iverilog/vvm/vvm.h

348 lines
9.5 KiB
C
Raw Normal View History

1998-11-10 00:44:10 +01:00
#ifndef __vvm_H
#define __vvm_H
/*
* Copyright (c) 1998 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
#ident "$Id: vvm.h,v 1.13 1999/10/05 04:02:10 steve Exp $"
1998-11-10 00:44:10 +01:00
#endif
# include <vector>
# include <string>
# include <cassert>
1998-11-10 00:44:10 +01:00
/*
* The Verilog Virtual Machine are definitions for the virtual machine
* that executes models that the simulation generator makes.
*/
typedef unsigned vvm_u32;
1998-11-10 00:44:10 +01:00
class vvm_event;
class vvm_simulation;
class vvm_simulation_cycle;
class vvm_thread;
/* The vvm_bit_t is the basic unit of value for a scalar signal in
Verilog. It represents all the possible values. The vvm_bitstring_t
is a vector of vvm_bit_t and is used when variable-length bit
arrays are needed. */
enum vvm_bit_t { V0 = 0, V1, Vx, Vz };
inline vvm_bit_t operator & (vvm_bit_t l, vvm_bit_t r)
{
if (l == V0) return V0;
if (r == V0) return V0;
if ((l == V1) && (r == V1)) return V1;
return Vx;
}
1999-03-16 05:43:46 +01:00
inline vvm_bit_t operator | (vvm_bit_t l, vvm_bit_t r)
{
if (l == V1) return V1;
if (r == V1) return V1;
if ((l == V0) && (r == V0)) return V0;
return Vx;
}
1998-11-10 00:44:10 +01:00
inline vvm_bit_t operator ^ (vvm_bit_t l, vvm_bit_t r)
{
if (l == Vx) return Vx;
if (l == Vz) return Vx;
if (r == Vx) return Vx;
if (r == Vz) return Vx;
if (l == V0) return r;
return (r == V0)? V1 : V0;
}
1999-06-07 05:40:22 +02:00
inline vvm_bit_t less_with_cascade(vvm_bit_t l, vvm_bit_t r, vvm_bit_t c)
{
if (l == Vx) return Vx;
if (r == Vx) return Vx;
if (l > r) return V0;
if (l < r) return V1;
return c;
}
inline vvm_bit_t greater_with_cascade(vvm_bit_t l, vvm_bit_t r, vvm_bit_t c)
{
if (l == Vx) return Vx;
if (r == Vx) return Vx;
if (l > r) return V1;
if (l < r) return V0;
return c;
}
1998-11-10 00:44:10 +01:00
extern vvm_bit_t add_with_carry(vvm_bit_t l, vvm_bit_t r, vvm_bit_t&carry);
inline vvm_bit_t not(vvm_bit_t l)
{
switch (l) {
case V0:
return V1;
case V1:
return V0;
default:
return Vx;
}
}
class vvm_bits_t {
public:
virtual ~vvm_bits_t() =0;
virtual unsigned get_width() const =0;
virtual vvm_bit_t get_bit(unsigned idx) const =0;
};
extern ostream& operator << (ostream&os, vvm_bit_t);
1998-11-10 00:44:10 +01:00
extern ostream& operator << (ostream&os, const vvm_bits_t&str);
/*
* The vvm_bitset_t is a fixed width array-like set of vvm_bit_t
* items. A number is often times made up of bit sets instead of
* single bits. The fixed array is used when possible because of the
* more thorough type checking and (hopefully) better optimization.
*/
template <unsigned WIDTH> class vvm_bitset_t : public vvm_bits_t {
public:
vvm_bitset_t()
{ for (unsigned idx = 0 ; idx < WIDTH ; idx += 1)
bits_[idx] = Vz;
}
vvm_bitset_t(const vvm_bitset_t<WIDTH>&that)
{ bits_ = that.bits_; }
vvm_bitset_t(const vvm_bits_t&that)
{ unsigned wid = WIDTH;
if (that.get_width() < WIDTH)
wid = that.get_width();
for (unsigned idx = 0 ; idx < wid ; idx += 1)
bits_[idx] = that.get_bit(idx);
for (unsigned idx = wid ; idx < WIDTH ; idx += 1)
bits_[idx] = V0;
}
1998-11-10 00:44:10 +01:00
vvm_bit_t operator[] (unsigned idx) const { return bits_[idx]; }
vvm_bit_t&operator[] (unsigned idx) { return bits_[idx]; }
unsigned get_width() const { return WIDTH; }
vvm_bit_t get_bit(unsigned idx) const { return bits_[idx]; }
unsigned as_unsigned() const
{ unsigned result = 0;
for (unsigned idx = WIDTH ; idx > 0 ; idx -= 1) {
result <<= 1;
if (bits_[idx-1]) result |= 1;
}
return result;
}
vvm_bitset_t<WIDTH>& operator= (const vvm_bitset_t<WIDTH>&that)
{ if (this == &that) return *this;
bits_ = that.bits_;
return *this;
}
1998-11-10 00:44:10 +01:00
private:
vvm_bit_t bits_[WIDTH];
};
/*
* Verilog events (update events and nonblocking assign) are derived
* from this abstract class so that the simulation engine can treat
* all of them identically.
*/
class vvm_event {
friend class vvm_simulation;
public:
vvm_event() { }
virtual ~vvm_event() =0;
virtual void event_function() =0;
private:
vvm_event*next_;
private: // not implemented
vvm_event(const vvm_event&);
vvm_event& operator= (const vvm_event&);
};
/*
* This class is the main simulation engine. Object of this type are
* self-contained simulations. Generally, only one is needed.
*/
class vvm_simulation {
public:
vvm_simulation();
~vvm_simulation();
// Take a simulation that has been primed with some initial
// events, and run it. Continue running it until the
// simulation stops. The sim parameter becomes the new list,
// or 0 if the events run out. The simulation clock is
// advanced for the first cycle in sim.
void run();
// Add an event to an existing simulation cycle list. If there
// is not a cycle for the exact delay of the event, create one
// and insert it into the cycle list. Add the event to the
// list of events for the cycle time.
void insert_event(unsigned long delay, vvm_event*event);
// This puts the event in the current active list. No delay.
void active_event(vvm_event*event);
// These are versions of the *_event methods that take
// vvm_thread objects instead.
void thread_delay(unsigned long delay, vvm_thread*);
void thread_active(vvm_thread*);
// Trigger an event as a monitor event causes it to be
// scheduled and executed when the time cycle is
// complete. Unlike other events, the execution of a event so
// scheduled will not cause the event to be deleted. Also,
// only one event can be a monitor.
void monitor_event(vvm_event*);
unsigned long get_sim_time() const { return time_; }
void s_finish();
private:
bool going_;
vvm_simulation_cycle*sim_;
// Triggered monitor event.
vvm_event*mon_;
unsigned long time_;
private: // not implemented
vvm_simulation(const vvm_simulation&);
vvm_simulation& operator= (const vvm_simulation&);
};
/*
* The vvm_monitor_t is usually associated with a vvm_bitset_t that
* represents a signal. The VVM code generator generates calls to the
* trigger method whenever an assignment or output value is set on
* the associated signal. The trigger, if enabled, then causes the
* monitor event to be scheduled in the simulation.
*
* This object also carries the canonical signal name, for the use of
* %m display patterns.
*/
class vvm_monitor_t {
public:
vvm_monitor_t(const char*);
1998-11-10 00:44:10 +01:00
void trigger(vvm_simulation*sim)
{ if (event_) sim->monitor_event(event_); }
const char* name() const { return name_; }
1998-11-10 00:44:10 +01:00
void enable(vvm_event*e) { event_ = e; }
private:
const char* name_;
1998-11-10 00:44:10 +01:00
vvm_event*event_;
private: // not implemented
vvm_monitor_t(const vvm_monitor_t&);
vvm_monitor_t& operator= (const vvm_monitor_t&);
};
template <unsigned WIDTH> class vvm_signal_t : public vvm_monitor_t {
public:
vvm_signal_t(const char*n, vvm_bitset_t<WIDTH>*b)
: vvm_monitor_t(n), bits_(b)
{ }
1999-06-21 03:02:34 +02:00
void init(unsigned idx, vvm_bit_t val)
{ (*bits_)[idx] = val; }
void set(vvm_simulation*sim, unsigned idx, vvm_bit_t val)
{ (*bits_)[idx] = val;
trigger(sim);
}
void set(vvm_simulation*sim, const vvm_bitset_t<WIDTH>&val)
{ for (unsigned idx = 0 ; idx < WIDTH ; idx += 1)
set(sim, idx, val[idx]);
}
private:
vvm_bitset_t<WIDTH>*bits_;
};
1998-11-10 00:44:10 +01:00
/*
* $Log: vvm.h,v $
* Revision 1.13 1999/10/05 04:02:10 steve
* Relaxed width handling for <= assignment.
*
1999-09-29 20:36:02 +02:00
* Revision 1.12 1999/09/29 18:36:04 steve
* Full case support
*
* Revision 1.11 1999/09/28 01:13:15 steve
* Support in vvm > and >= behavioral operators.
*
* Revision 1.10 1999/08/15 01:23:56 steve
* Convert vvm to implement system tasks with vpi.
*
1999-06-21 03:02:34 +02:00
* Revision 1.9 1999/06/21 01:02:34 steve
* Add init to vvm_signal_t.
*
1999-06-07 05:40:22 +02:00
* Revision 1.8 1999/06/07 03:40:22 steve
* Implement the < binary operator.
*
* Revision 1.7 1999/05/03 01:51:29 steve
* Restore support for wait event control.
*
* Revision 1.6 1999/04/22 04:56:58 steve
* Add to vvm proceedural memory references.
*
1999-03-16 05:43:46 +01:00
* Revision 1.5 1999/03/16 04:43:46 steve
* Add some logical operators.
*
* Revision 1.4 1999/02/08 03:55:55 steve
* Do not generate code for signals,
* instead use the NetESignal node to
* generate gate-like signal devices.
*
* Revision 1.3 1998/12/17 23:54:58 steve
* VVM support for small sequential UDP objects.
*
* Revision 1.2 1998/11/10 00:48:31 steve
* Add support it vvm target for level-sensitive
* triggers (i.e. the Verilog wait).
* Fix display of $time is format strings.
*
1998-11-10 00:44:10 +01:00
* Revision 1.1 1998/11/09 23:44:10 steve
* Add vvm library.
*
*/
#endif