openFPGALoader/src/lattice.cpp

2287 lines
61 KiB
C++
Raw Normal View History

// SPDX-License-Identifier: Apache-2.0
/*
* Copyright (C) 2019 Gwenhael Goavec-Merou <gwenhael.goavec-merou@trabucayre.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <strings.h>
#include <string.h>
#include <unistd.h>
#include <iostream>
#include <stdexcept>
#include "jtag.hpp"
#include "lattice.hpp"
#include "latticeBitParser.hpp"
#include "mcsParser.hpp"
#include "progressBar.hpp"
#include "rawParser.hpp"
#include "display.hpp"
#include "part.hpp"
#include "spiFlash.hpp"
using namespace std;
#define ISC_ENABLE 0xC6 /* ISC_ENABLE - Offline Mode */
# define ISC_ENABLE_FLASH_MODE (1 << 3)
# define ISC_ENABLE_SRAM_MODE (0 << 3)
#define ISC_ENABLE_TRANSPARENT 0x74 /* ISC_ENABLE_X This command is used to put the device in transparent mode */
#define ISC_DISABLE 0x26 /* ISC_DISABLE */
#define READ_DEVICE_ID_CODE 0xE0 /* IDCODE_PUB */
#define FLASH_ERASE 0x0E /* ISC_ERASE */
/* Flash areas as defined for Lattice MachXO2,3L/LF */
# define FLASH_ERASE_UFM (1<<3)
# define FLASH_ERASE_CFG (1<<2)
# define FLASH_ERASE_FEATURE (1<<1)
# define FLASH_ERASE_SRAM (1<<0)
# define FLASH_ERASE_ALL 0x0F
/* Flash areas as defined for Lattice MachXO3D, used with command: ISC_ERASE */
# define FLASH_SEC_CFG0 (1<<8)
# define FLASH_SEC_CFG1 (1<<9)
# define FLASH_SEC_UFM0 (1<<10)
# define FLASH_SEC_UFM1 (1<<11)
# define FLASH_SEC_UFM2 (1<<12)
# define FLASH_SEC_UFM3 (1<<13)
// # define FLASH_SEC_CSEC (1<<14) /* not defined in later documentation */
// # define FLASH_SEC_USEC (1<<15) /* not defined in later documentation */
# define FLASH_SEC_PKEY (1<<16)
# define FLASH_SEC_AKEY (1<<17)
# define FLASH_SEC_FEA (1<<18)
# define FLASH_SEC_ALL 0x7FF
/* This uses the same defines as above (for ISC_ERASE)
* The Lattice Standard Doc for MachXO3D has incorrect list of operands for this
* command.
* This is document is more correct:
* fpga-tn-02119-1-1-using-hardened-control-functions-machxo3d-reference.pdf
*/
#define RESET_CFG_ADDR 0x46 /* LSC_INIT_ADDRESS */
/* Set the Page Address pointer to the Flash page specified */
#define LSC_WRITE_ADDRESS 0xB4
# define FLASH_SET_ADDR_CFG0 0x00
# define FLASH_SET_ADDR_UFM0 0x01
# define FLASH_SET_ADDR_FEA 0x03
# define FLASH_SET_ADDR_CFG1 0x04
# define FLASH_SET_ADDR_UFM1 0x05
# define FLASH_SET_ADDR_PKEY 0x06
//# define FLASH_SET_ADDR_CSEC 0x07 /* not defined in later documentation */
# define FLASH_SET_ADDR_UFM2 0x08
# define FLASH_SET_ADDR_UFM3 0x09
# define FLASH_SET_ADDR_AKEY 0x0A
//# define FLASH_SET_ADDR_USEC 0x0B /* not defined in later documentation */
/* Set the Page Address Pointer to the beginning of the UFM sectors.
* It appears that this function is required when setting address to UFM sectors
* The LSC_INIT_ADDRESS doesn't work when the sector is set to UFMx ... */
#define LSC_INIT_ADDR_UFM 0x47
# define FLASH_UFM_ADDR_UFM0 (1<<10)
# define FLASH_UFM_ADDR_UFM1 (1<<11)
# define FLASH_UFM_ADDR_UFM2 (1<<12)
# define FLASH_UFM_ADDR_UFM3 (1<<13)
#define PROG_CFG_FLASH 0x70 /* LSC_PROG_INCR_NV */
#define READ_BUSY_FLAG 0xF0 /* LSC_CHECK_BUSY */
# define CHECK_BUSY_FLAG_BUSY (1 << 7)
/* The busy flag defines bit 7 as busy, but busy flags returns 1 for busy (bit 0). */
#define REG_CFG_FLASH 0x73 /* LSC_READ_INCR_NV */
#define PROG_FEATURE_ROW 0xE4 /* LSC_PROG_FEATURE */
#define READ_FEATURE_ROW 0xE7 /* LSC_READ_FEATURE */
/* See feaParser.hpp for FEATURE definitions */
#define PROG_FEABITS 0xF8 /* LSC_PROG_FEABITS */
#define READ_FEABITS 0xFB /* LSC_READ_FEABITS */
/* See feaParser.hpp for FEAbit definitions */
#define PROG_DONE 0x5E /* ISC_PROGRAM_DONE - This command is used to program the done bit */
#define REFRESH 0x79 /* LSC_REFRESH - Equivalent to toggle PROGRAMN pin */
#define READ_STATUS_REGISTER 0x3C /* LSC_READ_STATUS */
# define REG_STATUS_DONE (1 << 8) /* Flash or SRAM Done Flag (ISC_EN=0 -> 1 Successful Flash to SRAM transfer, ISC_EN=1 -> 1 Programmed) */
# define REG_STATUS_ISC_EN (1 << 9) /* Enable Configuration Interface (1=Enable, 0=Disable) */
# define REG_STATUS_BUSY (1 << 12) /* Busy Flag (1 = Busy) */
# define REG_STATUS_FAIL (1 << 13) /* Fail Flag (1 = Operation failed) */
# define REG_STATUS_PP_CFG (1 << 15) /* Password Protection All Enabled for CFG0 and CFG1 flash sectors 0=Disabled (Default), 1=Enabled */
# define REG_STATUS_PP_FSK (1 << 16) /* Password Protection Enabled for Feature and Security Key flash sectors 0=Disabled (Default), 1=Enabled */
# define REG_STATUS_PP_UFM (1 << 17) /* Password Protection enabled for all UFM flash sectors 0=Disabled (Default), 1=Enabled */
# define REG_STATUS_AUTH_DONE (1 << 18) /* Authentication done */
# define REG_STATUS_PRI_BOOT_FAIL (1 << 21) /* Primary boot failure (1= Fail) even though secondary boot successful */
# define REG_STATUS_CNF_CHK_MASK (0x0f << 23) /* Configuration Status Check */
2023-10-23 07:12:45 +02:00
# define REG_STATUS_PRV_CNF_CHK_MASK (UINT64_C(0x0f) << 34) /* NEXUS_FAMILY: Configuration Status Check of previous bitstrem */
# define REG_STATUS_MACHXO3D_CNF_CHK_MASK (0x0f << 22) /* Configuration Status Check */
# define REG_STATUS_EXEC_ERR (1 << 26) /*** NOT specified for MachXO3D ***/
# define REG_STATUS_DEV_VERIFIED (1 << 27) /* I=0 Device verified correct, I=1 Device failed to verify */
#define READ_STATUS_REGISTER_1 0x3D /* LSC_READ_STATUS_1 */
# define REG_STATUS1_FLASH_SEL (0x0f << 0) /* Flash sector selection 1=CFG0, 2=CFG1, 4=FEATURE, 5=Pub Key, 6=AES Key, 8=UFM0, 10=UFM1, 11=UFM2, 12=UFM3 */
# define REG_STATUS1_ERASE_DISABLE (1 << 4) /* Erase operation is prohibited (1 = Erase disable) */
# define REG_STATUS1_PROG_DISABLE (1 << 5) /* Program operation is prohibited (1 = Programing disable) */
# define REG_STATUS1_READ_DISABLE (1 << 6) /* Read operation is prohibited (1 = Read disable) */
# define REG_STATUS1_HS_LOCK_SEL (1 << 7) /* Hard/Soft Lock Selection (1 = Hard Lock, 0 = Soft Lock) */
# define REG_STATUS1_AUTH_MODE (0x03 << 8) /* Authentication mode: 0x: No Authentication, 10: HMAC Authentication, 11: ECDSA Signature Verification */
# define REG_STATUS1_AUTH_DONE_CFG0 (1 << 10) /* Authentication done for CFG0 (1 = Authentication successful) */
# define REG_STATUS1_AUTH_DONE_CFG1 (1 << 11) /* Authentication done for CFG1 (1 = Authentication successful) */
# define REG_STATUS1_FLASH_DONE_CFG0 (1 << 12) /* Flash done bit is programmed of CFG0 (1= Programmed, 0=Unprogrammed) */
# define REG_STATUS1_FLASH_DONE_CFG1 (1 << 13) /* Flash done bit is programmed of CFG1 (1= Programmed, 0=Unprogrammed) */
# define REG_STATUS1_SEC_PLUS_EN_CFG0 (1 << 14) /* Security Plus enabled for CFG0 (1 = Enabled, 0 = Disabled) */
# define REG_STATUS1_SEC_PLUS_EN_CFG1 (1 << 15) /* Security Plus enabled for CFG1 (1 = Enabled, 0 = Disabled) */
# define REG_STATUS1_BITSTR_VERSION (1 << 16) /* Bitstream version: 1 = Bitstream in CFG0 is latter (newer) than CFG1, 0 = Bitstream in CFG1 is latter (newer) than CFG0 */
# define REG_STATUS1_BOOT_SEQ_SEL (0x03 << 17) /* Boot Sequence selection (used along with Master SPI Port Persistence bit) */
# define REG_STATUS1_MSPI_PERS (1 << 20) /* Master SPI Port Persistence 0=Disabled (Default), 1=Enabled */
# define REG_STATUS1_I2C_DG_FILTER (1 << 21) /* I2C deglitch filter enable for Primary I2C Port 0=Disabled (Default), 1=Enabled */
# define REG_STATUS1_I2C_DG_RANGE (1 << 22) /* I2C deglitch filter range selection on primary I2C port 0= 8 to 25 ns range (Default), 1= 16 to 50 ns range */
#define PROG_ECDSA_PUBKEY0 0x59 /* This command is used to program the first 128 bits of the ECDSA Public Key. */
#define READ_ECDSA_PUBKEY0 0x5A /* This command is used to read the first 128 bits of the ECDSA Public Key. */
#define PROG_ECDSA_PUBKEY1 0x5B /* This command is used to program the second 128 bits of the ECDSA Public Key. */
#define READ_ECDSA_PUBKEY1 0x5C /* This command is used to read the second 128 bits of the ECDSA Public Key. */
#define PROG_ECDSA_PUBKEY2 0x61 /* This command is used to program the third 128 bits of the ECDSA Public Key. */
#define READ_ECDSA_PUBKEY2 0x62 /* This command is used to read the third 128 bits of the ECDSA Public Key. */
#define PROG_ECDSA_PUBKEY3 0x63 /* This command is used to program the fourth 128 bits of the ECDSA Public Key. */
#define READ_ECDSA_PUBKEY3 0x64 /* This command is used to read the fourth 128 bits of the ECDSA Public Key. */
#define ISC_NOOP 0xff /* This command is no operation command (NOOP) or null operation. */
#define LSC_DEVICE_CONTROL 0x7D /* Multiple commands. Bit 3: configuration reset */
#define PRELOAD_SAMPLE 0x1C /* PRELOAD/SAMPLE jtag opcode. Nexus family has Bscan register 362 bits-long => 45.25 => 46 bytes */
2021-11-25 15:13:17 +01:00
#define PUBKEY_LENGTH_BYTES 64 /* length of the public key (MachXO3D) in bytes */
Lattice::Lattice(Jtag *jtag, const string filename, const string &file_type,
Device::prog_type_t prg_type, std::string flash_sector, bool verify, int8_t verbose, bool skip_load_bridge, bool skip_reset):
Device(jtag, filename, file_type, verify, verbose),
SPIInterface(filename, verbose, 0, verify, skip_load_bridge, skip_reset),
_fpga_family(UNKNOWN_FAMILY), _flash_sector(LATTICE_FLASH_UNDEFINED)
{
if (prg_type == Device::RD_FLASH) {
_mode = READ_MODE;
} else if (!_file_extension.empty()) {
if (_file_extension == "jed" || _file_extension == "mcs" ||
_file_extension == "fea" || _file_extension == "pub") {
_mode = Device::FLASH_MODE;
} else if (_file_extension == "bit" || _file_extension == "bin") {
if (prg_type == Device::WR_FLASH)
_mode = Device::FLASH_MODE;
else
_mode = Device::MEM_MODE;
} else { /* unknown type: */
if (prg_type == Device::WR_FLASH) /* to flash: OK */
_mode = Device::FLASH_MODE;
else /* otherwise: KO */
throw std::runtime_error("incompatible file format");
}
}
/* check device family */
uint32_t idcode = _jtag->get_target_device_id();
string family = fpga_list[idcode].family;
2021-11-20 16:07:53 +01:00
if (family == "MachXO2") {
_fpga_family = MACHXO2_FAMILY;
2021-11-20 16:07:53 +01:00
} else if (family == "MachXO3LF") {
_fpga_family = MACHXO3_FAMILY;
2021-11-20 16:07:53 +01:00
} else if (family == "MachXO3D") {
_fpga_family = MACHXO3D_FAMILY;
if (flash_sector == "CFG0") {
_flash_sector = LATTICE_FLASH_CFG0;
printInfo("Flash Sector: CFG0", true);
} else if (flash_sector == "CFG1") {
_flash_sector = LATTICE_FLASH_CFG1;
printInfo("Flash Sector: CFG1", true);
} else if (flash_sector == "UFM0") {
_flash_sector = LATTICE_FLASH_UFM0;
printInfo("Flash Sector: UFM0", true);
} else if (flash_sector == "UFM1") {
_flash_sector = LATTICE_FLASH_UFM1;
printInfo("Flash Sector: UFM1", true);
} else if (flash_sector == "UFM2") {
_flash_sector = LATTICE_FLASH_UFM2;
printInfo("Flash Sector: UFM2", true);
} else if (flash_sector == "UFM3") {
_flash_sector = LATTICE_FLASH_UFM3;
printInfo("Flash Sector: UFM3", true);
} else if (flash_sector == "FEA") {
_flash_sector = LATTICE_FLASH_FEA;
printInfo("Flash Sector: FEA", true);
2021-11-25 15:13:17 +01:00
} else if (flash_sector == "PKEY") {
_flash_sector = LATTICE_FLASH_PKEY;
printInfo("Flash Sector: PKEY", true);
} else if (_mode == Device::FLASH_MODE) {
printError("Unknown flash sector");
throw std::exception();
}
2021-11-20 16:07:53 +01:00
} else if (family == "ECP5") {
_fpga_family = ECP5_FAMILY;
2021-11-20 16:07:53 +01:00
} else if (family == "CrosslinkNX") {
_fpga_family = NEXUS_FAMILY;
2021-11-20 16:07:53 +01:00
} else if (family == "CertusNX") {
_fpga_family = NEXUS_FAMILY;
} else if (family == "CertusProNX") {
_fpga_family = NEXUS_FAMILY;
2021-11-20 16:07:53 +01:00
} else {
printError("Unknown device family");
throw std::exception();
}
}
void displayFeabits(uint16_t _featbits)
{
uint8_t boot_sequence = (_featbits >> 12) & 0x03;
uint8_t m = (_featbits >> 11) & 0x01;
printf("\tboot mode :");
switch (boot_sequence) {
case 0:
if (m != 0x01)
printf(" Single Boot from NVCM/Flash\n");
else
printf(" Dual Boot from NVCM/Flash then External if there is a failure\n");
break;
case 1:
if (m == 0x01)
printf(" Single Boot from External Flash\n");
else
printf(" Error!\n");
break;
default:
printf(" Error!\n");
}
printf("\tMaster Mode SPI : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>11)&0x01)?"enable":"disable"));
printf("\tI2c port : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>10)&0x01)?"disable":"enable"));
printf("\tSlave SPI port : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>9)&0x01)?"disable":"enable"));
printf("\tJTAG port : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>8)&0x01)?"disable":"enable"));
printf("\tDONE : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>7)&0x01)?"enable":"disable"));
printf("\tINITN : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>6)&0x01)?"enable":"disable"));
printf("\tPROGRAMN : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>5)&0x01)?"disable":"enable"));
printf("\tMy_ASSP : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>4)&0x01)?"enable":"disable"));
printf("\tPassword (Flash Protect Key) Protect All : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>3)&0x01)?"Enabled" : "Disabled"));
printf("\tPassword (Flash Protect Key) Protect : %s\n",
2023-08-08 15:54:27 +02:00
(((_featbits>>2)&0x01)?"Enabled" : "Disabled"));
}
bool Lattice::checkStatus(uint64_t val, uint64_t mask)
{
uint64_t reg = readStatusReg();
return ((reg & mask) == val) ? true : false;
}
bool Lattice::program_mem()
{
bool err;
LatticeBitParser _bit(_filename, false, _verbose);
printInfo("Open file: ", false);
printSuccess("DONE");
err = _bit.parse();
printInfo("Parse file: ", false);
if (err == EXIT_FAILURE) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
_bit.displayHeader();
/* read ID Code 0xE0 and compare to bitstream */
uint32_t bit_idcode = std::stoul(_bit.getHeaderVal("idcode").c_str(), NULL, 16);
uint32_t idcode = idCode();
if (idcode != bit_idcode) {
char mess[256];
snprintf(mess, 256, "mismatch between target's idcode and bitstream idcode\n"
"\tbitstream has 0x%08X hardware requires 0x%08x", bit_idcode, idcode);
printError(mess);
return false;
}
if (_verbose) {
printf("IDCode : %x\n", idcode);
displayReadReg(readStatusReg());
}
/* The command code 0x1C is not listed in the manual?
* PRELOAD/SAMPLE 0x1C
* For NEXUS family fpgas, the Bscan register is 362 bits long or
* 45.25 bytes => 46 bytes
*/
uint8_t tx_buf[46];
memset(tx_buf, 0xff, 46);
int tx_len;
if(_fpga_family == NEXUS_FAMILY){
tx_len = 46;
} else {
tx_len = 26;
}
wr_rd(PRELOAD_SAMPLE, tx_buf, tx_len, NULL, 0);
/* LSC_REFRESH 0x79 -- "Equivalent to toggle PROGRAMN pin"
* We REFRESH only if the fpga is in a status of error due to
* the previous bitstream. For example, this happens if
* no bitstream is present on the SPI FLASH
*/
/*flag to understand if we refreshed or not*/
bool was_refreshed;
if (_fpga_family == NEXUS_FAMILY) {
if (!checkStatus(0, REG_STATUS_PRV_CNF_CHK_MASK)) {
printInfo("Error in previous bitstream execution. REFRESH: ", false);
wr_rd(REFRESH, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
/* In Lattice FPGA-TN-02099 document in a note it's reported that there
is a delay time after LSC_REFRESH where "Duration could be in
seconds". Without whis waiting time, busy flag can't be cleared.*/
sleep(5);
was_refreshed = true;
if (!checkStatus(0, REG_STATUS_PRV_CNF_CHK_MASK)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
} else {
was_refreshed = false;
if (_verbose){
printInfo("No error in previous bitstream execution.", true);
}
}
} else {
was_refreshed = false;
}
/* ISC Enable 0xC6 */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x00)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
if (was_refreshed) {
/* LSC_DEVICE_CONTROL 0x7D -- configuration reset */
printInfo("Configuration Logic Reset: ", false);
uint8_t tx_tmp[1] = {0x08};
wr_rd(LSC_DEVICE_CONTROL, tx_tmp, 1, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if(!pollBusyFlag()) {
printError("FAIL");
return false;
}
tx_tmp[0] = 0x00;
wr_rd(LSC_DEVICE_CONTROL, tx_tmp, 1, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if(!pollBusyFlag()) {
printError("FAIL");
return false;
}
printSuccess("DONE");
}
/* ISC ERASE
* For Nexus family (from svf file): 1 byte to tx 0x00
*/
printInfo("SRAM erase: ", false);
uint32_t mask_erase[1] = {FLASH_ERASE_SRAM};
if (_fpga_family == NEXUS_FAMILY){
mask_erase[0] = 0x00;
}
if (flashErase(mask_erase[0]) == false) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* LSC_INIT_ADDRESS */
wr_rd(0x46, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
2023-08-08 15:54:27 +02:00
const uint8_t *data = _bit.getData();
int length = _bit.getLength()/8;
wr_rd(0x7A, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
uint8_t tmp[1024];
int size = 1024;
2023-08-10 16:36:18 +02:00
Jtag::tapState_t next_state = Jtag::SHIFT_DR;
ProgressBar progress("Loading", length, 50, _quiet);
for (int i = 0; i < length; i += size) {
progress.display(i);
if (length < i + size) {
size = length-i;
next_state = Jtag::RUN_TEST_IDLE;
}
for (int ii = 0; ii < size; ii++)
tmp[ii] = ConfigBitstreamParser::reverseByte(data[i+ii]);
_jtag->shiftDR(tmp, NULL, size*8, next_state);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
uint32_t status_mask;
if (_fpga_family == MACHXO3D_FAMILY)
status_mask = REG_STATUS_MACHXO3D_CNF_CHK_MASK;
else
status_mask = REG_STATUS_CNF_CHK_MASK;
if (checkStatus(0, status_mask)) {
progress.done();
2021-11-20 16:07:53 +01:00
} else {
progress.fail();
displayReadReg(readStatusReg());
return false;
}
wr_rd(0xff, NULL, 0, NULL, 0);
if (_verbose)
printf("userCode: %08x\n", userCode());
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
displayReadReg(readStatusReg());
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
_jtag->go_test_logic_reset();
return true;
}
bool Lattice::program_intFlash(ConfigBitstreamParser *_cbp)
{
uint64_t featuresRow;
uint16_t ufm_start = 0;
uint16_t feabits;
uint8_t eraseMode = 0;
vector<string> ufm_data, cfg_data, ebr_data;
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 followed by
* 0x08 (Enable nVCM/Flash Normal mode */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x08)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
// If file is a jed -> classic approach for
// all machXO
if (_file_extension == "jed") {
JedParser *_jed = reinterpret_cast<JedParser *>(_cbp);
for (size_t i = 0; i < _jed->nb_section(); i++) {
string note = _jed->noteForSection(i);
if (note == "TAG DATA") {
eraseMode |= FLASH_ERASE_UFM;
ufm_data = _jed->data_for_section(i);
ufm_start = getUFMStartPageFromJEDEC(_jed, i);
if (_verbose)
2023-05-01 21:11:22 +02:00
printInfo("UFM init detected in JEDEC file");
if(ufm_start > 2045) {
printError("UFM section detected in JEDEC file, but "
2023-08-10 16:36:18 +02:00
"calculated flash start address was out of bounds");
return false;
}
} else if (note == "END CONFIG DATA") {
continue;
} else if (note == "EBR_INIT DATA") {
ebr_data = _jed->data_for_section(i);
} else {
cfg_data = _jed->data_for_section(i);
}
}
/* check if feature area must be updated */
featuresRow = _jed->featuresRow();
feabits = _jed->feabits();
} else { // bit file: adapts
LatticeBitParser *_bit = reinterpret_cast<LatticeBitParser *>(_cbp);
cfg_data = _bit->getDataArray();
featuresRow = 0;
feabits = 0x460;
}
eraseMode |= FLASH_ERASE_CFG;
if (featuresRow != readFeaturesRow() || feabits != readFeabits())
eraseMode |= FLASH_ERASE_FEATURE;
/* ISC ERASE */
printInfo("Flash erase: ", false);
if (flashErase(eraseMode) == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* LSC_INIT_ADDRESS */
wr_rd(0x46, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
/* flash CfgFlash */
if (false == flashProg(0, "data", cfg_data))
return false;
/* flash EBR Init */
if (ebr_data.size()) {
if (false == flashProg(0, "EBR", ebr_data))
return false;
}
/* verify write */
if (_verify) {
if (Verify(cfg_data) == false)
return false;
}
if ((eraseMode & FLASH_ERASE_UFM) != 0) {
/* LSC_WRITE_ADDRESS */
uint8_t tx[4] = {
2023-05-01 01:05:36 +02:00
static_cast<uint8_t>(ufm_start & 0xff),
static_cast<uint8_t>((ufm_start >> 8) & 0xff),
0,
0x40
};
wr_rd(LSC_WRITE_ADDRESS, tx, 4, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
/* Same command to program CFG flash works for UFM. */
if (false == flashProg(0, "UFM", ufm_data))
return false;
}
/* missing usercode update */
/* LSC_INIT_ADDRESS */
wr_rd(0x46, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if ((eraseMode & FLASH_ERASE_FEATURE) != 0) {
/* write feature row */
printInfo("Program features Row: ", false);
if (writeFeaturesRow(featuresRow, true) == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* write feabits */
printInfo("Program feabits: ", false);
if (writeFeabits(feabits, true) == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
}
/* ISC program done 0x5E */
printInfo("Write program Done: ", false);
if (writeProgramDone() == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
return true;
}
bool Lattice::prepare_flash_access()
{
if (_skip_load_bridge) {
printInfo("Skip switching to SPI access");
return true;
}
/* clear SRAM before SPI access */
if (!clearSRAM())
return false;
/*IR = 0h3A, DR=0hFE,0h68. Enter RUNTESTIDLE.
* thank @GregDavill
* https://twitter.com/GregDavill/status/1251786406441086977
*/
_jtag->shiftIR(0x3A, 8, Jtag::EXIT1_IR);
uint8_t tmp[2] = {0xFE, 0x68};
_jtag->shiftDR(tmp, NULL, 16);
return true;
}
bool Lattice::post_flash_access()
{
bool ret = true, flash_blank = false;
if (_skip_reset) {
printInfo("Skip resetting device");
return true;
}
/* ISC REFRESH 0x79 */
if (loadConfiguration() == false) {
/* when flash is blank status displays failure:
* try to check flash first sector
*/
_skip_reset = true; // avoid infinite loop
/* read flash 0 -> 255 */
uint8_t buffer[256];
ret = SPIInterface::read(buffer, 0, 256);
loadConfiguration(); // reset again
/* read ok? check if everything == 0xff */
if (ret) {
for (int i = 0; i < 256; i++) {
/* not blank: fail */
if (buffer[i] != 0xFF) {
ret = false;
break;
}
}
/* to add a note */
flash_blank = true;
}
}
printInfo("Refresh: ", false);
if (!ret) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
if (flash_blank)
printWarn("Flash is blank");
}
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
_jtag->go_test_logic_reset();
return true;
}
bool Lattice::clearSRAM()
{
uint32_t erase_op;
/* PRELOAD/SAMPLE 0x1C
* For NEXUS family fpgas, the Bscan register is 362 bits long or
* 45.25 bytes => 46 bytes
*/
uint8_t tx_buf[46];
memset(tx_buf, 0xff, 46);
int tx_len;
if(_fpga_family == NEXUS_FAMILY){
tx_len = 46;
} else {
tx_len = 26;
}
wr_rd(PRELOAD_SAMPLE, tx_buf, tx_len, NULL, 0);
wr_rd(0xFF, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x00)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
if (_fpga_family == MACHXO3D_FAMILY || _fpga_family == NEXUS_FAMILY)
erase_op = 0x0;
else
erase_op = FLASH_ERASE_SRAM;
/* ISC ERASE */
printInfo("SRAM erase: ", false);
if (flashErase(erase_op) == false) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
return DisableISC();
}
bool Lattice::program_extFlash(unsigned int offset, bool unprotect_flash)
{
int ret;
ConfigBitstreamParser *_bit;
printInfo("Open file ", false);
try {
if (_file_extension == "mcs")
_bit = new McsParser(_filename, true, _verbose);
else if (_file_extension == "bit")
_bit = new LatticeBitParser(_filename, false, _verbose);
else
_bit = new RawParser(_filename, false);
printSuccess("DONE");
} catch (std::exception &e) {
printError("FAIL");
printError(e.what());
return false;
}
printInfo("Parse file ", false);
if (_bit->parse() == EXIT_FAILURE) {
printError("FAIL");
delete _bit;
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
_bit->displayHeader();
if (_file_extension == "bit") {
uint32_t bit_idcode = std::stoul(_bit->getHeaderVal("idcode").c_str(), NULL, 16);
uint32_t idcode = idCode();
if (idcode != bit_idcode) {
char mess[256];
snprintf(mess, 256, "mismatch between target's idcode and bitstream idcode\n"
"\tbitstream has 0x%08X hardware requires 0x%08x", bit_idcode, idcode);
printError(mess);
delete _bit;
return false;
}
}
ret = SPIInterface::write(offset, _bit->getData(), _bit->getLength() / 8,
unprotect_flash);
delete _bit;
return ret;
}
bool Lattice::program_flash(unsigned int offset, bool unprotect_flash)
{
/* read ID Code 0xE0 */
if (_verbose) {
printf("IDCode : %x\n", idCode());
displayReadReg(readStatusReg());
}
bool retval;
if (_file_extension == "jed") {
bool err;
JedParser _jed(_filename, _verbose);
printInfo("Open file ", false);
printSuccess("DONE");
err = _jed.parse();
printInfo("Parse file ", false);
if (err == EXIT_FAILURE) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
_jed.displayHeader();
/* clear current SRAM content */
clearSRAM();
if (_fpga_family == MACHXO3D_FAMILY)
retval = program_intFlash_MachXO3D(_jed);
else
retval = program_intFlash(
reinterpret_cast<ConfigBitstreamParser*>(&_jed));
/* for machXO2 and unlike TN02155 & TN1204 ISC_DISABLE is required
* and REFRESH no
* TODO: same for machXO3x ?
*/
if (_fpga_family == MACHXO2_FAMILY)
return retval;
return post_flash_access() && retval;
2021-11-20 16:07:53 +01:00
} else if (_file_extension == "fea") {
/* clear current SRAM content */
clearSRAM();
retval = program_fea_MachXO3D();
return post_flash_access() && retval;
2021-11-25 16:09:38 +01:00
} else if (_file_extension == "pub") {
/* clear current SRAM content */
clearSRAM();
2023-09-01 15:35:44 +02:00
program_pubkey_MachXO3D();
2021-11-20 16:07:53 +01:00
} else {
// machox2 + bit
if (_file_extension == "bit" && _fpga_family == MACHXO2_FAMILY) {
try {
LatticeBitParser _bit(_filename, true, _verbose);
_bit.parse();
retval = program_intFlash(
reinterpret_cast<ConfigBitstreamParser *>(&_bit));
} catch (std::exception &e) {
return false;
}
return post_flash_access() && retval;
}
/* !machXO and any file */
return program_extFlash(offset, unprotect_flash);
}
return true;
}
void Lattice::program(unsigned int offset, bool unprotect_flash)
{
2021-11-20 16:07:53 +01:00
bool retval = true;
if (_mode == FLASH_MODE)
retval = program_flash(offset, unprotect_flash);
else if (_mode == MEM_MODE)
retval = program_mem();
if (!retval)
throw std::exception();
}
/* flash mode :
*/
bool Lattice::EnableISC(uint8_t flash_mode)
{
wr_rd(ISC_ENABLE, &flash_mode, 1, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(REG_STATUS_ISC_EN, REG_STATUS_ISC_EN))
return false;
return true;
}
bool Lattice::DisableISC()
{
wr_rd(ISC_DISABLE, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(0, REG_STATUS_ISC_EN))
return false;
return true;
}
bool Lattice::EnableCfgIf()
{
uint8_t tx_buf = 0x08;
wr_rd(0x74, &tx_buf, 1, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
return pollBusyFlag();
}
bool Lattice::DisableCfg()
{
uint8_t tx_buf = 0, rx_buf;
wr_rd(0x26, &tx_buf, 1, &rx_buf, 1);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
return true;
}
2023-08-10 12:50:26 +02:00
uint32_t Lattice::idCode()
{
uint8_t device_id[4];
wr_rd(READ_DEVICE_ID_CODE, NULL, 0, device_id, 4);
return device_id[3] << 24 |
device_id[2] << 16 |
device_id[1] << 8 |
device_id[0];
}
int Lattice::userCode()
{
uint8_t usercode[4];
wr_rd(0xC0, NULL, 0, usercode, 4);
return usercode[3] << 24 |
usercode[2] << 16 |
usercode[1] << 8 |
usercode[0];
}
bool Lattice::checkID()
{
printf("\n");
printf("check ID\n");
uint8_t tx[4] = { 0 };
wr_rd(0xE2, tx, 4, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
uint32_t reg = readStatusReg();
displayReadReg(reg);
tx[3] = 0x61;
tx[2] = 0x2b;
tx[1] = 0xd0;
tx[0] = 0x43;
wr_rd(0xE2, tx, 4, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
reg = readStatusReg();
displayReadReg(reg);
printf("%08x\n", reg);
printf("\n");
return true;
}
/* returns the number of bits of the Device Status Register
* accordingly to _fpga_family
*/
int Lattice::get_statusreg_size(){
if (_fpga_family == NEXUS_FAMILY) {
return 64;
} else{
return 32;
}
}
/* feabits is MSB first
* maybe this register too
* or not
*/
uint64_t Lattice::readStatusReg()
{
uint64_t reg;
uint8_t rx[8], tx[8];
int reg_len = get_statusreg_size() / 8;
/* valgrind warn */
memset(tx, 0, 8);
memset(rx, 0, 8);
wr_rd(READ_STATUS_REGISTER, tx, reg_len, rx, reg_len);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
reg = (uint64_t) rx[7] << 56 | (uint64_t) rx[6] << 48 | (uint64_t) rx[5] << 40 | (uint64_t) rx[4] << 32 | rx[3] << 24 | rx[2] << 16 | rx[1] << 8 | rx[0];
return reg;
}
bool Lattice::wr_rd(uint8_t cmd,
uint8_t *tx, int tx_len,
uint8_t *rx, int rx_len,
bool verbose)
{
int kXferLen = rx_len;
if (tx_len > rx_len)
kXferLen = tx_len;
uint8_t xfer_tx[kXferLen];
uint8_t xfer_rx[kXferLen];
memset(xfer_tx, 0, kXferLen);
int i;
2023-04-15 08:20:05 +02:00
if (tx != NULL && tx_len > 0) {
for (i = 0; i < tx_len; i++)
xfer_tx[i] = tx[i];
}
_jtag->shiftIR(&cmd, NULL, 8, Jtag::PAUSE_IR);
if (rx || tx) {
_jtag->shiftDR(xfer_tx, (rx) ? xfer_rx : NULL, 8 * kXferLen,
Jtag::PAUSE_DR);
}
if (rx) {
if (verbose) {
for (i=kXferLen-1; i >= 0; i--)
printf("%02x ", xfer_rx[i]);
printf("\n");
}
2021-11-20 16:07:53 +01:00
for (i = 0; i < rx_len; i++)
rx[i] = (xfer_rx[i]);
}
return true;
}
void Lattice::displayReadReg(uint64_t dev)
{
uint8_t err;
printf("displayReadReg\n");
if (dev & 1<<0) printf("\tTRAN Mode\n");
2023-10-23 07:12:45 +02:00
printf("\tConfig Target Selection : %lx\n", (dev >> 1) & 0x07);
if (dev & 1<<4) printf("\tJTAG Active\n");
if (dev & 1<<5) printf("\tPWD Protect\n");
if (dev & 1<<6) printf("\tOTP\n");
if (dev & 1<<7) printf("\tDecrypt Enable\n");
if (dev & REG_STATUS_DONE) printf("\tDone Flag\n");
if (dev & REG_STATUS_ISC_EN) printf("\tISC Enable\n");
if (dev & 1 << 10) printf("\tWrite Enable\n");
if (dev & 1 << 11) printf("\tRead Enable\n");
if (dev & REG_STATUS_BUSY) printf("\tBusy Flag\n");
if (dev & REG_STATUS_FAIL) printf("\tFail Flag\n");
if (dev & 1 << 14) printf("\tFFEA OTP\n");
if (dev & 1 << 15) printf("\tDecrypt Only\n");
if (dev & 1 << 16) printf("\tPWD Enable\n");
if (_fpga_family == NEXUS_FAMILY) {
if (dev & 1 << 17) printf("\tPWD All\n");
if (dev & 1 << 18) printf("\tCID En\n");
if (dev & 1 << 19) printf("\tinternal use\n");
if (dev & 1 << 21) printf("\tEncryption PreAmble\n");
if (dev & 1 << 22) printf("\tStd PreAmble\n");
if (dev & 1 << 23) printf("\tSPIm Fail1\n");
err = (dev >> 24)&0x0f;
} else {
if (dev & 1 << 17) printf("\tUFM OTP\n");
if (dev & 1 << 18) printf("\tASSP\n");
if (dev & 1 << 19) printf("\tSDM Enable\n");
if (dev & 1 << 20) printf("\tEncryption PreAmble\n");
if (dev & 1 << 21) printf("\tStd PreAmble\n");
if (dev & 1 << 22) printf("\tSPIm Fail1\n");
err = (dev >> 23)&0x07;
}
printf("\t");
switch (err) {
case 0:
printf("No err\n");
break;
case 1:
printf("ID ERR\n");
break;
case 2:
printf("CMD ERR\n");
break;
case 3:
printf("CRC ERR\n");
break;
case 4:
printf("Preamble ERR\n");
break;
case 5:
printf("Abort ERR\n");
break;
case 6:
printf("Overflow ERR\n");
break;
case 7:
printf("SDM EOF\n");
break;
default:
printf("unknown %x\n", err);
}
if (_fpga_family == NEXUS_FAMILY) {
if ((dev >> 28) & 0x01) printf("\tEXEC Error\n");
if ((dev >> 29) & 0x01) printf("\tID Error\n");
if ((dev >> 30) & 0x01) printf("\tInvalid Command\n");
if ((dev >> 31) & 0x01) printf("\tWDT Busy\n");
} else {
if (dev & REG_STATUS_EXEC_ERR) printf("\tEXEC Error\n");
if ((dev >> 27) & 0x01) printf("\tDevice failed to verify\n");
if ((dev >> 28) & 0x01) printf("\tInvalid Command\n");
if ((dev >> 29) & 0x01) printf("\tSED Error\n");
if ((dev >> 30) & 0x01) printf("\tBypass Mode\n");
if ((dev >> 31) & 0x01) printf("\tFT Mode\n");
}
if (_fpga_family == NEXUS_FAMILY) {
if ((dev >> 33) & 0x01) printf("\tDry Run Done\n");
err = (dev >> 34)&0x0f;
printf("\tBSE Error 1 Code for previous bitstream execution\n");
printf("\t\t");
switch (err) {
case 0:
printf("No err\n");
break;
case 1:
printf("ID ERR\n");
break;
case 2:
printf("CMD ERR\n");
break;
case 3:
printf("CRC ERR\n");
break;
case 4:
printf("Preamble ERR\n");
break;
case 5:
printf("Abort ERR\n");
break;
case 6:
printf("Overflow ERR\n");
break;
case 7:
printf("SDM EOF\n");
break;
case 8:
2022-12-18 23:29:21 +01:00
printf("Authentication ERR\n");
break;
case 9:
2022-12-18 23:29:21 +01:00
printf("Authentication Setup ERR\n");
break;
case 10:
printf("Bitstream Engine Timeout ERR\n");
break;
default:
printf("unknown %x\n", err);
}
if ((dev >> 38) & 0x01) printf("\tBypass Mode\n");
if ((dev >> 39) & 0x01) printf("\tFlow Through Mode\n");
if ((dev >> 42) & 0x01) printf("\tSFDP Timeout\n");
if ((dev >> 43) & 0x01) printf("\tKey Destroy pass\n");
if ((dev >> 44) & 0x01) printf("\tINITN\n");
if ((dev >> 45) & 0x01) printf("\tI3C Parity Error2\n");
if ((dev >> 46) & 0x01) printf("\tINIT Bus ID Error\n");
if ((dev >> 47) & 0x01) printf("\tI3C Parity Error1\n");
err = (dev >> 48) & 0x03;
2022-12-18 23:29:21 +01:00
printf("\tAuthentication mode:\n");
printf("\t\t");
switch (err) {
case 3:
case 0:
printf("No Auth\n");
break;
case 1:
printf("ECDSA\n");
break;
case 2:
printf("HMAC\n");
break;
}
2022-12-18 23:29:21 +01:00
if ((dev >> 50) & 0x01) printf("\tAuthentication Done\n");
if ((dev >> 51) & 0x01) printf("\tDry Run Authentication Done\n");
}
}
bool Lattice::pollBusyFlag(bool verbose)
{
uint8_t rx;
int timeout = 0;
do {
wr_rd(READ_BUSY_FLAG, NULL, 0, &rx, 1);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (verbose)
printf("pollBusyFlag :%02x\n", rx);
if (timeout == 100000000){
cerr << "timeout" << endl;
return false;
} else {
timeout++;
}
} while (rx != 0);
return true;
}
bool Lattice::flashEraseAll()
{
return flashErase(0xf);
}
bool Lattice::flashErase(uint32_t mask)
{
if (_fpga_family == MACHXO3D_FAMILY) {
uint8_t tx[2] = {
(uint8_t)((mask >> 8) & 0xff),
(uint8_t)((mask >> 16) & 0xff)
};
wr_rd(FLASH_ERASE, tx, 2, NULL, 0);
2021-11-20 16:07:53 +01:00
} else {
uint8_t tx[1] = {(uint8_t)(mask & 0xff)};
wr_rd(FLASH_ERASE, tx, 1, NULL, 0);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(0, REG_STATUS_FAIL))
return false;
return true;
}
bool Lattice::flashProg(uint32_t start_addr, const string &name, vector<string> data)
{
(void)start_addr;
ProgressBar progress("Writing " + name, data.size(), 50, _quiet);
for (uint32_t line = 0; line < data.size(); line++) {
wr_rd(PROG_CFG_FLASH, (uint8_t *)data[line].c_str(),
16, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
progress.display(line);
if (pollBusyFlag() == false)
return false;
}
progress.done();
return true;
}
bool Lattice::Verify(std::vector<std::string> data, bool unlock, uint32_t flash_area)
{
uint8_t tx_buf[16], rx_buf[16];
if (unlock)
EnableISC(0x08);
2021-11-20 16:07:53 +01:00
if (_fpga_family == MACHXO3D_FAMILY) {
uint8_t tx[2] = { (
uint8_t)((flash_area >> 8) & 0xff),
(uint8_t)((flash_area >> 16) & 0xff)
};
2021-11-20 16:07:53 +01:00
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
} else {
wr_rd(RESET_CFG_ADDR, NULL, 0, NULL, 0);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
tx_buf[0] = REG_CFG_FLASH;
_jtag->shiftIR(tx_buf, NULL, 8, Jtag::PAUSE_IR);
memset(tx_buf, 0, 16);
bool failure = false;
ProgressBar progress("Verifying", data.size(), 50, _quiet);
for (size_t line = 0; line< data.size(); line++) {
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
_jtag->shiftDR(tx_buf, rx_buf, 16*8, Jtag::PAUSE_DR);
for (size_t i = 0; i < data[line].size(); i++) {
if (rx_buf[i] != (unsigned char)data[line][i]) {
printf("%3zu %3zu %02x -> %02x\n", line, i,
rx_buf[i], (unsigned char)data[line][i]);
failure = true;
}
}
if (failure) {
printf("Verify Failure\n");
break;
}
progress.display(line);
}
if (unlock)
DisableISC();
if (failure)
progress.fail();
else
progress.done();
return !failure;
}
uint64_t Lattice::readFeaturesRow()
{
uint8_t tx_buf[8];
uint8_t rx_buf[8];
uint64_t reg = 0;
memset(tx_buf, 0, 8);
wr_rd(READ_FEATURE_ROW, tx_buf, 8, rx_buf, 8);
for (int i = 0; i < 8; i++)
reg |= ((uint64_t)rx_buf[i] << (i*8));
return reg;
}
uint16_t Lattice::readFeabits()
{
uint8_t rx_buf[2];
wr_rd(READ_FEABITS, NULL, 0, rx_buf, 2);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
return rx_buf[0] | (((uint16_t)rx_buf[1]) << 8);
}
bool Lattice::writeFeaturesRow(uint64_t features, bool verify)
{
uint8_t tx_buf[8];
for (int i=0; i < 8; i++)
tx_buf[i] = ((features >> (i*8)) & 0x00ff);
wr_rd(PROG_FEATURE_ROW, tx_buf, 8, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (verify)
return (features == readFeaturesRow()) ? true : false;
return true;
}
bool Lattice::writeFeabits(uint16_t feabits, bool verify)
{
uint8_t tx_buf[2] = {(uint8_t)(feabits&0x00ff),
(uint8_t)(0x00ff & (feabits>>8))};
wr_rd(PROG_FEABITS, tx_buf, 2, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (verify)
return (feabits == readFeabits()) ? true : false;
return true;
}
bool Lattice::writeProgramDone()
{
wr_rd(PROG_DONE, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(REG_STATUS_DONE, REG_STATUS_DONE))
return false;
return true;
}
bool Lattice::loadConfiguration()
{
wr_rd(REFRESH, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(REG_STATUS_DONE, REG_STATUS_DONE))
return false;
return true;
}
uint16_t Lattice::getUFMStartPageFromJEDEC(JedParser *_jed, int id)
{
/* In general, Lattice tools try to fill UFM from the highest
page to lowest. JEDEC files will give a starting bit offset. */
uint32_t bit_offset = _jed->offset_for_section(id);
/* Convert to starting page, relative to Configuration Flash's page 0.
For 7000 parts only, first UFM page starts 16 bytes (1 page) after
2023-08-08 15:54:27 +02:00
the last Configuration Flash page, based on looking at
Diamond-generated JEDECs.
2023-08-08 15:54:27 +02:00
For all other parts, the first UFM page immediately follows the last
Configuration Flash page. */
uint16_t raw_page_offset = bit_offset / 128;
/* Raw page offsets won't overlap- see Lattice TN-02155, page 49. So we
can uniquely determine which part type we're targeting from the UFM start
addres.
TODO: In any case, JEDEC files don't carry part information. Verify against
IDCODE read previously? */
if(raw_page_offset > 9211) {
return raw_page_offset - 9211 - 1; // 7000
} else if(raw_page_offset > 5758) {
return raw_page_offset - 5758; // 4000, 2000U
} else if(raw_page_offset > 3198) {
return raw_page_offset - 3198; // 2000, 1200U
} else if(raw_page_offset > 2175) {
return raw_page_offset - 2175; // 1200, 640U
} else if(raw_page_offset > 1151) {
return raw_page_offset - 1151; // 640
} else {
// 256- We should bail if we get here! No UFM!
return 0xffff;
}
}
/* ------------------ */
/* SPI implementation */
/* ------------------ */
2023-08-08 15:54:27 +02:00
int Lattice::spi_put(uint8_t cmd, const uint8_t *tx, uint8_t *rx, uint32_t len)
{
int xfer_len = len + 1;
uint8_t jtx[xfer_len];
uint8_t jrx[xfer_len];
jtx[0] = LatticeBitParser::reverseByte(cmd);
2021-11-20 16:07:53 +01:00
if (tx) {
for (uint32_t i=0; i < len; i++)
jtx[i+1] = LatticeBitParser::reverseByte(tx[i]);
}
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = LatticeBitParser::reverseByte(jrx[i+1]);
}
return 0;
}
2023-08-08 15:54:27 +02:00
int Lattice::spi_put(const uint8_t *tx, uint8_t *rx, uint32_t len)
{
2023-09-01 15:35:44 +02:00
if (len == 0)
return 0;
uint8_t jtx[len];
uint8_t jrx[len];
memset(jrx, 0, len);
if (tx)
for (uint32_t i = 0; i < len; ++i)
jtx[i] = LatticeBitParser::reverseByte(tx[i]);
else
memset(jtx, 0, len);
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
2023-09-01 15:35:44 +02:00
_jtag->shiftDR(jtx, (rx) ? jrx : nullptr, 8 * len);
2023-09-01 15:35:44 +02:00
if (rx) {
for (uint32_t i = 0; i < len; ++i)
rx[i] = LatticeBitParser::reverseByte(jrx[i]);
}
return 0;
}
int Lattice::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond,
2021-11-20 16:07:53 +01:00
uint32_t timeout, bool verbose)
{
uint8_t rx;
2023-09-01 15:35:44 +02:00
uint8_t dummy[2] = {0xff};
uint8_t tmp;
uint8_t tx = LatticeBitParser::reverseByte(cmd);
uint32_t count = 0;
/* CS is low until state goes to EXIT1_IR
* so manually move to state machine to stay is this
* state as long as needed
*/
_jtag->shiftDR(&tx, NULL, 8, Jtag::SHIFT_DR);
do {
_jtag->shiftDR(dummy, &rx, 8, Jtag::SHIFT_DR);
tmp = (LatticeBitParser::reverseByte(rx));
2021-11-20 16:07:53 +01:00
count++;
if (count == timeout){
printf("timeout: %x %x %u\n", tmp, rx, count);
break;
}
if (verbose) {
printf("%x %x %x %u\n", tmp, mask, cond, count);
}
} while ((tmp & mask) != cond);
_jtag->shiftDR(dummy, &rx, 8, Jtag::RUN_TEST_IDLE);
if (count == timeout) {
printf("%x\n", tmp);
std::cout << "wait: Error" << std::endl;
return -ETIME;
2021-11-20 16:07:53 +01:00
}
return 0;
}
/*************************** MODS FOR MacXO3D *********************************/
bool Lattice::programFeatureRow_MachXO3D(uint8_t* feature_row)
{
uint8_t tx[16] = { 0 };
uint8_t rx[15] = { 0 };
2021-11-20 16:07:53 +01:00
for (int i = 0; i < 12; i++)
tx[i] = feature_row[i];
if (_verbose) {
printf("\tProgramming feature row: [0x");
for (int i = 11; i >= 0; i--) {
printf("%02x", feature_row[i]);
}
printf("]\n");
}
wr_rd(PROG_FEATURE_ROW, tx, 16, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(0xff, NULL, 0, NULL, 0);
if (!pollBusyFlag())
return false;
if (_verbose || _verify) {
wr_rd(READ_FEATURE_ROW, NULL, 0, rx, 15);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
}
if (_verbose) {
printf("\tReadback Feature Row: [0x");
for(int i = 11; i >= 0; i--) {
printf("%02x", rx[i]);
}
printf("]\n");
}
if (_verify) {
for(int i = 0; i < 15; i++) {
if (feature_row[i] != rx[i]) {
printf("\tVerify Failed...\n");
return false;
}
}
}
return true;
}
bool Lattice::programFeabits_MachXO3D(uint32_t feabits)
{
uint8_t tx[4] = { 0 };
uint8_t rx[5] = { 0 };
memset(tx, 0, sizeof(tx));
for (int i = 0; i < 4; i++) {
tx[i] = (feabits >> (8*i)) & 0xff;
}
if (_verbose) {
printf("\tProgramming FEAbits: [0x");
2021-11-20 16:07:53 +01:00
for (int i = 3; i >= 0; i--) {
printf("%02x", tx[i]);
}
printf("]\n");
}
wr_rd(PROG_FEABITS, tx, 4, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(0xff, NULL, 0, NULL, 0);
if (!pollBusyFlag())
return false;
if (_verbose || _verify) {
wr_rd(READ_FEABITS, NULL, 0, rx, 5);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
}
if (_verbose) {
printf("\tReadback Feabits: [0x");
for(int i = 4; i >= 0; i--) {
printf("%02x", rx[i]);
}
printf("]\n");
}
if (_verify) {
for(int i = 0; i < 4; i++) {
if (((feabits >> (8*i)) & 0xff) != rx[i]) {
printf("\tVerify Failed...\n");
return false;
}
}
}
return true;
}
2021-11-25 15:13:17 +01:00
bool Lattice::programPubKey_MachXO3D(uint8_t* pubkey)
{
uint8_t rxkey[PUBKEY_LENGTH_BYTES] = { 0 };
uint8_t tx[16];
int i;
if (_verbose) {
printf("\tProgramming ECDSA PubKey: [");
for (i = 0; i < PUBKEY_LENGTH_BYTES; i++) {
printf("%02x", pubkey[i]);
}
printf("]\n");
}
for(i = 0; i < 16; i++) {
tx[i] = pubkey[63 - i];
}
wr_rd(PROG_ECDSA_PUBKEY0, tx, 16, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(0xff, NULL, 0, NULL, 0);
if (!pollBusyFlag())
return false;
for(i = 0; i < 16; i++) {
tx[i] = pubkey[47 - i];
}
wr_rd(PROG_ECDSA_PUBKEY1, tx, 16, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(0xff, NULL, 0, NULL, 0);
if (!pollBusyFlag())
return false;
for(i = 0; i < 16; i++) {
tx[i] = pubkey[31 - i];
}
wr_rd(PROG_ECDSA_PUBKEY2, tx, 16, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(0xff, NULL, 0, NULL, 0);
if (!pollBusyFlag())
return false;
for(i = 0; i < 16; i++) {
tx[i] = pubkey[15 - i];
}
wr_rd(PROG_ECDSA_PUBKEY3, tx, 16, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(0xff, NULL, 0, NULL, 0);
if (!pollBusyFlag())
return false;
if (_verbose || _verify) {
/* read the current feature row */
wr_rd(READ_ECDSA_PUBKEY0, NULL, 0, rxkey, 16);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(READ_ECDSA_PUBKEY1, NULL, 0, rxkey + 16, 16);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(READ_ECDSA_PUBKEY2, NULL, 0, rxkey + 32, 16);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(READ_ECDSA_PUBKEY3, NULL, 0, rxkey + 48, 16);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
}
if (_verbose) {
printf("Readback PubKey: [");
for (i=PUBKEY_LENGTH_BYTES-1; i >= 0; i--) {
printf("%02x", rxkey[i]);
if (i && (i%16 == 0)) printf(" ");
}
printf("]\n");
}
if (_verify) {
for (int i = 0; i < PUBKEY_LENGTH_BYTES; i++) {
if (pubkey[i] != rxkey[PUBKEY_LENGTH_BYTES - i - 1]) {
printf("\tVerify Failed...\n");
return false;
}
}
}
return true;
}
bool Lattice::program_fea_MachXO3D()
{
bool err;
uint8_t rx[15] = { 0 };
uint8_t tx[16] = { 0 };
bool same = true;
FeaParser _fea(_filename, _verbose);
printInfo("Open file: ", false);
printSuccess("DONE");
err = _fea.parse();
printInfo("Parse file: ", false);
if (err == EXIT_FAILURE) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
_fea.displayHeader();
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 with operand of 0x08 (Enable Offline mode) */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x08)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* read the current feature row */
wr_rd(READ_FEATURE_ROW, NULL, 0, rx, 12);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
if (_verbose) {
printf("Read Feature Row: [0x");
for(int i = 11; i >= 0; i--) {
printf("%02x", rx[i]);
}
printf("]\n");
}
uint8_t* feature_row = (uint8_t*)_fea.featuresRow();
for (int i = 0; i < 12; i++) {
if (feature_row[i] != rx[i])
same = false;
}
/* read the current FEAbits */
uint32_t feabits = _fea.feabits();
wr_rd(READ_FEABITS, NULL, 0, rx, 6);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
if (_verbose) {
printf("Read Feabits: [0x");
for(int i = 4; i >= 0; i--) {
printf("%02x", rx[i]);
}
printf("]\n");
}
for (int i = 0; i < 4; i++) {
if ((feabits >> (i * 8) & 0xff) != rx[i])
same = false;
}
printf("Feature Row / Feabits Compare: %s\n", same ? "Same" : "Different");
if (same == false) {
/* LSC_INIT_ADDRESS */
tx[0] = (uint8_t)((FLASH_SEC_FEA >> 8) & 0xff);
tx[1] = (uint8_t)((FLASH_SEC_FEA >> 16) & 0xff);
if (_verbose)
printf("Selected address (I): 0x%x 0x%x\n", tx[0], tx[1]);
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
/* ISC ERASE */
printInfo("Flash erase: ", false);
if (flashErase(FLASH_SEC_FEA) == false) {
printError("FAIL");
return false;
2021-11-20 16:07:53 +01:00
} else {
printSuccess("DONE");
}
/* FEATURE Row */
printInfo("Program Feature Row: ", true);
if (!programFeatureRow_MachXO3D(feature_row)) {
printError("FAIL");
return false;
2021-11-20 16:07:53 +01:00
} else {
printSuccess("DONE");
}
/* FEAbits */
printInfo("Program FEAbits: ", true);
if (!programFeabits_MachXO3D(feabits)) {
printError("FAIL");
return false;
2021-11-20 16:07:53 +01:00
} else {
printSuccess("DONE");
}
}
/* ISC program done 0x5E */
printInfo("Write program Done: ", false);
if (writeProgramDone() == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
return true;
}
bool Lattice::program_intFlash_MachXO3D(JedParser& _jed)
{
uint32_t erase_op = 0, prog_op = 0;
vector<string> data;
int offset, fuse_count;
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 with operand of 0x08 (Enable Offline mode) */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x08)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* this is the size of an CFGx+UFMx area in bits (hence the / 128) */
fuse_count = _jed.get_fuse_count() / 128;
for (size_t i = 0; i < _jed.nb_section(); i++) {
std::string area_name;
data = _jed.data_for_section(i);
if (data.size() < 1) {
/* if no data, nothing to do */
continue;
}
string note = _jed.noteForSection(i);
offset = _jed.offset_for_section(i) / 128;
erase_op = 0;
prog_op = 0;
/* if the offset > total fuse count, then this file must be configured
* for the 2nd config sector (CFG1), so adjust offset */
while (offset >= fuse_count) {
offset -= fuse_count;
}
/* If the offset is greater than the size of the config area then we're
* programming the UFM area (UFM 0/1) */
if (offset >= 12542) {
offset -= 12542;
}
if (note == "END CONFIG DATA") {
printf("Processing PADDING data (offset: %d (0x%x))\n", offset, offset);
/* PADDING - this should be padding to CFGx area that we're currently
* programming therefore the flash area will already have been erased...
* NOTE: We have to write this data if we're using bitstream authentication
* - even if it's all zeros.
*/
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set not only the
* flash sector but also the page number. */
if (_flash_sector == LATTICE_FLASH_CFG0) {
prog_op = (FLASH_SET_ADDR_CFG0 << 14) | (offset);
area_name = "Padding (CFG0)";
2021-11-20 16:07:53 +01:00
} else if (_flash_sector == LATTICE_FLASH_CFG1) {
prog_op = (FLASH_SET_ADDR_CFG1 << 14) | (offset);
area_name = "Padding (CFG1)";
}
/* offset should not be zero */
if (offset == 0) {
2021-11-20 16:07:53 +01:00
printf("Warning: offset (%d) is for programming PADDING\n", offset);
}
2021-11-20 16:07:53 +01:00
} else if (note == "EBR_INIT DATA") {
printf("Processing EBR_INIT data (offset: %d (0x%x))\n", offset, offset);
/* EBR - Embedded Block RAM initialisation data */
if (offset == 0) {
if (_flash_sector == LATTICE_FLASH_CFG0) {
erase_op = FLASH_SEC_UFM0;
prog_op = FLASH_UFM_ADDR_UFM0;
area_name = "EBR (UFM0)";
2021-11-20 16:07:53 +01:00
} else if (_flash_sector == LATTICE_FLASH_CFG1) {
erase_op = FLASH_SEC_UFM1;
prog_op = FLASH_UFM_ADDR_UFM1;
area_name = "EBR (UFM1)";
}
2021-11-20 16:07:53 +01:00
} else {
/* NOT SUPPORTING NON-ZERO OFFSET WRITES...*/
continue;
}
2021-11-20 16:07:53 +01:00
} else if (note.compare(0, 16, "USER MEMORY DATA") == 0) {
printf("Processing UFM data (offset: %d (0x%x))\n", offset, offset);
if ((_flash_sector == LATTICE_FLASH_CFG0)||
(_flash_sector == LATTICE_FLASH_UFM0)) {
if (offset == 0) {
erase_op = FLASH_SEC_UFM0;
prog_op = FLASH_UFM_ADDR_UFM0;
2021-11-20 16:07:53 +01:00
} else {
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set the
* flash sector and the page number. */
prog_op = (FLASH_SET_ADDR_UFM0 << 14) | (offset);
}
area_name = "UFM0";
2021-11-20 16:07:53 +01:00
} else if ((_flash_sector == LATTICE_FLASH_CFG1)||
(_flash_sector == LATTICE_FLASH_UFM1)) {
if (offset == 0) {
erase_op = FLASH_SEC_UFM1;
prog_op = FLASH_UFM_ADDR_UFM1;
2021-11-20 16:07:53 +01:00
} else {
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set the
* flash sector and the page number. */
prog_op = (FLASH_SET_ADDR_UFM1 << 14) | (offset);
}
area_name = "UFM1";
2021-11-20 16:07:53 +01:00
} else if (_flash_sector == LATTICE_FLASH_UFM2) {
if (offset == 0) {
erase_op = FLASH_SEC_UFM2;
prog_op = FLASH_UFM_ADDR_UFM2;
2021-11-20 16:07:53 +01:00
} else {
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set the
* flash sector and the page number. */
prog_op = (FLASH_SET_ADDR_UFM2 << 14) | (offset);
}
area_name = "UFM2";
2021-11-20 16:07:53 +01:00
} else if (_flash_sector == LATTICE_FLASH_UFM3) {
if (offset == 0) {
erase_op = FLASH_SEC_UFM3;
prog_op = FLASH_UFM_ADDR_UFM3;
2021-11-20 16:07:53 +01:00
} else {
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set the
* flash sector and the page number. */
prog_op = (FLASH_SET_ADDR_UFM3 << 14) | (offset);
}
area_name = "UFM3";
}
2021-11-20 16:07:53 +01:00
} else {
printf("Processing CFG data (offset: %d (0x%x))\n", offset, offset);
if (_flash_sector == LATTICE_FLASH_CFG0) {
erase_op = FLASH_SEC_CFG0;
prog_op = FLASH_SEC_CFG0;
area_name = "Data (CFG0)";
2021-11-20 16:07:53 +01:00
} else if (_flash_sector == LATTICE_FLASH_CFG1) {
erase_op = FLASH_SEC_CFG1;
prog_op = FLASH_SEC_CFG1;
area_name = "Data (CFG1)";
}
/* offset should be zero */
if (offset != 0) {
2021-11-20 16:07:53 +01:00
printf("Warning: offset (%d) is not 0 for programming CFG\n", offset);
}
}
if (erase_op > 0) {
/* ISC ERASE */
printInfo("Flash erase: ", false);
if (flashErase(erase_op) == false) {
printError("FAIL");
return false;
}
2021-11-20 16:07:53 +01:00
printSuccess("DONE");
}
if (offset == 0) {
/* LSC_INIT_ADDRESS */
uint8_t tx[2] = {
(uint8_t)((prog_op >> 8) & 0xff),
(uint8_t)((prog_op >> 16) & 0xff)
};
printf("address (I): 0x%x 0x%x\n", tx[0], tx[1]);
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
2021-11-20 16:07:53 +01:00
} else {
/* LSC_WRITE_ADDRESS */
uint8_t tx[3] = {
(uint8_t)(prog_op & 0xff),
(uint8_t)((prog_op >> 8) & 0xff),
(uint8_t)((prog_op >> 16) & 0x03)
};
printf("address (W): 0x%x 0x%x 0x%x\n", tx[0], tx[1], tx[2]);
wr_rd(LSC_WRITE_ADDRESS, tx, 3, NULL, 0);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
/* flash CfgFlash */
if (false == flashProg(0, area_name, data))
return false;
/* verify write */
if (_verify) {
if (Verify(data, false, prog_op) == false)
return false;
}
}
/* @TODO: missing usercode update */
2021-11-20 16:07:53 +01:00
/* LSC_INIT_ADDRESS */
if (_flash_sector == LATTICE_FLASH_CFG0) {
uint8_t tx[2] = {
(uint8_t)((FLASH_SEC_CFG0 >> 8) & 0xff),
(uint8_t)((FLASH_SEC_CFG0 >> 16) & 0xff)
};
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
2021-11-20 16:07:53 +01:00
} else if (_flash_sector == LATTICE_FLASH_CFG1) {
uint8_t tx[2] = {
(uint8_t)((FLASH_SEC_CFG1 >> 8) & 0xff),
(uint8_t)((FLASH_SEC_CFG1 >> 16) & 0xff)
};
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
/* ISC program done 0x5E */
printInfo("Write program Done: ", false);
if (writeProgramDone() == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
return true;
}
2021-11-25 15:13:17 +01:00
bool Lattice::program_pubkey_MachXO3D()
{
bool err, same = true;
int len, i, j;
uint8_t pubkey[PUBKEY_LENGTH_BYTES];
uint8_t rxkey[PUBKEY_LENGTH_BYTES];
RawParser _pk(_filename, false);
printInfo("Open file: ", false);
printSuccess("DONE");
err = _pk.parse();
printInfo("Parse file: ", false);
if (err == EXIT_FAILURE) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
2023-08-08 15:54:27 +02:00
const uint8_t* data = _pk.getData();
2021-11-25 15:13:17 +01:00
len = _pk.getLength()/8;
if (data[0] == 0x0f && data[1] == 0xf0) {
for (i = 2; i < len; i++) {
if (data[i] == 0xf0 && data[i+1] == 0x0f) {
if (_verbose) printf("Header: [%.*s]\n", i-2, ((char *)data)+2);
i+=2;
break;
}
}
memcpy(pubkey, data+i, PUBKEY_LENGTH_BYTES);
i += PUBKEY_LENGTH_BYTES;
/*
As read from file:
...
7dbc273a6e614a0f5289070524a1a59d
3a5d518b5cff00bc521f1ef62c4227ce
dd7987ecb63768e3310864f4b44daf90
ebf86ce8a9b17842821551a85b2235cc
...
As Sent by diamond programmer:
0x59: cc35225ba85115824278b1a9e86cf8eb
0x5B: 90af4db4f4640831e36837b6ec8779dd
0x61: ce27422cf61e1f52bc00ff5c8b515d3a
0x63: 9da5a124050789520f4a616e3a27bc7d
*/
if (_verbose) {
printf("PubKey: [");
for (j=0; j < PUBKEY_LENGTH_BYTES; j++) {
if (j && (j%16 == 0)) printf(" ");
printf("%02x", pubkey[j]);
}
printf("]\n");
printf("Trailing bytes: [");
for (; i < len; i++) {
printf("%02x ", data[i]);
}
printf("\b]\n");
}
}
else {
printError("Failed to find header in public key file");
return false;
}
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 with operand of 0x08 (Enable Offline mode) */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x08)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* read the current feature row */
wr_rd(READ_ECDSA_PUBKEY0, NULL, 0, rxkey, 16);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(READ_ECDSA_PUBKEY1, NULL, 0, rxkey + 16, 16);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(READ_ECDSA_PUBKEY2, NULL, 0, rxkey + 32, 16);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(READ_ECDSA_PUBKEY3, NULL, 0, rxkey + 48, 16);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
if (_verbose) {
printf("Read PubKey: [");
for (j=PUBKEY_LENGTH_BYTES-1; j >= 0; j--) {
printf("%02x", rxkey[j]);
if (j && (j%16 == 0)) printf(" ");
}
printf("]\n");
}
for (int i = 0; i < PUBKEY_LENGTH_BYTES; i++) {
if (pubkey[i] != rxkey[PUBKEY_LENGTH_BYTES - i - 1])
same = false;
}
printf("PubKey Compare: %s\n", same ? "Same" : "Different");
if (same == false) {
uint8_t tx[2];
/* LSC_INIT_ADDRESS */
tx[0] = (uint8_t)((FLASH_SEC_PKEY >> 8) & 0xff);
tx[1] = (uint8_t)((FLASH_SEC_PKEY >> 16) & 0xff);
if (_verbose)
printf("Selected address (I): 0x%x 0x%x\n", tx[0], tx[1]);
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
/* ISC ERASE */
printInfo("Flash erase: ", false);
if (flashErase(FLASH_SEC_PKEY) == false) {
printError("FAIL");
return false;
}
else {
printSuccess("DONE");
}
/* Public Key */
printInfo("Program Public Key: ", true);
if (!programPubKey_MachXO3D(pubkey)) {
printError("FAIL");
return false;
}
else {
printSuccess("DONE");
}
}
2021-11-25 15:50:33 +01:00
/* Programming and Verify the AUTH_EN2 and AUTH_EN1 Fuses..."
* -- This is undocumented (extracted from USB capture) */
2021-11-25 15:59:37 +01:00
uint8_t tx_byte = 0x03;
wr_rd(0xc4, &tx_byte, 1, NULL, 0);
2021-11-25 15:50:33 +01:00
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* lattice diamond sends this twice... ? */
2021-11-25 15:59:37 +01:00
wr_rd(0xc4, &tx_byte, 1, NULL, 0);
2021-11-25 15:50:33 +01:00
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
2021-11-25 15:59:37 +01:00
if (_verbose) {
wr_rd(READ_STATUS_REGISTER_1, NULL, 0, rxkey, 4);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
2021-11-25 15:50:33 +01:00
2021-11-25 15:59:37 +01:00
printf("Auth Mode: [%s] (0x%x)\n", (rxkey[1] & 0x03 ? "ECDSA Signature Verification" : rxkey[1] & 0x01 ? "HMAC Authentication" : "No Authentication"), rxkey[1] & 0x03);
}
2021-11-25 15:50:33 +01:00
2021-11-25 15:13:17 +01:00
/* ISC program done 0x5E */
printInfo("Write program Done: ", false);
if (writeProgramDone() == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
return true;
}