openFPGALoader/src/lattice.cpp

1790 lines
46 KiB
C++
Raw Normal View History

// SPDX-License-Identifier: Apache-2.0
/*
* Copyright (C) 2019 Gwenhael Goavec-Merou <gwenhael.goavec-merou@trabucayre.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <strings.h>
#include <string.h>
#include <unistd.h>
#include <iostream>
#include <stdexcept>
#include "jtag.hpp"
#include "lattice.hpp"
#include "latticeBitParser.hpp"
#include "mcsParser.hpp"
#include "progressBar.hpp"
#include "rawParser.hpp"
#include "display.hpp"
#include "part.hpp"
#include "spiFlash.hpp"
using namespace std;
#define ISC_ENABLE 0xC6 /* ISC_ENABLE - Offline Mode */
# define ISC_ENABLE_FLASH_MODE (1 << 3)
# define ISC_ENABLE_SRAM_MODE (0 << 3)
#define ISC_ENABLE_TRANSPARANT 0x74 /* This command is used to put the device in transparent mode */
#define ISC_DISABLE 0x26 /* ISC_DISABLE */
#define READ_DEVICE_ID_CODE 0xE0 /* IDCODE_PUB */
#define FLASH_ERASE 0x0E /* ISC_ERASE */
/* Flash areas as defined for Lattice MachXO3L/LF */
# define FLASH_ERASE_UFM (1<<3)
# define FLASH_ERASE_CFG (1<<2)
# define FLASH_ERASE_FEATURE (1<<1)
# define FLASH_ERASE_SRAM (1<<0)
# define FLASH_ERASE_ALL 0x0F
/* Flash areas as defined for Lattice MachXO3D, used with command: ISC_ERASE */
# define FLASH_SEC_CFG0 (1<<8)
# define FLASH_SEC_CFG1 (1<<9)
# define FLASH_SEC_UFM0 (1<<10)
# define FLASH_SEC_UFM1 (1<<11)
# define FLASH_SEC_UFM2 (1<<12)
# define FLASH_SEC_UFM3 (1<<13)
// # define FLASH_SEC_CSEC (1<<14) /* not defined in later documentation */
// # define FLASH_SEC_USEC (1<<15) /* not defined in later documentation */
# define FLASH_SEC_PKEY (1<<16)
# define FLASH_SEC_AKEY (1<<17)
# define FLASH_SEC_FEA (1<<18)
# define FLASH_SEC_ALL 0x7FF
/* This uses the same defines as above (for ISC_ERASE)
* The Lattice Standard Doc for MachXO3D has incorrect list of operands for this
* command.
* This is document is more correct:
* fpga-tn-02119-1-1-using-hardened-control-functions-machxo3d-reference.pdf
*/
#define RESET_CFG_ADDR 0x46 /* LSC_INIT_ADDRESS */
/* Set the Page Address pointer to the Flash page specified */
#define LSC_WRITE_ADDRESS 0xB4
# define FLASH_SET_ADDR_CFG0 0x00
# define FLASH_SET_ADDR_UFM0 0x01
# define FLASH_SET_ADDR_FEA 0x03
# define FLASH_SET_ADDR_CFG1 0x04
# define FLASH_SET_ADDR_UFM1 0x05
# define FLASH_SET_ADDR_PKEY 0x06
//# define FLASH_SET_ADDR_CSEC 0x07 /* not defined in later documentation */
# define FLASH_SET_ADDR_UFM2 0x08
# define FLASH_SET_ADDR_UFM3 0x09
# define FLASH_SET_ADDR_AKEY 0x0A
//# define FLASH_SET_ADDR_USEC 0x0B /* not defined in later documentation */
/* Set the Page Address Pointer to the beginning of the UFM sectors.
* It appears that this function is required when setting address to UFM sectors
* The LSC_INIT_ADDRESS doesn't work when the sector is set to UFMx ... */
#define LSC_INIT_ADDR_UFM 0x47
# define FLASH_UFM_ADDR_UFM0 (1<<10)
# define FLASH_UFM_ADDR_UFM1 (1<<11)
# define FLASH_UFM_ADDR_UFM2 (1<<12)
# define FLASH_UFM_ADDR_UFM3 (1<<13)
#define PROG_CFG_FLASH 0x70 /* LSC_PROG_INCR_NV */
#define READ_BUSY_FLAG 0xF0 /* LSC_CHECK_BUSY */
/* The busy flag defines bit 7 as busy, but busy flags returns 1 for busy (bit 0). */
#define REG_CFG_FLASH 0x73 /* LSC_READ_INCR_NV */
#define PROG_FEATURE_ROW 0xE4 /* LSC_PROG_FEATURE */
#define READ_FEATURE_ROW 0xE7 /* LSC_READ_FEATURE */
/* See feaParser.hpp for FEATURE definitions */
#define PROG_FEABITS 0xF8 /* LSC_PROG_FEABITS */
#define READ_FEABITS 0xFB /* LSC_READ_FEABITS */
/* See feaParser.hpp for FEAbit definitions */
#define PROG_DONE 0x5E /* ISC_PROGRAM_DONE - This command is used to program the done bit */
#define REFRESH 0x79 /* LSC_REFRESH */
#define READ_STATUS_REGISTER 0x3C /* LSC_READ_STATUS */
# define REG_STATUS_DONE (1 << 8) /* Flash or SRAM Done Flag (ISC_EN=0 -> 1 Successful Flash to SRAM transfer, ISC_EN=1 -> 1 Programmed) */
# define REG_STATUS_ISC_EN (1 << 9) /* Enable Configuration Interface (1=Enable, 0=Disable) */
# define REG_STATUS_BUSY (1 << 12) /* Busy Flag (1 = Busy) */
# define REG_STATUS_FAIL (1 << 13) /* Fail Flag (1 = Operation failed) */
# define REG_STATUS_PP_CFG (1 << 15) /* Password Protection All Enabled for CFG0 and CFG1 flash sectors 0=Disabled (Default), 1=Enabled */
# define REG_STATUS_PP_FSK (1 << 16) /* Password Protection Enabled for Feature and Security Key flash sectors 0=Disabled (Default), 1=Enabled */
# define REG_STATUS_PP_UFM (1 << 17) /* Password Protection enabled for all UFM flash sectors 0=Disabled (Default), 1=Enabled */
# define REG_STATUS_AUTH_DONE (1 << 18) /* Authentication done */
# define REG_STATUS_PRI_BOOT_FAIL (1 << 21) /* Primary boot failure (1= Fail) even though secondary boot successful */
# define REG_STATUS_CNF_CHK_MASK (0x0f << 22) /* Configuration Status Check */
# define REG_STATUS_EXEC_ERR (1 << 26) /*** NOT specified for MachXO3D ***/
# define REG_STATUS_DEV_VERIFIED (1 << 27) /* I=0 Device verified correct, I=1 Device failed to verify */
#define READ_STATUS_REGISTER_1 0x3D /* LSC_READ_STATUS_1 */
# define REG_STATUS1_FLASH_SEL (0x0f << 0) /* Flash sector selection 1=CFG0, 2=CFG1, 4=FEATURE, 5=Pub Key, 6=AES Key, 8=UFM0, 10=UFM1, 11=UFM2, 12=UFM3 */
# define REG_STATUS1_ERASE_DISABLE (1 << 4) /* Erase operation is prohibited (1 = Erase disable) */
# define REG_STATUS1_PROG_DISABLE (1 << 5) /* Program operation is prohibited (1 = Programing disable) */
# define REG_STATUS1_READ_DISABLE (1 << 6) /* Read operation is prohibited (1 = Read disable) */
# define REG_STATUS1_HS_LOCK_SEL (1 << 7) /* Hard/Soft Lock Selection (1 = Hard Lock, 0 = Soft Lock) */
# define REG_STATUS1_AUTH_MODE (0x03 << 8) /* Authentication mode: 0x: No Authentication, 10: HMAC Authentication, 11: ECDSA Signature Verification */
# define REG_STATUS1_AUTH_DONE_CFG0 (1 << 10) /* Authentication done for CFG0 (1 = Authentication successful) */
# define REG_STATUS1_AUTH_DONE_CFG1 (1 << 11) /* Authentication done for CFG1 (1 = Authentication successful) */
# define REG_STATUS1_FLASH_DONE_CFG0 (1 << 12) /* Flash done bit is programmed of CFG0 (1= Programmed, 0=Unprogrammed) */
# define REG_STATUS1_FLASH_DONE_CFG1 (1 << 13) /* Flash done bit is programmed of CFG1 (1= Programmed, 0=Unprogrammed) */
# define REG_STATUS1_SEC_PLUS_EN_CFG0 (1 << 14) /* Security Plus enabled for CFG0 (1 = Enabled, 0 = Disabled) */
# define REG_STATUS1_SEC_PLUS_EN_CFG1 (1 << 15) /* Security Plus enabled for CFG1 (1 = Enabled, 0 = Disabled) */
# define REG_STATUS1_BITSTR_VERSION (1 << 16) /* Bitstream version: 1 = Bitstream in CFG0 is latter (newer) than CFG1, 0 = Bitstream in CFG1 is latter (newer) than CFG0 */
# define REG_STATUS1_BOOT_SEQ_SEL (0x03 << 17) /* Boot Sequence selection (used along with Master SPI Port Persistence bit) */
# define REG_STATUS1_MSPI_PERS (1 << 20) /* Master SPI Port Persistence 0=Disabled (Default), 1=Enabled */
# define REG_STATUS1_I2C_DG_FILTER (1 << 21) /* I2C deglitch filter enable for Primary I2C Port 0=Disabled (Default), 1=Enabled */
# define REG_STATUS1_I2C_DG_RANGE (1 << 22) /* I2C deglitch filter range selection on primary I2C port 0= 8 to 25 ns range (Default), 1= 16 to 50 ns range */
#define PROG_ECDSA_PUBKEY0 0x59 /* This command is used to program the first 128 bits of the ECDSA Public Key. */
#define READ_ECDSA_PUBKEY0 0x5A /* This command is used to read the first 128 bits of the ECDSA Public Key. */
#define PROG_ECDSA_PUBKEY1 0x5B /* This command is used to program the second 128 bits of the ECDSA Public Key. */
#define READ_ECDSA_PUBKEY1 0x5C /* This command is used to read the second 128 bits of the ECDSA Public Key. */
#define PROG_ECDSA_PUBKEY2 0x61 /* This command is used to program the third 128 bits of the ECDSA Public Key. */
#define READ_ECDSA_PUBKEY2 0x62 /* This command is used to read the third 128 bits of the ECDSA Public Key. */
#define PROG_ECDSA_PUBKEY3 0x63 /* This command is used to program the fourth 128 bits of the ECDSA Public Key. */
#define READ_ECDSA_PUBKEY3 0x64 /* This command is used to read the fourth 128 bits of the ECDSA Public Key. */
#define ISC_NOOP 0xff /* This command is no operation command (NOOP) or null operation. */
Lattice::Lattice(Jtag *jtag, const string filename, const string &file_type,
Device::prog_type_t prg_type, std::string flash_sector, bool verify, int8_t verbose):
Device(jtag, filename, file_type, verify, verbose),
_fpga_family(UNKNOWN_FAMILY), _flash_sector(LATTICE_FLASH_UNDEFINED)
{
if (prg_type == Device::RD_FLASH) {
_mode = READ_MODE;
} else if (!_file_extension.empty()) {
if (_file_extension == "jed" || _file_extension == "mcs" || _file_extension == "fea" || _file_extension == "pub") {
_mode = Device::FLASH_MODE;
} else if (_file_extension == "bit" || _file_extension == "bin") {
if (prg_type == Device::WR_FLASH)
_mode = Device::FLASH_MODE;
else
_mode = Device::MEM_MODE;
} else {
throw std::runtime_error("incompatible file format");
}
}
/* check device family */
uint32_t idcode = _jtag->get_target_device_id();
string family = fpga_list[idcode].family;
if (family == "MachXO2")
_fpga_family = MACHXO2_FAMILY;
else if (family == "MachXO3LF")
_fpga_family = MACHXO3_FAMILY;
else if (family == "MachXO3D") {
_fpga_family = MACHXO3D_FAMILY;
if (flash_sector == "CFG0") {
_flash_sector = LATTICE_FLASH_CFG0;
printInfo("Flash Sector: CFG0", true);
} else if (flash_sector == "CFG1") {
_flash_sector = LATTICE_FLASH_CFG1;
printInfo("Flash Sector: CFG1", true);
} else if (flash_sector == "UFM0") {
_flash_sector = LATTICE_FLASH_UFM0;
printInfo("Flash Sector: UFM0", true);
} else if (flash_sector == "UFM1") {
_flash_sector = LATTICE_FLASH_UFM1;
printInfo("Flash Sector: UFM1", true);
} else if (flash_sector == "UFM2") {
_flash_sector = LATTICE_FLASH_UFM2;
printInfo("Flash Sector: UFM2", true);
} else if (flash_sector == "UFM3") {
_flash_sector = LATTICE_FLASH_UFM3;
printInfo("Flash Sector: UFM3", true);
} else if (flash_sector == "FEA") {
_flash_sector = LATTICE_FLASH_FEA;
printInfo("Flash Sector: FEA", true);
} else {
printError("Unknown flash sector");
throw std::exception();
}
} else if (family == "ECP5")
_fpga_family = ECP5_FAMILY;
else if (family == "CrosslinkNX")
_fpga_family = NEXUS_FAMILY;
else if (family == "CertusNX")
_fpga_family = NEXUS_FAMILY;
else {
printError("Unknown device family");
throw std::exception();
}
}
void displayFeabits(uint16_t _featbits)
{
uint8_t boot_sequence = (_featbits >> 12) & 0x03;
uint8_t m = (_featbits >> 11) & 0x01;
printf("\tboot mode :");
switch (boot_sequence) {
case 0:
if (m != 0x01)
printf(" Single Boot from NVCM/Flash\n");
else
printf(" Dual Boot from NVCM/Flash then External if there is a failure\n");
break;
case 1:
if (m == 0x01)
printf(" Single Boot from External Flash\n");
else
printf(" Error!\n");
break;
default:
printf(" Error!\n");
}
printf("\tMaster Mode SPI : %s\n",
(((_featbits>>11)&0x01)?"enable":"disable"));
printf("\tI2c port : %s\n",
(((_featbits>>10)&0x01)?"disable":"enable"));
printf("\tSlave SPI port : %s\n",
(((_featbits>>9)&0x01)?"disable":"enable"));
printf("\tJTAG port : %s\n",
(((_featbits>>8)&0x01)?"disable":"enable"));
printf("\tDONE : %s\n",
(((_featbits>>7)&0x01)?"enable":"disable"));
printf("\tINITN : %s\n",
(((_featbits>>6)&0x01)?"enable":"disable"));
printf("\tPROGRAMN : %s\n",
(((_featbits>>5)&0x01)?"disable":"enable"));
printf("\tMy_ASSP : %s\n",
(((_featbits>>4)&0x01)?"enable":"disable"));
printf("\tPassword (Flash Protect Key) Protect All : %s\n",
(((_featbits>>3)&0x01)?"Enaabled" : "Disabled"));
printf("\tPassword (Flash Protect Key) Protect : %s\n",
(((_featbits>>2)&0x01)?"Enabled" : "Disabled"));
}
bool Lattice::checkStatus(uint32_t val, uint32_t mask)
{
uint32_t reg = readStatusReg();
return ((reg & mask) == val) ? true : false;
}
bool Lattice::program_mem()
{
bool err;
LatticeBitParser _bit(_filename, _verbose);
printInfo("Open file: ", false);
printSuccess("DONE");
err = _bit.parse();
printInfo("Parse file: ", false);
if (err == EXIT_FAILURE) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
_bit.displayHeader();
/* read ID Code 0xE0 */
if (_verbose) {
printf("IDCode : %x\n", idCode());
displayReadReg(readStatusReg());
}
/* The command code 0x1C is not listed in the manual? */
/* preload 0x1C */
uint8_t tx_buf[26];
memset(tx_buf, 0xff, 26);
wr_rd(0x1C, tx_buf, 26, NULL, 0);
wr_rd(0xFf, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x00)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* ISC ERASE */
printInfo("SRAM erase: ", false);
if (flashErase(FLASH_ERASE_SRAM) == false) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* LSC_INIT_ADDRESS */
wr_rd(0x46, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
uint8_t *data = _bit.getData();
int length = _bit.getLength()/8;
wr_rd(0x7A, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
uint8_t tmp[1024];
int size = 1024;
int next_state = Jtag::SHIFT_DR;
ProgressBar progress("Loading", length, 50, _quiet);
for (int i = 0; i < length; i += size) {
progress.display(i);
if (length < i + size) {
size = length-i;
next_state = Jtag::RUN_TEST_IDLE;
}
for (int ii = 0; ii < size; ii++)
tmp[ii] = ConfigBitstreamParser::reverseByte(data[i+ii]);
_jtag->shiftDR(tmp, NULL, size*8, next_state);
}
if (checkStatus(0, REG_STATUS_CNF_CHK_MASK))
progress.done();
else {
progress.fail();
displayReadReg(readStatusReg());
return false;
}
wr_rd(0xff, NULL, 0, NULL, 0);
if (_verbose)
printf("userCode: %08x\n", userCode());
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
displayReadReg(readStatusReg());
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
_jtag->go_test_logic_reset();
return true;
}
bool Lattice::program_intFlash(JedParser& _jed)
{
uint64_t featuresRow;
uint16_t feabits;
uint8_t eraseMode = 0;
vector<string> ufm_data, cfg_data, ebr_data;
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 followed by
* 0x08 (Enable nVCM/Flash Normal mode */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x08)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
for (size_t i = 0; i < _jed.nb_section(); i++) {
string note = _jed.noteForSection(i);
if (note == "TAG DATA") {
eraseMode |= FLASH_ERASE_UFM;
ufm_data = _jed.data_for_section(i);
} else if (note == "END CONFIG DATA") {
continue;
} else if (note == "EBR_INIT DATA") {
ebr_data = _jed.data_for_section(i);
} else {
cfg_data = _jed.data_for_section(i);
}
}
/* check if feature area must be updated */
featuresRow = _jed.featuresRow();
feabits = _jed.feabits();
eraseMode = FLASH_ERASE_CFG;
if (featuresRow != readFeaturesRow() || feabits != readFeabits())
eraseMode |= FLASH_ERASE_FEATURE;
/* ISC ERASE */
printInfo("Flash erase: ", false);
if (flashErase(eraseMode) == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* LSC_INIT_ADDRESS */
wr_rd(0x46, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
/* flash CfgFlash */
if (false == flashProg(0, "data", cfg_data))
return false;
/* flash EBR Init */
if (ebr_data.size()) {
if (false == flashProg(0, "EBR", ebr_data))
return false;
}
/* verify write */
if (_verify) {
if (Verify(cfg_data) == false)
return false;
}
/* missing usercode update */
/* LSC_INIT_ADDRESS */
wr_rd(0x46, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if ((eraseMode & FLASH_ERASE_FEATURE) != 0) {
/* write feature row */
printInfo("Program features Row: ", false);
if (writeFeaturesRow(_jed.featuresRow(), true) == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* write feabits */
printInfo("Program feabits: ", false);
if (writeFeabits(_jed.feabits(), true) == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
}
/* ISC program done 0x5E */
printInfo("Write program Done: ", false);
if (writeProgramDone() == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
return true;
}
bool Lattice::program_extFlash(unsigned int offset)
{
ConfigBitstreamParser *_bit;
if (_file_extension == "mcs")
_bit = new McsParser(_filename, true, _verbose);
else if (_file_extension == "bit")
_bit = new LatticeBitParser(_filename, _verbose);
else
_bit = new RawParser(_filename, false);
printInfo("Open file ", false);
printSuccess("DONE");
int err = _bit->parse();
printInfo("Parse file ", false);
if (err == EXIT_FAILURE) {
printError("FAIL");
delete _bit;
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
_bit->displayHeader();
/*IR = 0h3A, DR=0hFE,0h68. Enter RUNTESTIDLE.
* thank @GregDavill
* https://twitter.com/GregDavill/status/1251786406441086977
*/
_jtag->shiftIR(0x3A, 8, Jtag::EXIT1_IR);
uint8_t tmp[2] = {0xFE, 0x68};
_jtag->shiftDR(tmp, NULL, 16);
uint8_t *data = _bit->getData();
int length = _bit->getLength()/8;
/* test SPI */
SPIFlash flash(this, _verbose);
flash.reset();
flash.read_id();
flash.read_status_reg();
flash.erase_and_prog(offset, data, length);
int ret = true;
if (_verify)
ret = flash.verify(offset, data, length);
delete _bit;
return ret;
}
bool Lattice::program_flash(unsigned int offset)
{
uint32_t erase_op;
/* read ID Code 0xE0 */
if (_verbose) {
printf("IDCode : %x\n", idCode());
displayReadReg(readStatusReg());
}
/* preload 0x1C */
uint8_t tx_buf[26];
memset(tx_buf, 0xff, 26);
wr_rd(0x1C, tx_buf, 26, NULL, 0);
wr_rd(0xFf, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x00)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
if (_fpga_family == MACHXO3D_FAMILY)
erase_op = 0x0;
else
erase_op = FLASH_ERASE_SRAM;
/* ISC ERASE */
printInfo("SRAM erase: ", false);
if (flashErase(erase_op) == false) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
DisableISC();
bool retval;
if (_file_extension == "jed") {
bool err;
JedParser _jed(_filename, _verbose);
printInfo("Open file ", false);
printSuccess("DONE");
err = _jed.parse();
printInfo("Parse file ", false);
if (err == EXIT_FAILURE) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
_jed.displayHeader();
if (_fpga_family == MACHXO3D_FAMILY)
retval = program_intFlash_MachXO3D(_jed);
else
retval = program_intFlash(_jed);
}
else if (_file_extension == "fea") {
retval = program_fea_MachXO3D();
}
else
retval = program_extFlash(offset);
if (!retval)
return false;
/* *************************** */
/* reload bitstream from flash */
/* *************************** */
/* ISC REFRESH 0x79 */
printInfo("Refresh: ", false);
if (loadConfiguration() == false) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
_jtag->go_test_logic_reset();
return true;
}
void Lattice::program(unsigned int offset)
{
bool retval;
if (_mode == FLASH_MODE)
retval = program_flash(offset);
else if (_mode == MEM_MODE)
retval = program_mem();
if (!retval)
throw std::exception();
}
bool Lattice::dumpFlash(const string &filename,
uint32_t base_addr, uint32_t len)
{
/* idem program */
/* preload 0x1C */
uint8_t tx_buf[26];
memset(tx_buf, 0xff, 26);
wr_rd(0x1C, tx_buf, 26, NULL, 0);
wr_rd(0xFf, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x00)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* ISC ERASE */
printInfo("SRAM erase: ", false);
if (flashErase(FLASH_ERASE_SRAM) == false) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
DisableISC();
/* switch to SPI mode */
_jtag->shiftIR(0x3A, 8, Jtag::EXIT1_IR);
uint8_t tmp[2] = {0xFE, 0x68};
_jtag->shiftDR(tmp, NULL, 16);
/* prepare SPI access */
SPIFlash flash(this, _verbose);
flash.reset();
flash.dump(filename, base_addr, len);
/* ISC REFRESH 0x79 */
printInfo("Refresh: ", false);
if (loadConfiguration() == false) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(0xff, NULL, 0, NULL, 0);
_jtag->go_test_logic_reset();
return true;
}
/* flash mode :
*/
bool Lattice::EnableISC(uint8_t flash_mode)
{
wr_rd(ISC_ENABLE, &flash_mode, 1, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(REG_STATUS_ISC_EN, REG_STATUS_ISC_EN))
return false;
return true;
}
bool Lattice::DisableISC()
{
wr_rd(ISC_DISABLE, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(0, REG_STATUS_ISC_EN))
return false;
return true;
}
bool Lattice::EnableCfgIf()
{
uint8_t tx_buf = 0x08;
wr_rd(0x74, &tx_buf, 1, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
return pollBusyFlag();
}
bool Lattice::DisableCfg()
{
uint8_t tx_buf, rx_buf;
wr_rd(0x26, &tx_buf, 1, &rx_buf, 1);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
return true;
}
int Lattice::idCode()
{
uint8_t device_id[4];
wr_rd(READ_DEVICE_ID_CODE, NULL, 0, device_id, 4);
return device_id[3] << 24 |
device_id[2] << 16 |
device_id[1] << 8 |
device_id[0];
}
int Lattice::userCode()
{
uint8_t usercode[4];
wr_rd(0xC0, NULL, 0, usercode, 4);
return usercode[3] << 24 |
usercode[2] << 16 |
usercode[1] << 8 |
usercode[0];
}
bool Lattice::checkID()
{
printf("\n");
printf("check ID\n");
uint8_t tx[4];
wr_rd(0xE2, tx, 4, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
uint32_t reg = readStatusReg();
displayReadReg(reg);
tx[3] = 0x61;
tx[2] = 0x2b;
tx[1] = 0xd0;
tx[0] = 0x43;
wr_rd(0xE2, tx, 4, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
reg = readStatusReg();
displayReadReg(reg);
printf("%08x\n", reg);
printf("\n");
return true;
}
/* feabits is MSB first
* maybe this register too
* or not
*/
uint32_t Lattice::readStatusReg()
{
uint32_t reg;
uint8_t rx[4], tx[4];
/* valgrind warn */
memset(tx, 0, 4);
wr_rd(READ_STATUS_REGISTER, tx, 4, rx, 4);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
reg = rx[3] << 24 | rx[2] << 16 | rx[1] << 8 | rx[0];
return reg;
}
bool Lattice::wr_rd(uint8_t cmd,
uint8_t *tx, int tx_len,
uint8_t *rx, int rx_len,
bool verbose)
{
int xfer_len = rx_len;
if (tx_len > rx_len)
xfer_len = tx_len;
uint8_t xfer_tx[xfer_len];
uint8_t xfer_rx[xfer_len];
memset(xfer_tx, 0, xfer_len);
int i;
if (tx != NULL) {
for (i = 0; i < tx_len; i++)
xfer_tx[i] = tx[i];
}
_jtag->shiftIR(&cmd, NULL, 8, Jtag::PAUSE_IR);
if (rx || tx) {
_jtag->shiftDR(xfer_tx, (rx) ? xfer_rx : NULL, 8 * xfer_len,
Jtag::PAUSE_DR);
}
if (rx) {
if (verbose) {
for (i=xfer_len-1; i >= 0; i--)
printf("%02x ", xfer_rx[i]);
printf("\n");
}
for (i = 0; i < rx_len; i++)
rx[i] = (xfer_rx[i]);
}
return true;
}
void Lattice::displayReadReg(uint32_t dev)
{
uint8_t err;
printf("displayReadReg\n");
if (dev & 1<<0) printf("\tTRAN Mode\n");
printf("\tConfig Target Selection : %x\n", (dev >> 1) & 0x07);
if (dev & 1<<4) printf("\tJTAG Active\n");
if (dev & 1<<5) printf("\tPWD Protect\n");
if (dev & 1<<6) printf("\tOTP\n");
if (dev & 1<<7) printf("\tDecrypt Enable\n");
if (dev & REG_STATUS_DONE) printf("\tDone Flag\n");
if (dev & REG_STATUS_ISC_EN) printf("\tISC Enable\n");
if (dev & 1 << 10) printf("\tWrite Enable\n");
if (dev & 1 << 11) printf("\tRead Enable\n");
if (dev & REG_STATUS_BUSY) printf("\tBusy Flag\n");
if (dev & REG_STATUS_FAIL) printf("\tFail Flag\n");
if (dev & 1 << 14) printf("\tFFEA OTP\n");
if (dev & 1 << 15) printf("\tDecrypt Only\n");
if (dev & 1 << 16) printf("\tPWD Enable\n");
if (_fpga_family == NEXUS_FAMILY) {
if (dev & 1 << 17) printf("\tPWD All\n");
if (dev & 1 << 18) printf("\tCID En\n");
if (dev & 1 << 19) printf("\tinternal use\n");
if (dev & 1 << 21) printf("\tEncryption PreAmble\n");
if (dev & 1 << 22) printf("\tStd PreAmble\n");
if (dev & 1 << 23) printf("\tSPIm Fail1\n");
err = (dev >> 24)&0x0f;
} else {
if (dev & 1 << 17) printf("\tUFM OTP\n");
if (dev & 1 << 18) printf("\tASSP\n");
if (dev & 1 << 19) printf("\tSDM Enable\n");
if (dev & 1 << 20) printf("\tEncryption PreAmble\n");
if (dev & 1 << 21) printf("\tStd PreAmble\n");
if (dev & 1 << 22) printf("\tSPIm Fail1\n");
err = (dev >> 23)&0x07;
}
printf("\t");
switch (err) {
case 0:
printf("No err\n");
break;
case 1:
printf("ID ERR\n");
break;
case 2:
printf("CMD ERR\n");
break;
case 3:
printf("CRC ERR\n");
break;
case 4:
printf("Preamble ERR\n");
break;
case 5:
printf("Abort ERR\n");
break;
case 6:
printf("Overflow ERR\n");
break;
case 7:
printf("SDM EOF\n");
break;
default:
printf("unknown %x\n", err);
}
if (_fpga_family == NEXUS_FAMILY) {
if ((dev >> 28) & 0x01) printf("\tEXEC Error\n");
if ((dev >> 29) & 0x01) printf("\tID Error\n");
if ((dev >> 30) & 0x01) printf("\tInvalid Command\n");
if ((dev >> 31) & 0x01) printf("\tWDT Busy\n");
} else {
if (dev & REG_STATUS_EXEC_ERR) printf("\tEXEC Error\n");
if ((dev >> 27) & 0x01) printf("\tDevice failed to verify\n");
if ((dev >> 28) & 0x01) printf("\tInvalid Command\n");
if ((dev >> 29) & 0x01) printf("\tSED Error\n");
if ((dev >> 30) & 0x01) printf("\tBypass Mode\n");
if ((dev >> 31) & 0x01) printf("\tFT Mode\n");
}
#if 0
if (_fpga_family == NEXUS_FAMILY) {
if ((dev >> 33) & 0x01) printf("\tDry Run Done\n");
err = (dev >> 34)&0x0f;
printf("\tBSE Error 1 Code for previous bitstream execution\n");
printf("\t\t");
switch (err) {
case 0:
printf("No err\n");
break;
case 1:
printf("ID ERR\n");
break;
case 2:
printf("CMD ERR\n");
break;
case 3:
printf("CRC ERR\n");
break;
case 4:
printf("Preamble ERR\n");
break;
case 5:
printf("Abort ERR\n");
break;
case 6:
printf("Overflow ERR\n");
break;
case 7:
printf("SDM EOF\n");
break;
case 8:
printf("Authentification ERR\n");
break;
case 9:
printf("Authentification Setup ERR\n");
break;
case 10:
printf("Bitstream Engine Timeout ERR\n");
break;
default:
printf("unknown %x\n", err);
}
if ((dev >> 38) & 0x01) printf("\tBypass Mode\n");
if ((dev >> 39) & 0x01) printf("\tFlow Through Mode\n");
if ((dev >> 42) & 0x01) printf("\tSFDP Timeout\n");
if ((dev >> 43) & 0x01) printf("\tKey Destroy pass\n");
if ((dev >> 44) & 0x01) printf("\tINITN\n");
if ((dev >> 45) & 0x01) printf("\tI3C Parity Error2\n");
if ((dev >> 46) & 0x01) printf("\tINIT Bus ID Error\n");
if ((dev >> 47) & 0x01) printf("\tI3C Parity Error1\n");
err = (dev >> 48) & 0x03;
printf("\tAuthentification mode:\n");
printf("\t\t");
switch (err) {
case 3:
case 0:
printf("No Auth\n");
break;
case 1:
printf("ECDSA\n");
break;
case 2:
printf("HMAC\n");
break;
}
if ((dev >> 50) & 0x01) printf("\tAuthentification Done\n");
if ((dev >> 51) & 0x01) printf("\tDry Run Authentification Done\n");
#endif
}
bool Lattice::pollBusyFlag(bool verbose)
{
uint8_t rx;
int timeout = 0;
do {
wr_rd(READ_BUSY_FLAG, NULL, 0, &rx, 1);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (verbose)
printf("pollBusyFlag :%02x\n", rx);
if (timeout == 100000000){
cerr << "timeout" << endl;
return false;
} else {
timeout++;
}
} while (rx != 0);
return true;
}
bool Lattice::flashEraseAll()
{
return flashErase(0xf);
}
bool Lattice::flashErase(uint32_t mask)
{
if (_fpga_family == MACHXO3D_FAMILY) {
uint8_t tx[2] = {
(uint8_t)((mask >> 8) & 0xff),
(uint8_t)((mask >> 16) & 0xff)
};
wr_rd(FLASH_ERASE, tx, 2, NULL, 0);
}
else {
uint8_t tx[1] = {(uint8_t)(mask & 0xff)};
wr_rd(FLASH_ERASE, tx, 1, NULL, 0);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(0, REG_STATUS_FAIL))
return false;
return true;
}
bool Lattice::flashProg(uint32_t start_addr, const string &name, vector<string> data)
{
(void)start_addr;
ProgressBar progress("Writing " + name, data.size(), 50, _quiet);
for (uint32_t line = 0; line < data.size(); line++) {
wr_rd(PROG_CFG_FLASH, (uint8_t *)data[line].c_str(),
16, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
progress.display(line);
if (pollBusyFlag() == false)
return false;
}
progress.done();
return true;
}
bool Lattice::Verify(std::vector<std::string> data, bool unlock, uint32_t flash_area)
{
uint8_t tx_buf[16], rx_buf[16];
if (unlock)
EnableISC(0x08);
if (_fpga_family == MACHXO3D_FAMILY) {
uint8_t tx[2] = { (
uint8_t)((flash_area >> 8) & 0xff),
(uint8_t)((flash_area >> 16) & 0xff)
};
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
} else {
wr_rd(RESET_CFG_ADDR, NULL, 0, NULL, 0);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
tx_buf[0] = REG_CFG_FLASH;
_jtag->shiftIR(tx_buf, NULL, 8, Jtag::PAUSE_IR);
memset(tx_buf, 0, 16);
bool failure = false;
ProgressBar progress("Verifying", data.size(), 50, _quiet);
for (size_t line = 0; line< data.size(); line++) {
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
_jtag->shiftDR(tx_buf, rx_buf, 16*8, Jtag::PAUSE_DR);
for (size_t i = 0; i < data[line].size(); i++) {
if (rx_buf[i] != (unsigned char)data[line][i]) {
printf("%3zu %3zu %02x -> %02x\n", line, i,
rx_buf[i], (unsigned char)data[line][i]);
failure = true;
}
}
if (failure) {
printf("Verify Failure\n");
break;
}
progress.display(line);
}
if (unlock)
DisableISC();
if (failure)
progress.fail();
else
progress.done();
return !failure;
}
uint64_t Lattice::readFeaturesRow()
{
uint8_t tx_buf[8];
uint8_t rx_buf[8];
uint64_t reg = 0;
memset(tx_buf, 0, 8);
wr_rd(READ_FEATURE_ROW, tx_buf, 8, rx_buf, 8);
for (int i = 0; i < 8; i++)
reg |= ((uint64_t)rx_buf[i] << (i*8));
return reg;
}
uint16_t Lattice::readFeabits()
{
uint8_t rx_buf[2];
wr_rd(READ_FEABITS, NULL, 0, rx_buf, 2);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
return rx_buf[0] | (((uint16_t)rx_buf[1]) << 8);
}
bool Lattice::writeFeaturesRow(uint64_t features, bool verify)
{
uint8_t tx_buf[8];
for (int i=0; i < 8; i++)
tx_buf[i] = ((features >> (i*8)) & 0x00ff);
wr_rd(PROG_FEATURE_ROW, tx_buf, 8, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (verify)
return (features == readFeaturesRow()) ? true : false;
return true;
}
bool Lattice::writeFeabits(uint16_t feabits, bool verify)
{
uint8_t tx_buf[2] = {(uint8_t)(feabits&0x00ff),
(uint8_t)(0x00ff & (feabits>>8))};
wr_rd(PROG_FEABITS, tx_buf, 2, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (verify)
return (feabits == readFeabits()) ? true : false;
return true;
}
bool Lattice::writeProgramDone()
{
wr_rd(PROG_DONE, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(REG_STATUS_DONE, REG_STATUS_DONE))
return false;
return true;
}
bool Lattice::loadConfiguration()
{
wr_rd(REFRESH, NULL, 0, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
if (!pollBusyFlag())
return false;
if (!checkStatus(REG_STATUS_DONE, REG_STATUS_DONE))
return false;
return true;
}
/* ------------------ */
/* SPI implementation */
/* ------------------ */
int Lattice::spi_put(uint8_t cmd, uint8_t *tx, uint8_t *rx, uint32_t len)
{
int xfer_len = len + 1;
uint8_t jtx[xfer_len];
uint8_t jrx[xfer_len];
jtx[0] = LatticeBitParser::reverseByte(cmd);
if (tx != NULL) {
for (uint32_t i=0; i < len; i++)
jtx[i+1] = LatticeBitParser::reverseByte(tx[i]);
}
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = LatticeBitParser::reverseByte(jrx[i+1]);
}
return 0;
}
int Lattice::spi_put(uint8_t *tx, uint8_t *rx, uint32_t len)
{
int xfer_len = len;
uint8_t jtx[xfer_len];
uint8_t jrx[xfer_len];
if (tx != NULL) {
for (uint32_t i=0; i < len; i++)
jtx[i] = LatticeBitParser::reverseByte(tx[i]);
}
/* send first already stored cmd,
* in the same time store each byte
* to next
*/
_jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len);
if (rx != NULL) {
for (uint32_t i=0; i < len; i++)
rx[i] = LatticeBitParser::reverseByte(jrx[i]);
}
return 0;
}
int Lattice::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond,
uint32_t timeout, bool verbose)
{
uint8_t rx;
uint8_t dummy[2];
uint8_t tmp;
uint8_t tx = LatticeBitParser::reverseByte(cmd);
uint32_t count = 0;
/* CS is low until state goes to EXIT1_IR
* so manually move to state machine to stay is this
* state as long as needed
*/
_jtag->shiftDR(&tx, NULL, 8, Jtag::SHIFT_DR);
do {
_jtag->shiftDR(dummy, &rx, 8, Jtag::SHIFT_DR);
tmp = (LatticeBitParser::reverseByte(rx));
count ++;
if (count == timeout){
printf("timeout: %x %x %u\n", tmp, rx, count);
break;
}
if (verbose) {
printf("%x %x %x %u\n", tmp, mask, cond, count);
}
} while ((tmp & mask) != cond);
_jtag->shiftDR(dummy, &rx, 8, Jtag::RUN_TEST_IDLE);
if (count == timeout) {
printf("%x\n", tmp);
std::cout << "wait: Error" << std::endl;
return -ETIME;
} else
return 0;
}
/*************************** MODS FOR MacXO3D *********************************/
bool Lattice::programFeatureRow_MachXO3D(uint8_t* feature_row)
{
uint8_t tx[16] = { 0 };
uint8_t rx[15] = { 0 };
for (int i = 0; i < 12; i++) {
tx[i] = feature_row[i];
}
if (_verbose) {
printf("\tProgramming feature row: [0x");
for (int i = 11; i >= 0; i--) {
printf("%02x", feature_row[i]);
}
printf("]\n");
}
wr_rd(PROG_FEATURE_ROW, tx, 16, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(0xff, NULL, 0, NULL, 0);
if (!pollBusyFlag())
return false;
if (_verbose || _verify) {
wr_rd(READ_FEATURE_ROW, NULL, 0, rx, 15);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
}
if (_verbose) {
printf("\tReadback Feature Row: [0x");
for(int i = 11; i >= 0; i--) {
printf("%02x", rx[i]);
}
printf("]\n");
}
if (_verify) {
for(int i = 0; i < 15; i++) {
if (feature_row[i] != rx[i]) {
printf("\tVerify Failed...\n");
return false;
}
}
}
return true;
}
bool Lattice::programFeabits_MachXO3D(uint32_t feabits)
{
uint8_t tx[4] = { 0 };
uint8_t rx[5] = { 0 };
memset(tx, 0, sizeof(tx));
for (int i = 0; i < 4; i++) {
tx[i] = (feabits >> (8*i)) & 0xff;
}
if (_verbose) {
printf("\tProgramming FEAbits: [0x");
for (int i = 4; i >= 0; i--) {
printf("%02x", tx[i]);
}
printf("]\n");
}
wr_rd(PROG_FEABITS, tx, 4, NULL, 0);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
wr_rd(0xff, NULL, 0, NULL, 0);
if (!pollBusyFlag())
return false;
if (_verbose || _verify) {
wr_rd(READ_FEABITS, NULL, 0, rx, 5);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
}
if (_verbose) {
printf("\tReadback Feabits: [0x");
for(int i = 4; i >= 0; i--) {
printf("%02x", rx[i]);
}
printf("]\n");
}
if (_verify) {
for(int i = 0; i < 4; i++) {
if (((feabits >> (8*i)) & 0xff) != rx[i]) {
printf("\tVerify Failed...\n");
return false;
}
}
}
return true;
}
bool Lattice::program_fea_MachXO3D()
{
bool err;
uint8_t rx[15] = { 0 };
uint8_t tx[16] = { 0 };
bool same = true;
FeaParser _fea(_filename, _verbose);
printInfo("Open file: ", false);
printSuccess("DONE");
err = _fea.parse();
printInfo("Parse file: ", false);
if (err == EXIT_FAILURE) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
if (_verbose)
_fea.displayHeader();
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 with operand of 0x08 (Enable Offline mode) */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x08)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* read the current feature row */
wr_rd(READ_FEATURE_ROW, NULL, 0, rx, 12);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
if (_verbose) {
printf("Read Feature Row: [0x");
for(int i = 11; i >= 0; i--) {
printf("%02x", rx[i]);
}
printf("]\n");
}
uint8_t* feature_row = (uint8_t*)_fea.featuresRow();
for (int i = 0; i < 12; i++) {
if (feature_row[i] != rx[i])
same = false;
}
/* read the current FEAbits */
uint32_t feabits = _fea.feabits();
wr_rd(READ_FEABITS, NULL, 0, rx, 6);
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(2);
if (_verbose) {
printf("Read Feabits: [0x");
for(int i = 4; i >= 0; i--) {
printf("%02x", rx[i]);
}
printf("]\n");
}
for (int i = 0; i < 4; i++) {
if ((feabits >> (i * 8) & 0xff) != rx[i])
same = false;
}
printf("Feature Row / Feabits Compare: %s\n", same ? "Same" : "Different");
if (same == false) {
/* LSC_INIT_ADDRESS */
tx[0] = (uint8_t)((FLASH_SEC_FEA >> 8) & 0xff);
tx[1] = (uint8_t)((FLASH_SEC_FEA >> 16) & 0xff);
if (_verbose)
printf("Selected address (I): 0x%x 0x%x\n", tx[0], tx[1]);
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
/* ISC ERASE */
printInfo("Flash erase: ", false);
if (flashErase(FLASH_SEC_FEA) == false) {
printError("FAIL");
return false;
}
else {
printSuccess("DONE");
}
/* FEATURE Row */
printInfo("Program Feature Row: ", true);
if (!programFeatureRow_MachXO3D(feature_row)) {
printError("FAIL");
return false;
}
else {
printSuccess("DONE");
}
/* FEAbits */
printInfo("Program FEAbits: ", true);
if (!programFeabits_MachXO3D(feabits)) {
printError("FAIL");
return false;
}
else {
printSuccess("DONE");
}
}
/* ISC program done 0x5E */
printInfo("Write program Done: ", false);
if (writeProgramDone() == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
return true;
}
bool Lattice::program_intFlash_MachXO3D(JedParser& _jed)
{
uint32_t erase_op = 0, prog_op = 0;
vector<string> data;
int offset, fuse_count;
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* ISC Enable 0xC6 with operand of 0x08 (Enable Offline mode) */
printInfo("Enable configuration: ", false);
if (!EnableISC(0x08)) {
printError("FAIL");
displayReadReg(readStatusReg());
return false;
} else {
printSuccess("DONE");
}
/* this is the size of an CFGx+UFMx area in bits (hence the / 128) */
fuse_count = _jed.get_fuse_count() / 128;
for (size_t i = 0; i < _jed.nb_section(); i++) {
std::string area_name;
data = _jed.data_for_section(i);
if (data.size() < 1) {
/* if no data, nothing to do */
continue;
}
string note = _jed.noteForSection(i);
offset = _jed.offset_for_section(i) / 128;
erase_op = 0;
prog_op = 0;
/* if the offset > total fuse count, then this file must be configured
* for the 2nd config sector (CFG1), so adjust offset */
while (offset >= fuse_count) {
offset -= fuse_count;
}
/* If the offset is greater than the size of the config area then we're
* programming the UFM area (UFM 0/1) */
if (offset >= 12542) {
offset -= 12542;
}
if (note == "END CONFIG DATA") {
printf("Processing PADDING data (offset: %d (0x%x))\n", offset, offset);
/* PADDING - this should be padding to CFGx area that we're currently
* programming therefore the flash area will already have been erased...
* NOTE: We have to write this data if we're using bitstream authentication
* - even if it's all zeros.
*/
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set not only the
* flash sector but also the page number. */
if (_flash_sector == LATTICE_FLASH_CFG0) {
prog_op = (FLASH_SET_ADDR_CFG0 << 14) | (offset);
area_name = "Padding (CFG0)";
}
else if (_flash_sector == LATTICE_FLASH_CFG1) {
prog_op = (FLASH_SET_ADDR_CFG1 << 14) | (offset);
area_name = "Padding (CFG1)";
}
/* offset should not be zero */
if (offset == 0) {
printf("Warning: offset (%u) is for programming PADDING\n", offset);
}
}
else if (note == "EBR_INIT DATA") {
printf("Processing EBR_INIT data (offset: %d (0x%x))\n", offset, offset);
/* EBR - Embedded Block RAM initialisation data */
if (offset == 0) {
if (_flash_sector == LATTICE_FLASH_CFG0) {
erase_op = FLASH_SEC_UFM0;
prog_op = FLASH_UFM_ADDR_UFM0;
area_name = "EBR (UFM0)";
}
else if (_flash_sector == LATTICE_FLASH_CFG1) {
erase_op = FLASH_SEC_UFM1;
prog_op = FLASH_UFM_ADDR_UFM1;
area_name = "EBR (UFM1)";
}
}
else {
/* NOT SUPPORTING NON-ZERO OFFSET WRITES...*/
continue;
}
}
else if (note.compare(0, 16, "USER MEMORY DATA") == 0) {
printf("Processing UFM data (offset: %d (0x%x))\n", offset, offset);
if ((_flash_sector == LATTICE_FLASH_CFG0)||
(_flash_sector == LATTICE_FLASH_UFM0)) {
if (offset == 0) {
erase_op = FLASH_SEC_UFM0;
prog_op = FLASH_UFM_ADDR_UFM0;
}
else {
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set the
* flash sector and the page number. */
prog_op = (FLASH_SET_ADDR_UFM0 << 14) | (offset);
}
area_name = "UFM0";
}
else if ((_flash_sector == LATTICE_FLASH_CFG1)||
(_flash_sector == LATTICE_FLASH_UFM1)) {
if (offset == 0) {
erase_op = FLASH_SEC_UFM1;
prog_op = FLASH_UFM_ADDR_UFM1;
}
else {
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set the
* flash sector and the page number. */
prog_op = (FLASH_SET_ADDR_UFM1 << 14) | (offset);
}
area_name = "UFM1";
}
else if (_flash_sector == LATTICE_FLASH_UFM2) {
if (offset == 0) {
erase_op = FLASH_SEC_UFM2;
prog_op = FLASH_UFM_ADDR_UFM2;
}
else {
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set the
* flash sector and the page number. */
prog_op = (FLASH_SET_ADDR_UFM2 << 14) | (offset);
}
area_name = "UFM2";
}
else if (_flash_sector == LATTICE_FLASH_UFM3) {
if (offset == 0) {
erase_op = FLASH_SEC_UFM3;
prog_op = FLASH_UFM_ADDR_UFM3;
}
else {
erase_op = 0;
/* We need to use the 'LSC_WRITE_ADDRESS' command to set the
* flash sector and the page number. */
prog_op = (FLASH_SET_ADDR_UFM3 << 14) | (offset);
}
area_name = "UFM3";
}
}
else {
printf("Processing CFG data (offset: %d (0x%x))\n", offset, offset);
if (_flash_sector == LATTICE_FLASH_CFG0) {
erase_op = FLASH_SEC_CFG0;
prog_op = FLASH_SEC_CFG0;
area_name = "Data (CFG0)";
}
else if (_flash_sector == LATTICE_FLASH_CFG1) {
erase_op = FLASH_SEC_CFG1;
prog_op = FLASH_SEC_CFG1;
area_name = "Data (CFG1)";
}
/* offset should be zero */
if (offset != 0) {
printf("Warning: offset (%u) is not 0 for programming CFG\n", offset);
}
}
if (erase_op > 0) {
/* ISC ERASE */
printInfo("Flash erase: ", false);
if (flashErase(erase_op) == false) {
printError("FAIL");
return false;
}
else {
printSuccess("DONE");
}
}
if (offset == 0) {
/* LSC_INIT_ADDRESS */
uint8_t tx[2] = {
(uint8_t)((prog_op >> 8) & 0xff),
(uint8_t)((prog_op >> 16) & 0xff)
};
printf("address (I): 0x%x 0x%x\n", tx[0], tx[1]);
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
}
else {
/* LSC_WRITE_ADDRESS */
uint8_t tx[3] = {
(uint8_t)(prog_op & 0xff),
(uint8_t)((prog_op >> 8) & 0xff),
(uint8_t)((prog_op >> 16) & 0x03)
};
printf("address (W): 0x%x 0x%x 0x%x\n", tx[0], tx[1], tx[2]);
wr_rd(LSC_WRITE_ADDRESS, tx, 3, NULL, 0);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
/* flash CfgFlash */
if (false == flashProg(0, area_name, data))
return false;
/* verify write */
if (_verify) {
if (Verify(data, false, prog_op) == false)
return false;
}
}
/* @TODO: missing usercode update */
/* LSC_INIT_ADDRESS */
if (_flash_sector == LATTICE_FLASH_CFG0) {
uint8_t tx[2] = {
(uint8_t)((FLASH_SEC_CFG0 >> 8) & 0xff),
(uint8_t)((FLASH_SEC_CFG0 >> 16) & 0xff)
};
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
}
else if (_flash_sector == LATTICE_FLASH_CFG1) {
uint8_t tx[2] = {
(uint8_t)((FLASH_SEC_CFG1 >> 8) & 0xff),
(uint8_t)((FLASH_SEC_CFG1 >> 16) & 0xff)
};
wr_rd(RESET_CFG_ADDR, tx, 2, NULL, 0);
}
_jtag->set_state(Jtag::RUN_TEST_IDLE);
_jtag->toggleClk(1000);
/* ISC program done 0x5E */
printInfo("Write program Done: ", false);
if (writeProgramDone() == false) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
/* bypass */
wr_rd(ISC_NOOP, NULL, 0, NULL, 0);
/* disable configuration mode */
printInfo("Disable configuration: ", false);
if (!DisableISC()) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
return true;
}