This patch introduces in ScopeBase separate containers
for declarations coming from the current scope and from
the previous scopes.
Until now, in one scope, all objects were kept in an stl map.
When a scope was created inside other scopes, a shallow
copy of the map was made. This solution was nice for
name shadowing (in new scopes, when a name was
encountered, the old objects were overridden by a new
one), but didn't allow for distinguishing where the objects
were allocated. As a result, it is impossible to know who
the owner is and who should delete them.
In this commit ScopeBase gets two containers: for old
and new objects. If a ScopeBase is made from another
ScopeBase object, all objects from the copied object
go to an old_XXX container, where XXX depends on the
type of the copied objects. When a ScopeBase object
is deleted, the objects from new_XXX are deleted and
the ones from old_XXX are not touched.
This patch adds some complexity to the internals
of ScopeBase, but leaves its interface unchanged.
This is rather a cosmetic change. The patch changes
the container used for stack of scopes from std::list
to std::stack. It suits this particular application
a bit better.
Thanks to valgrind analysis it turned out that
there were objects in the parser that were not being
deleted in a proper way. This patch fixes them all.
Instead of using automatic variables for global
types, I allocate them dynamically. Thanks to it,
all type objects can be treated in the same way,
as all of them are pointers allocated with `new'.
Now we will be able to remove all scopes in the same
manner, no matter if it is a global or local scope,
by deleting all carried pointers.
This function is for the time being used in the
component instatiation. It is checked, whether
an expression is a correct r-value.
To be a correct r-value, it must be either
port name or signal name.
The $ivlh_attribute_event system function helps the Verilog runtime
support <name>'event expressions in VHDL. The vhdlpp generates a
call to $ivlh_attribute_event, which in turn uses callbacks to handle
the support.
This is also the start of the vhdl_sys vpi module. This module should
by included whenever VHDL code is parsed.
When a signal (or port) is assigned by a sequential assignment,
the signal or port becomes a reg, instead of a wire(net). Detect
this distinction during elaboration and generate the correct
signal/port declaration.
Keep the entity/component/module port declarations in the module port
list of the generated code. This clarifies the generated code and
fixes a couple bugs for more complicated types.
R-value expressions are more general then L-value expressions, in that
the expression type may be a bit more complex. If the R-value expression
is part of an assignment, then elaborate with the constrained type from
the L-value. In other cases, where the expression type is not as obvious,
use expression type probes to figure out the type of the expression and
elaborate using that calculated type.
VHDL doesn't have a direct way to express "always @(posedge...)"
statements, but we do want to detect common paradigms that naturally
translate. This makes for a better translation.
Entity output ports may be used as l-values in a process within
the bound architecture. Detect that case during elaboration and
adjust the signal declaration so that it works in the Verilog pass.
Infrastructure for debug and emit of sequential statements in processes.
This does not properly handle the actual semantics of the behavioral
code, but it provides an infrastructure where we can handle all the
tricky elaboration to come.
Get to the point where our sample program parses completely, and
the sequential statements generate SequentialStmt objects and a
process object in the architecture.
Also add a few missing expression types.
Added an explicit option prefix="yy" to files that were generated
without an explicit -P.
This makes the lex-generated symbol names self contained without any
help from from build system.
Significant rework of scope management to unify the handling of
types in the ieee library and types/constants/components in packages.
This involved adjusting the parser rules to manage a stack of scopes
and rewriting the IEEE library support to not use global maps for
the loaded types.
This creates the Package class to represent packages, and the
Scope class to represent scopes in general. The library functions
are worked up to support scanning scopes for declarations that are
imported by "use" clauses.
Make sure in a conponent instantiation that the instantiated
component is really declared, and that the ports of the binding
really do match the ports of the declared component. This requires
that we create and save component declarations, and that components
have methods for mapping the ports.
There has been added additional default attribute to
all 'dump' function calls which is in all cases equal
to 0. Now one can specify how much this debug dumping should
be intended. This should allow people to dump smoothly whole
designs (as it was now) as far as separate units.
This is now the parent who specifies the base indentation
for all components (children). For example, architecture
"decides" how much their signals should be indented.
This gets us as far as emiting a component instantiation. Very little
error checking/elaboration is done, so there is room for improvement,
but this is a working stub.
Up till now only "global" use clauses were parsed
and as a result libraries were loaded.
Since use clauses can appear not only in global context,
parsing of non-global clauses has been introduced and
selected names are now handled (like name1.name2.name3).
These signals are declared in the architecture and are local to
the module. The Architecture already parsed and stored these signal
declarations, but this patch adds the ability to actually emit these
signals in the generated code.
In the process of doing this, I had to regularize the elaboration
and emit of VTypes, so that it can be used in multiple places, not
just in entity headers (for ports).
I also added support for bit selects of signals. This effected a couple
places in the parser, and expressions in general.