2019-05-28 02:38:59 +02:00
|
|
|
# See LICENSE for licensing information.
|
|
|
|
|
#
|
2021-01-22 20:23:28 +01:00
|
|
|
# Copyright (c) 2016-2021 Regents of the University of California and The Board
|
2020-12-21 22:51:50 +01:00
|
|
|
# of Regents for the Oklahoma Agricultural and Mechanical College
|
|
|
|
|
# (acting for and on behalf of Oklahoma State University)
|
|
|
|
|
# All rights reserved.
|
2019-05-28 02:38:59 +02:00
|
|
|
#
|
|
|
|
|
import debug
|
2020-12-17 01:42:19 +01:00
|
|
|
from globals import print_time
|
2019-05-28 02:38:59 +02:00
|
|
|
from router import router
|
|
|
|
|
from datetime import datetime
|
|
|
|
|
import grid_utils
|
2020-12-17 01:42:19 +01:00
|
|
|
from scipy.sparse import csr_matrix
|
|
|
|
|
from scipy.sparse.csgraph import minimum_spanning_tree
|
2020-12-23 00:56:51 +01:00
|
|
|
from signal_grid import signal_grid
|
2021-01-15 22:25:57 +01:00
|
|
|
|
2020-12-23 01:35:05 +01:00
|
|
|
|
2019-05-28 02:38:59 +02:00
|
|
|
class supply_tree_router(router):
|
|
|
|
|
"""
|
|
|
|
|
A router class to read an obstruction map from a gds and
|
|
|
|
|
routes a grid to connect the supply on the two layers.
|
|
|
|
|
"""
|
|
|
|
|
|
2021-01-15 22:25:57 +01:00
|
|
|
def __init__(self, layers, design, gds_filename=None, bbox=None):
|
2019-05-28 02:38:59 +02:00
|
|
|
"""
|
|
|
|
|
This will route on layers in design. It will get the blockages from
|
|
|
|
|
either the gds file name or the design itself (by saving to a gds file).
|
|
|
|
|
"""
|
|
|
|
|
# Power rail width in minimum wire widths
|
2021-01-15 22:25:57 +01:00
|
|
|
# This is set to match the signal router so that the grids are aligned
|
|
|
|
|
# for prettier routes.
|
|
|
|
|
self.route_track_width = 1
|
2019-05-28 02:38:59 +02:00
|
|
|
|
2021-01-15 22:25:57 +01:00
|
|
|
router.__init__(self, layers, design, gds_filename, bbox, self.route_track_width)
|
2020-11-03 15:29:17 +01:00
|
|
|
|
2019-05-28 02:38:59 +02:00
|
|
|
def route(self, vdd_name="vdd", gnd_name="gnd"):
|
2020-11-03 15:29:17 +01:00
|
|
|
"""
|
2019-05-28 02:38:59 +02:00
|
|
|
Route the two nets in a single layer)
|
|
|
|
|
"""
|
|
|
|
|
debug.info(1,"Running supply router on {0} and {1}...".format(vdd_name, gnd_name))
|
|
|
|
|
self.vdd_name = vdd_name
|
|
|
|
|
self.gnd_name = gnd_name
|
|
|
|
|
|
|
|
|
|
# Clear the pins if we have previously routed
|
|
|
|
|
if (hasattr(self,'rg')):
|
|
|
|
|
self.clear_pins()
|
|
|
|
|
else:
|
|
|
|
|
# Creat a routing grid over the entire area
|
|
|
|
|
# FIXME: This could be created only over the routing region,
|
|
|
|
|
# but this is simplest for now.
|
2021-01-15 22:25:57 +01:00
|
|
|
self.create_routing_grid(signal_grid)
|
2019-05-28 02:38:59 +02:00
|
|
|
|
|
|
|
|
# Get the pin shapes
|
|
|
|
|
start_time = datetime.now()
|
|
|
|
|
self.find_pins_and_blockages([self.vdd_name, self.gnd_name])
|
|
|
|
|
print_time("Finding pins and blockages",datetime.now(), start_time, 3)
|
|
|
|
|
|
|
|
|
|
# Route the supply pins to the supply rails
|
|
|
|
|
# Route vdd first since we want it to be shorter
|
|
|
|
|
start_time = datetime.now()
|
|
|
|
|
self.route_pins(vdd_name)
|
|
|
|
|
self.route_pins(gnd_name)
|
|
|
|
|
print_time("Maze routing supplies",datetime.now(), start_time, 3)
|
2019-05-31 17:43:37 +02:00
|
|
|
|
2020-12-23 19:49:47 +01:00
|
|
|
# self.write_debug_gds("final_tree_router.gds",False)
|
2019-05-28 02:38:59 +02:00
|
|
|
|
|
|
|
|
# Did we route everything??
|
|
|
|
|
if not self.check_all_routed(vdd_name):
|
|
|
|
|
return False
|
|
|
|
|
if not self.check_all_routed(gnd_name):
|
|
|
|
|
return False
|
2020-11-03 15:29:17 +01:00
|
|
|
|
2019-05-28 02:38:59 +02:00
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
def route_pins(self, pin_name):
|
|
|
|
|
"""
|
|
|
|
|
This will route each of the remaining pin components to the other pins.
|
|
|
|
|
After it is done, the cells are added to the pin blockage list.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
remaining_components = sum(not x.is_routed() for x in self.pin_groups[pin_name])
|
2020-12-17 01:57:40 +01:00
|
|
|
debug.info(1,"Routing {0} with {1} pin components to connect.".format(pin_name,
|
|
|
|
|
remaining_components))
|
2019-05-28 02:38:59 +02:00
|
|
|
|
2020-12-17 01:42:19 +01:00
|
|
|
# Create full graph
|
2020-12-21 22:51:50 +01:00
|
|
|
debug.info(2,"Creating adjacency matrix")
|
2020-12-17 01:42:19 +01:00
|
|
|
pin_size = len(self.pin_groups[pin_name])
|
|
|
|
|
adj_matrix = [[0] * pin_size for i in range(pin_size)]
|
|
|
|
|
|
|
|
|
|
for index1,pg1 in enumerate(self.pin_groups[pin_name]):
|
|
|
|
|
for index2,pg2 in enumerate(self.pin_groups[pin_name]):
|
|
|
|
|
if index1>=index2:
|
|
|
|
|
continue
|
|
|
|
|
dist = int(grid_utils.distance_set(list(pg1.grids)[0], pg2.grids))
|
|
|
|
|
adj_matrix[index1][index2] = dist
|
|
|
|
|
|
|
|
|
|
# Find MST
|
2020-12-21 22:51:50 +01:00
|
|
|
debug.info(2,"Finding MinimumSpanning Tree")
|
2020-12-17 01:42:19 +01:00
|
|
|
X = csr_matrix(adj_matrix)
|
|
|
|
|
Tcsr = minimum_spanning_tree(X)
|
|
|
|
|
mst = Tcsr.toarray().astype(int)
|
|
|
|
|
connections = []
|
|
|
|
|
for x in range(pin_size):
|
|
|
|
|
for y in range(pin_size):
|
|
|
|
|
if x >= y:
|
|
|
|
|
continue
|
|
|
|
|
if mst[x][y]>0:
|
|
|
|
|
connections.append((x, y))
|
2020-12-17 01:57:40 +01:00
|
|
|
|
2020-12-17 01:42:19 +01:00
|
|
|
# Route MST components
|
|
|
|
|
for (src, dest) in connections:
|
|
|
|
|
self.route_signal(pin_name, src, dest)
|
2021-01-15 00:58:37 +01:00
|
|
|
# if pin_name == "gnd":
|
|
|
|
|
# print("\nSRC {}: ".format(src) + str(self.pin_groups[pin_name][src].grids) + str(self.pin_groups[pin_name][src].blockages))
|
|
|
|
|
# print("DST {}: ".format(dest) + str(self.pin_groups[pin_name][dest].grids) + str(self.pin_groups[pin_name][dest].blockages))
|
|
|
|
|
# self.write_debug_gds("post_{0}_{1}.gds".format(src, dest), False)
|
2020-12-17 01:42:19 +01:00
|
|
|
|
|
|
|
|
#self.write_debug_gds("final.gds", True)
|
2021-01-15 22:25:57 +01:00
|
|
|
#return
|
2020-12-17 01:42:19 +01:00
|
|
|
|
|
|
|
|
def route_signal(self, pin_name, src_idx, dest_idx):
|
2021-01-13 21:37:29 +01:00
|
|
|
|
|
|
|
|
# First pass, try to route normally
|
|
|
|
|
# Second pass, clear prior pin blockages so that you can route over other metal
|
|
|
|
|
# of the same supply. Otherwise, this can create a lot of circular routes due to accidental overlaps.
|
|
|
|
|
for unblock_routes in [False, True]:
|
|
|
|
|
for detour_scale in [5 * pow(2, x) for x in range(5)]:
|
|
|
|
|
debug.info(2, "Routing {0} to {1} with scale {2}".format(src_idx, dest_idx, detour_scale))
|
2020-12-17 01:42:19 +01:00
|
|
|
|
2021-01-13 21:37:29 +01:00
|
|
|
# Clear everything in the routing grid.
|
|
|
|
|
self.rg.reinit()
|
|
|
|
|
|
|
|
|
|
# This is inefficient since it is non-incremental, but it was
|
|
|
|
|
# easier to debug.
|
|
|
|
|
self.prepare_blockages()
|
|
|
|
|
if unblock_routes:
|
2021-01-15 00:58:37 +01:00
|
|
|
msg = "Unblocking supply self blockages to improve access (may cause DRC errors):\n{0}\n{1})"
|
|
|
|
|
debug.warning(msg.format(pin_name,
|
|
|
|
|
self.pin_groups[pin_name][src_idx].pins))
|
2021-01-13 21:37:29 +01:00
|
|
|
self.set_blockages(self.path_blockages, False)
|
2020-12-17 01:42:19 +01:00
|
|
|
|
2021-01-13 21:37:29 +01:00
|
|
|
# Add the single component of the pin as the source
|
|
|
|
|
# which unmarks it as a blockage too
|
|
|
|
|
self.add_pin_component_source(pin_name, src_idx)
|
2020-12-17 01:42:19 +01:00
|
|
|
|
2021-01-13 21:37:29 +01:00
|
|
|
# Marks all pin components except index as target
|
|
|
|
|
self.add_pin_component_target(pin_name, dest_idx)
|
2019-05-28 02:38:59 +02:00
|
|
|
|
2021-01-13 21:37:29 +01:00
|
|
|
# Actually run the A* router
|
|
|
|
|
if self.run_router(detour_scale=detour_scale):
|
|
|
|
|
return
|
2021-01-07 00:14:56 +01:00
|
|
|
|
2020-12-17 20:39:17 +01:00
|
|
|
self.write_debug_gds("debug_route.gds", True)
|
2020-11-03 15:29:17 +01:00
|
|
|
|
2020-12-22 18:39:58 +01:00
|
|
|
def add_io_pin(self, instance, pin_name, new_name=""):
|
|
|
|
|
"""
|
|
|
|
|
Add a signle input or output pin up to metal 3.
|
|
|
|
|
"""
|
|
|
|
|
pin = instance.get_pins(pin_name)
|
|
|
|
|
|
|
|
|
|
if new_name == "":
|
|
|
|
|
new_name = pin_name
|
|
|
|
|
|
|
|
|
|
# Just use the power pin function for now to save code
|
|
|
|
|
self.add_power_pin(name=new_name, loc=pin.center(), start_layer=pin.layer)
|