iverilog/netlist.cc

1168 lines
26 KiB
C++
Raw Normal View History

1998-11-04 00:28:49 +01:00
/*
* Copyright (c) 1998-1999 Stephen Williams (steve@icarus.com)
1998-11-04 00:28:49 +01:00
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
#ident "$Id: netlist.cc,v 1.24 1999/05/12 04:03:19 steve Exp $"
1998-11-04 00:28:49 +01:00
#endif
# include <cassert>
# include <typeinfo>
1998-11-04 00:28:49 +01:00
# include "netlist.h"
ostream& operator<< (ostream&o, NetNet::Type t)
{
switch (t) {
case NetNet::IMPLICIT:
o << "wire /*implicit*/";
break;
case NetNet::REG:
o << "reg";
break;
case NetNet::SUPPLY0:
o << "supply0";
break;
case NetNet::SUPPLY1:
o << "supply1";
break;
case NetNet::TRI:
o << "tri";
break;
case NetNet::TRI0:
o << "tri0";
break;
case NetNet::TRI1:
o << "tri1";
break;
case NetNet::TRIAND:
o << "triand";
break;
case NetNet::TRIOR:
o << "trior";
break;
case NetNet::WAND:
o << "wand";
break;
case NetNet::WOR:
o << "wor";
break;
case NetNet::WIRE:
o << "wire";
break;
}
return o;
}
1998-11-04 00:28:49 +01:00
void connect(NetObj::Link&l, NetObj::Link&r)
{
NetObj::Link* cur = &l;
do {
NetObj::Link*tmp = cur->next_;
// Pull cur out of left list...
cur->prev_->next_ = cur->next_;
cur->next_->prev_ = cur->prev_;
// Put cur in right list
cur->next_ = r.next_;
cur->prev_ = &r;
cur->next_->prev_ = cur;
cur->prev_->next_ = cur;
// Go to the next item in the left list.
cur = tmp;
} while (cur != &l);
}
bool NetObj::Link::is_linked(const NetObj&that) const
{
for (const Link*idx = next_ ; this != idx ; idx = idx->next_)
if (idx->node_ == &that)
return true;
return false;
}
bool NetObj::Link::is_linked(const NetObj::Link&that) const
{
for (const Link*idx = next_ ; this != idx ; idx = idx->next_)
if (idx == &that)
return true;
return false;
}
bool connected(const NetObj&l, const NetObj&r)
{
for (unsigned idx = 0 ; idx < l.pin_count() ; idx += 1)
if (! l.pin(idx).is_linked(r))
return false;
return true;
}
unsigned count_inputs(const NetObj::Link&pin)
{
unsigned count = (pin.get_dir() == NetObj::Link::INPUT)? 1 : 0;
const NetObj*cur;
unsigned cpin;
pin.next_link(cur, cpin);
while (cur->pin(cpin) != pin) {
if (cur->pin(cpin).get_dir() == NetObj::Link::INPUT)
count += 1;
cur->pin(cpin).next_link(cur, cpin);
}
return count;
}
unsigned count_outputs(const NetObj::Link&pin)
{
unsigned count = (pin.get_dir() == NetObj::Link::OUTPUT)? 1 : 0;
const NetObj*cur;
unsigned cpin;
pin.next_link(cur, cpin);
while (cur->pin(cpin) != pin) {
if (cur->pin(cpin).get_dir() == NetObj::Link::OUTPUT)
count += 1;
cur->pin(cpin).next_link(cur, cpin);
}
return count;
}
unsigned count_signals(const NetObj::Link&pin)
{
unsigned count = 0;
if (dynamic_cast<const NetNet*>(pin.get_obj()))
count += 1;
const NetObj*cur;
unsigned cpin;
pin.next_link(cur, cpin);
while (cur->pin(cpin) != pin) {
if (dynamic_cast<const NetNet*>(cur))
count += 1;
cur->pin(cpin).next_link(cur, cpin);
}
return count;
}
1998-11-04 00:28:49 +01:00
const NetNet* find_link_signal(const NetObj*net, unsigned pin, unsigned&bidx)
{
const NetObj*cur;
unsigned cpin;
net->pin(pin).next_link(cur, cpin);
while (cur != net) {
const NetNet*sig = dynamic_cast<const NetNet*>(cur);
if (sig) {
bidx = cpin;
return sig;
}
cur->pin(cpin).next_link(cur, cpin);
}
return 0;
}
NetObj::NetObj(const string&n, unsigned np)
: name_(n), npins_(np), delay1_(0), delay2_(0), delay3_(0), mark_(false)
1998-11-04 00:28:49 +01:00
{
pins_ = new Link[npins_];
for (unsigned idx = 0 ; idx < npins_ ; idx += 1) {
pins_[idx].node_ = this;
pins_[idx].pin_ = idx;
}
}
NetObj::~NetObj()
{
delete[]pins_;
}
void NetObj::set_attributes(const map<string,string>&attr)
{
assert(attributes_.size() == 0);
attributes_ = attr;
}
string NetObj::attribute(const string&key) const
{
map<string,string>::const_iterator idx = attributes_.find(key);
if (idx == attributes_.end())
return "";
return (*idx).second;
}
void NetObj::attribute(const string&key, const string&value)
{
attributes_[key] = value;
}
bool NetObj::has_compat_attributes(const NetObj&that) const
{
map<string,string>::const_iterator idx;
for (idx = that.attributes_.begin()
; idx != that.attributes_.end() ; idx ++) {
map<string,string>::const_iterator cur;
cur = attributes_.find((*idx).first);
if (cur == attributes_.end())
return false;
if ((*cur).second != (*idx).second)
return false;
}
return true;
}
1998-11-04 00:28:49 +01:00
NetNode::~NetNode()
{
if (design_)
design_->del_node(this);
}
NetNet::NetNet(const string&n, Type t, unsigned npins)
: NetObj(n, npins), sig_next_(0), sig_prev_(0), design_(0),
type_(t), port_type_(NOT_A_PORT), msb_(npins-1), lsb_(0),
local_flag_(false)
{
ivalue_ = new verinum::V[npins];
for (unsigned idx = 0 ; idx < npins ; idx += 1)
ivalue_[idx] = verinum::Vz;
}
NetNet::NetNet(const string&n, Type t, long ms, long ls)
: NetObj(n, ((ms>ls)?ms-ls:ls-ms) + 1), sig_next_(0),
sig_prev_(0), design_(0), type_(t), port_type_(NOT_A_PORT),
msb_(ms), lsb_(ls), local_flag_(false)
{
ivalue_ = new verinum::V[pin_count()];
for (unsigned idx = 0 ; idx < pin_count() ; idx += 1)
ivalue_[idx] = verinum::Vz;
}
1998-11-04 00:28:49 +01:00
NetNet::~NetNet()
{
if (design_)
design_->del_signal(this);
}
NetProc::~NetProc()
{
}
NetAssign::NetAssign(NetNet*lv, NetExpr*rv)
: NetNode("@assign", lv->pin_count()), rval_(rv)
1998-11-04 00:28:49 +01:00
{
for (unsigned idx = 0 ; idx < pin_count() ; idx += 1) {
connect(pin(idx), lv->pin(idx));
}
rval_->set_width(lv->pin_count());
1998-11-04 00:28:49 +01:00
}
NetAssign::~NetAssign()
{
}
NetAssignMem::NetAssignMem(NetMemory*m, NetExpr*i, NetExpr*r)
: mem_(m), index_(i), rval_(r)
{
}
NetAssignMem::~NetAssignMem()
{
}
/*
* This method looks at the objects connected to me, and searches for
* a signal that I am fully connected to. Return that signal, and the
* range of bits that I use.
*/
void NetAssign::find_lval_range(const NetNet*&net, unsigned&msb,
unsigned&lsb) const
{
const NetObj*cur;
unsigned cpin;
for (pin(0).next_link(cur,cpin) ; pin(0) != cur->pin(cpin)
; cur->pin(cpin).next_link(cur, cpin)) {
const NetNet*s = dynamic_cast<const NetNet*>(cur);
if (s == 0)
continue;
if (!connected(*this, *s))
continue;
unsigned idx;
for (idx = 1 ; idx < pin_count() ; idx += 1) {
if (idx+cpin > s->pin_count())
break;
if (! connected(pin(idx), s->pin(idx+cpin)))
break;
}
if (idx < pin_count())
continue;
net = s;
lsb = cpin;
msb = cpin+pin_count()-1;
return;
}
assert(0); // No suitable signals??
}
1998-11-04 00:28:49 +01:00
NetBlock::~NetBlock()
{
}
void NetBlock::append(NetProc*cur)
{
if (last_ == 0) {
last_ = cur;
cur->next_ = cur;
} else {
cur->next_ = last_->next_;
last_->next_ = cur;
last_ = cur;
}
}
NetCase::NetCase(NetExpr*ex, unsigned cnt)
: expr_(ex), nitems_(cnt)
{
assert(expr_.ref());
items_ = new Item[nitems_];
for (unsigned idx = 0 ; idx < nitems_ ; idx += 1) {
items_[idx].statement = 0;
}
}
NetCase::~NetCase()
{
expr_.clr_and_delete();
for (unsigned idx = 0 ; idx < nitems_ ; idx += 1) {
items_[idx].guard.clr_and_delete();
if (items_[idx].statement) delete items_[idx].statement;
}
delete[]items_;
}
void NetCase::set_case(unsigned idx, NetExpr*e, NetProc*p)
{
assert(idx < nitems_);
items_[idx].guard = e;
items_[idx].statement = p;
}
1998-11-04 00:28:49 +01:00
NetTask::~NetTask()
{
for (unsigned idx = 0 ; idx < nparms_ ; idx += 1)
parms_[idx].clr_and_delete();
1998-11-04 00:28:49 +01:00
delete[]parms_;
}
NetExpr::~NetExpr()
{
}
void NetExpr::set_width(unsigned w)
{
cerr << typeid(*this).name() << ": set_width(unsigned) "
"not implemented." << endl;
expr_width(w);
}
void NetExpr::REF::clr()
{
if (ref_ == 0)
return;
NetExpr*ref = ref_;
ref_ = 0;
if (ref->reflist_ == this) {
ref->reflist_ = next_;
return;
}
NetExpr::REF*cur;
for (cur = ref->reflist_ ; cur->next_ != this ; cur = cur->next_) {
assert(cur->next_);
}
cur->next_ = next_;
}
void NetExpr::REF::set(NetExpr*that)
{
clr();
if (that == 0) return;
ref_ = that;
next_ = that->reflist_;
that->reflist_ = this;
}
void NetExpr::substitute(NetExpr*that)
{
if (reflist_ == 0)
return;
REF*cur = reflist_;
while (cur->next_) {
cur->ref_ = that;
cur = cur->next_;
}
cur->next_ = that->reflist_;
cur->ref_ = that;
that->reflist_ = reflist_;
reflist_ = 0;
}
NetEBinary::~NetEBinary()
1998-11-04 00:28:49 +01:00
{
left_.clr_and_delete();
right_.clr_and_delete();
1998-11-04 00:28:49 +01:00
}
NetEBinary::NetEBinary(char op, NetExpr*l, NetExpr*r)
: op_(op), left_(l), right_(r)
{
switch (op_) {
// comparison operators return a 1-bin wide result.
case 'e':
case 'n':
expr_width(1);
right_->set_width(left_->expr_width());
break;
default:
expr_width(left_->expr_width() > right_->expr_width()
? left_->expr_width() : right_->expr_width());
break;
}
}
void NetEBinary::set_width(unsigned w)
{
switch (op_) {
/* Comparison operators allow the subexpressions to have
their own natural width. However, I do need to make
sure that the subexpressions have the same width. */
case 'e':
assert(w == 1);
expr_width(w);
break;
case 'o':
assert(w == 1);
expr_width(w);
break;
/* The default rule is that the operands of the binary
operator might as well use the same width as the
output from the binary operation. */
default:
cerr << "NetEBinary::set_width(): Using default for " <<
op_ << "." << endl;
case '+':
case '-':
case '^':
left_->set_width(w);
right_->set_width(w);
expr_width(w);
break;
}
}
NetEConst::~NetEConst()
{
}
void NetEConst::set_width(unsigned w)
{
assert(w <= value_.len());
expr_width(w);
}
NetEMemory::NetEMemory(NetMemory*m, NetExpr*i)
: mem_(m), idx_(i)
{
}
NetEMemory::~NetEMemory()
{
}
void NetMemory::set_attributes(const map<string,string>&attr)
{
assert(attributes_.size() == 0);
attributes_ = attr;
}
void NetEMemory::set_width(unsigned w)
{
assert(w == mem_->width());
expr_width(w);
}
NetESignal::NetESignal(NetNet*n)
: NetExpr(n->pin_count()), NetNode(n->name(), n->pin_count())
{
for (unsigned idx = 0 ; idx < n->pin_count() ; idx += 1) {
connect(pin(idx), n->pin(idx));
}
}
NetESignal::~NetESignal()
{
}
void NetESignal::set_width(unsigned w)
{
if (w != pin_count()) {
cerr << "Width of " << w << " does not match " << *this <<
endl;
abort();
}
assert(w == pin_count());
expr_width(w);
}
1999-04-25 02:44:10 +02:00
NetESubSignal::NetESubSignal(NetESignal*sig, NetExpr*ex)
: sig_(sig), idx_(ex)
{
}
NetESubSignal::~NetESubSignal()
{
idx_.clr_and_delete();
}
NetEUnary::~NetEUnary()
{
expr_.clr_and_delete();
}
void NetEUnary::set_width(unsigned w)
{
switch (op_) {
case '&':
assert(w == 1);
break;
default:
case '~':
expr_->set_width(w);
break;
}
expr_width(w);
}
NetLogic::NetLogic(const string&n, unsigned pins, TYPE t)
: NetNode(n, pins), type_(t)
{
pin(0).set_dir(Link::OUTPUT);
for (unsigned idx = 1 ; idx < pins ; idx += 1)
pin(idx).set_dir(Link::INPUT);
}
NetUDP::NetUDP(const string&n, unsigned pins, bool sequ)
: NetNode(n, pins), sequential_(sequ), init_('x')
{
pin(0).set_dir(Link::OUTPUT);
for (unsigned idx = 1 ; idx < pins ; idx += 1)
pin(idx).set_dir(Link::INPUT);
}
NetUDP::state_t_* NetUDP::find_state_(const string&str)
{
map<string,state_t_*>::iterator cur = fsm_.find(str);
if (cur != fsm_.end())
return (*cur).second;
state_t_*st = fsm_[str];
if (st == 0) {
st = new state_t_(pin_count());
st->out = str[0];
fsm_[str] = st;
}
return st;
}
/*
* This method takes the input string, which contains exactly one
* edge, and connects it to the correct output state. The output state
* will be generated if needed, and the value compared.
*/
bool NetUDP::set_sequ_(const string&input, char output)
{
if (output == '-')
output = input[0];
string frm = input;
string to = input;
to[0] = output;
unsigned edge = frm.find_first_not_of("01x");
assert(frm.find_last_not_of("01x") == edge);
switch (input[edge]) {
case 'r':
frm[edge] = '0';
to[edge] = '1';
break;
case 'R':
frm[edge] = 'x';
to[edge] = '1';
break;
case 'f':
frm[edge] = '1';
to[edge] = '0';
break;
case 'F':
frm[edge] = 'x';
to[edge] = '0';
break;
case 'P':
frm[edge] = '0';
to[edge] = 'x';
break;
case 'N':
frm[edge] = '1';
to[edge] = 'x';
break;
default:
assert(0);
}
state_t_*sfrm = find_state_(frm);
state_t_*sto = find_state_(to);
switch (to[edge]) {
case '0':
// Notice that I might have caught this edge already
if (sfrm->pins[edge].zer != sto) {
assert(sfrm->pins[edge].zer == 0);
sfrm->pins[edge].zer = sto;
}
break;
case '1':
// Notice that I might have caught this edge already
if (sfrm->pins[edge].one != sto) {
assert(sfrm->pins[edge].one == 0);
sfrm->pins[edge].one = sto;
}
break;
case 'x':
// Notice that I might have caught this edge already
if (sfrm->pins[edge].xxx != sto) {
assert(sfrm->pins[edge].xxx == 0);
sfrm->pins[edge].xxx = sto;
}
break;
}
return true;
}
bool NetUDP::sequ_glob_(string input, char output)
{
for (unsigned idx = 0 ; idx < input.length() ; idx += 1)
switch (input[idx]) {
case '0':
case '1':
case 'x':
case 'r':
case 'R':
case 'f':
case 'F':
case 'P':
case 'N':
break;
case '?': // Iterate over all the levels
input[idx] = '0';
sequ_glob_(input, output);
input[idx] = '1';
sequ_glob_(input, output);
input[idx] = 'x';
sequ_glob_(input, output);
return true;
case 'n': // Iterate over (n) edges
input[idx] = 'f';
sequ_glob_(input, output);
input[idx] = 'F';
sequ_glob_(input, output);
input[idx] = 'N';
sequ_glob_(input, output);
return true;
case 'p': // Iterate over (p) edges
input[idx] = 'r';
sequ_glob_(input, output);
input[idx] = 'R';
sequ_glob_(input, output);
input[idx] = 'P';
sequ_glob_(input, output);
return true;
case '_': // Iterate over (?0) edges
input[idx] = 'f';
sequ_glob_(input, output);
input[idx] = 'F';
sequ_glob_(input, output);
return true;
case '*': // Iterate over all the edges
input[idx] = 'r';
sequ_glob_(input, output);
input[idx] = 'R';
sequ_glob_(input, output);
input[idx] = 'f';
sequ_glob_(input, output);
input[idx] = 'F';
sequ_glob_(input, output);
input[idx] = 'P';
sequ_glob_(input, output);
input[idx] = 'N';
sequ_glob_(input, output);
return true;
default:
assert(0);
}
return set_sequ_(input, output);
}
bool NetUDP::set_table(const string&input, char output)
{
assert((output == '0') || (output == '1') || (sequential_ &&
(output == '-')));
if (sequential_) {
assert(input.length() == pin_count());
/* XXXX Need to check to make sure that the input vector
contains a legal combination of characters. */
return sequ_glob_(input, output);
} else {
assert(input.length() == (pin_count()-1));
/* XXXX Need to check to make sure that the input vector
contains a legal combination of characters. In
combinational UDPs, only 0, 1 and x are allowed. */
assert(0);
return true;
}
}
void NetUDP::cleanup_table()
{
for (FSM_::iterator idx = fsm_.begin() ; idx != fsm_.end() ; idx++) {
string str = (*idx).first;
state_t_*st = (*idx).second;
assert(str[0] == st->out);
for (unsigned pin = 0 ; pin < pin_count() ; pin += 1) {
if (st->pins[pin].zer && st->pins[pin].zer->out == 'x')
st->pins[pin].zer = 0;
if (st->pins[pin].one && st->pins[pin].one->out == 'x')
st->pins[pin].one = 0;
if (st->pins[pin].xxx && st->pins[pin].xxx->out == 'x')
st->pins[pin].xxx = 0;
}
}
for (FSM_::iterator idx = fsm_.begin() ; idx != fsm_.end() ; ) {
FSM_::iterator cur = idx;
idx ++;
state_t_*st = (*cur).second;
if (st->out != 'x')
continue;
for (unsigned pin = 0 ; pin < pin_count() ; pin += 1) {
if (st->pins[pin].zer)
goto break_label;
if (st->pins[pin].one)
goto break_label;
if (st->pins[pin].xxx)
goto break_label;
}
//delete st;
fsm_.erase(cur);
break_label:;
}
}
char NetUDP::table_lookup(const string&from, char to, unsigned pin) const
{
assert(pin <= pin_count());
assert(from.length() == pin_count());
FSM_::const_iterator idx = fsm_.find(from);
if (idx == fsm_.end())
return 'x';
state_t_*next;
switch (to) {
case '0':
next = (*idx).second->pins[pin].zer;
break;
case '1':
next = (*idx).second->pins[pin].one;
break;
case 'x':
next = (*idx).second->pins[pin].xxx;
break;
default:
assert(0);
next = 0;
}
return next? next->out : 'x';
}
void NetUDP::set_initial(char val)
{
assert(sequential_);
assert((val == '0') || (val == '1') || (val == 'x'));
init_ = val;
}
1999-02-21 18:01:57 +01:00
void Design::set_parameter(const string&key, NetExpr*expr)
{
parameters_[key] = expr;
}
NetExpr* Design::get_parameter(const string&key) const
{
map<string,NetExpr::REF>::const_iterator cur = parameters_.find(key);
1999-02-21 18:01:57 +01:00
if (cur == parameters_.end())
return 0;
else
return (*cur).second.ref();
1999-02-21 18:01:57 +01:00
}
string Design::get_flag(const string&key) const
{
map<string,string>::const_iterator tmp = flags_.find(key);
if (tmp == flags_.end())
return "";
else
return (*tmp).second;
}
1998-11-04 00:28:49 +01:00
void Design::add_signal(NetNet*net)
{
assert(net->design_ == 0);
if (signals_ == 0) {
net->sig_next_ = net;
net->sig_prev_ = net;
} else {
net->sig_next_ = signals_->sig_next_;
net->sig_prev_ = signals_;
net->sig_next_->sig_prev_ = net;
net->sig_prev_->sig_next_ = net;
}
signals_ = net;
net->design_ = this;
}
void Design::del_signal(NetNet*net)
{
assert(net->design_ == this);
if (signals_ == net)
signals_ = net->sig_prev_;
if (signals_ == net) {
signals_ = 0;
} else {
net->sig_prev_->sig_next_ = net->sig_next_;
net->sig_next_->sig_prev_ = net->sig_prev_;
}
net->design_ = 0;
}
NetNet* Design::find_signal(const string&name)
{
if (signals_ == 0)
return 0;
NetNet*cur = signals_;
do {
if (cur->name() == name)
return cur;
cur = cur->sig_prev_;
} while (cur != signals_);
return 0;
}
void Design::add_memory(NetMemory*mem)
{
memories_[mem->name()] = mem;
}
NetMemory* Design::find_memory(const string&key)
{
map<string,NetMemory*>::const_iterator cur = memories_.find(key);
if (cur == memories_.end())
return 0;
return (*cur).second;
}
1998-11-04 00:28:49 +01:00
void Design::add_node(NetNode*net)
{
assert(net->design_ == 0);
if (nodes_ == 0) {
net->node_next_ = net;
net->node_prev_ = net;
} else {
net->node_next_ = nodes_->node_next_;
net->node_prev_ = nodes_;
net->node_next_->node_prev_ = net;
net->node_prev_->node_next_ = net;
}
nodes_ = net;
net->design_ = this;
}
void Design::del_node(NetNode*net)
{
assert(net->design_ == this);
if (nodes_ == net)
nodes_ = net->node_prev_;
if (nodes_ == net) {
nodes_ = 0;
} else {
net->node_next_->node_prev_ = net->node_prev_;
net->node_prev_->node_next_ = net->node_next_;
}
net->design_ = 0;
}
NetESignal* Design::get_esignal(NetNet*net)
{
NetESignal*&node = esigs_[net->name()];
if (node == 0) {
node = new NetESignal(net);
add_node(node);
}
return node;
}
1998-11-04 00:28:49 +01:00
void Design::add_process(NetProcTop*pro)
{
pro->next_ = procs_;
procs_ = pro;
}
void Design::clear_node_marks()
{
if (nodes_ == 0)
return;
NetNode*cur = nodes_;
do {
cur->set_mark(false);
cur = cur->node_next_;
} while (cur != nodes_);
}
void Design::clear_signal_marks()
{
if (signals_ == 0)
return;
NetNet*cur = signals_;
do {
cur->set_mark(false);
cur = cur->sig_next_;
} while (cur != signals_);
}
NetNode* Design::find_node(bool (*func)(const NetNode*))
{
if (nodes_ == 0)
return 0;
NetNode*cur = nodes_->node_next_;
do {
if ((cur->test_mark() == false) && func(cur))
return cur;
cur = cur->node_next_;
} while (cur != nodes_->node_next_);
return 0;
}
1998-11-04 00:28:49 +01:00
NetNet* Design::find_signal(bool (*func)(const NetNet*))
{
if (signals_ == 0)
return 0;
NetNet*cur = signals_->sig_next_;
do {
if ((cur->test_mark() == false) && func(cur))
return cur;
cur = cur->sig_next_;
} while (cur != signals_->sig_next_);
return 0;
}
1998-11-04 00:28:49 +01:00
/*
* $Log: netlist.cc,v $
* Revision 1.24 1999/05/12 04:03:19 steve
* emit NetAssignMem objects in vvm target.
*
* Revision 1.23 1999/05/10 00:16:58 steve
* Parse and elaborate the concatenate operator
* in structural contexts, Replace vector<PExpr*>
* and list<PExpr*> with svector<PExpr*>, evaluate
* constant expressions with parameters, handle
* memories as lvalues.
*
* Parse task declarations, integer types.
*
* Revision 1.22 1999/05/01 02:57:53 steve
* Handle much more complex event expressions.
*
1999-04-25 02:44:10 +02:00
* Revision 1.21 1999/04/25 00:44:10 steve
* Core handles subsignal expressions.
*
* Revision 1.20 1999/04/19 01:59:36 steve
* Add memories to the parse and elaboration phases.
*
* Revision 1.19 1999/03/15 02:43:32 steve
* Support more operators, especially logical.
*
* Revision 1.18 1999/03/01 03:27:53 steve
* Prevent the duplicate allocation of ESignal objects.
*
1999-02-21 18:01:57 +01:00
* Revision 1.17 1999/02/21 17:01:57 steve
* Add support for module parameters.
*
* Revision 1.16 1999/02/08 02:49:56 steve
* Turn the NetESignal into a NetNode so
* that it can connect to the netlist.
* Implement the case statement.
* Convince t-vvm to output code for
* the case statement.
*
* Revision 1.15 1999/02/03 04:20:11 steve
* Parse and elaborate the Verilog CASE statement.
*
* Revision 1.14 1998/12/18 05:16:25 steve
* Parse more UDP input edge descriptions.
*
* Revision 1.13 1998/12/17 23:54:58 steve
* VVM support for small sequential UDP objects.
*
* Revision 1.12 1998/12/14 02:01:35 steve
* Fully elaborate Sequential UDP behavior.
*
* Revision 1.11 1998/12/07 04:53:17 steve
* Generate OBUF or IBUF attributes (and the gates
* to garry them) where a wire is a pad. This involved
* figuring out enough of the netlist to know when such
* was needed, and to generate new gates and signales
* to handle what's missing.
*
* Revision 1.10 1998/12/02 04:37:13 steve
* Add the nobufz function to eliminate bufz objects,
* Object links are marked with direction,
* constant propagation is more careful will wide links,
* Signal folding is aware of attributes, and
* the XNF target can dump UDP objects based on LCA
* attributes.
*
* Revision 1.9 1998/12/01 00:42:14 steve
* Elaborate UDP devices,
* Support UDP type attributes, and
* pass those attributes to nodes that
* are instantiated by elaboration,
* Put modules into a map instead of
* a simple list.
*
* Revision 1.8 1998/11/23 00:20:23 steve
* NetAssign handles lvalues as pin links
* instead of a signal pointer,
* Wire attributes added,
* Ability to parse UDP descriptions added,
* XNF generates EXT records for signals with
* the PAD attribute.
*
* Revision 1.7 1998/11/18 04:25:22 steve
* Add -f flags for generic flag key/values.
*
* Revision 1.6 1998/11/16 05:03:53 steve
* Add the sigfold function that unlinks excess
* signal nodes, and add the XNF target.
*
* Revision 1.5 1998/11/13 06:23:17 steve
* Introduce netlist optimizations with the
* cprop function to do constant propogation.
*
* Revision 1.4 1998/11/09 18:55:34 steve
* Add procedural while loops,
* Parse procedural for loops,
* Add procedural wait statements,
* Add constant nodes,
* Add XNOR logic gate,
* Make vvm output look a bit prettier.
*
* Revision 1.3 1998/11/07 19:17:10 steve
* Calculate expression widths at elaboration time.
*
* Revision 1.2 1998/11/07 17:05:05 steve
* Handle procedural conditional, and some
* of the conditional expressions.
*
* Elaborate signals and identifiers differently,
* allowing the netlist to hold signal information.
*
1998-11-04 00:28:49 +01:00
* Revision 1.1 1998/11/03 23:29:00 steve
* Introduce verilog to CVS.
*
*/