and
* the XNF target can dump UDP objects based on LCA
* attributes.
*
* Revision 1.9 1998/12/01 00:42:14 steve
* Elaborate UDP devices,
* Support UDP type attributes, and
* pass those attributes to nodes that
* are instantiated by elaboration,
* Put modules into a map instead of
* a simple list.
*
* Revision 1.8 1998/11/23 00:20:23 steve
* NetAssign handles lvalues as pin links
* instead of a signal pointer,
* Wire attributes added,
* Ability to parse UDP descriptions added,
* XNF generates EXT records for signals with
* the PAD attribute.
*
* Revision 1.7 1998/11/18 04:25:22 steve
* Add -f flags for generic flag key/values.
*
* Revision 1.6 1998/11/16 05:03:53 steve
* Add the sigfold function that unlinks excess
* signal nodes, and add the XNF target.
*
* Revision 1.5 1998/11/13 06:23:17 steve
* Introduce netlist optimizations with the
* cprop function to do constant propogation.
*
* Revision 1.4 1998/11/09 18:55:34 steve
* Add procedural while loops,
* Parse procedural for loops,
* Add procedural wait statements,
* Add constant nodes,
* Add XNOR logic gate,
* Make vvm output look a bit prettier.
*
* Revision 1.3 1998/11/07 19:17:10 steve
* Calculate expression widths at elaboration time.
*
* Revision 1.2 1998/11/07 17:05:05 steve
* Handle procedural conditional, and some
* of the conditional expressions.
*
* Elaborate signals and identifiers differently,
* allowing the netlist to hold signal information.
*
1998-11-04 00:28:49 +01:00
* Revision 1.1 1998/11/03 23:29:00 steve
* Introduce verilog to CVS.
*
*/