OpenRAM/compiler/pgates/pbitcell.py

1222 lines
68 KiB
Python
Raw Normal View History

import contact
import pgate
import design
import debug
from tech import drc, parameter, spice
from vector import vector
from ptx import ptx
from globals import OPTS
class pbitcell(pgate.pgate):
"""
This module implements a parametrically sized multi-port bitcell,
with a variable number of read/write, write, and read ports
"""
width = None
height = None
def __init__(self, num_rw_ports=OPTS.num_rw_ports, num_w_ports=OPTS.num_w_ports, num_r_ports=OPTS.num_r_ports):
name = "pbitcell_{0}RW_{1}W_{2}R".format(num_rw_ports, num_w_ports, num_r_ports)
pgate.pgate.__init__(self, name)
debug.info(2, "create a multi-port bitcell with {0} rw ports, {1} w ports and {2} r ports".format(num_rw_ports,
num_w_ports,
num_r_ports))
self.num_rw_ports = num_rw_ports
self.num_w_ports = num_w_ports
self.num_r_ports = num_r_ports
self.create_netlist()
if not OPTS.netlist_only:
self.create_layout()
# FIXME: Why is this static set here?
pbitcell.width = self.width
pbitcell.height = self.height
def create_netlist(self):
self.add_pins()
self.add_modules()
self.create_storage()
if(self.num_rw_ports > 0):
self.create_readwrite_ports()
if(self.num_w_ports > 0):
self.create_write_ports()
if(self.num_r_ports > 0):
self.create_read_ports()
def create_layout(self):
self.calculate_spacing()
self.calculate_postions()
self.place_storage()
self.route_storage()
self.route_rails()
if(self.num_rw_ports > 0):
self.place_readwrite_ports()
if(self.num_w_ports > 0):
self.place_write_ports()
if(self.num_r_ports > 0):
self.place_read_ports()
self.extend_well()
self.offset_all_coordinates()
self.DRC_LVS()
def add_pins(self):
for k in range(self.num_rw_ports):
self.add_pin("rwbl{}".format(k))
self.add_pin("rwbl_bar{}".format(k))
for k in range(self.num_w_ports):
self.add_pin("wbl{}".format(k))
self.add_pin("wbl_bar{}".format(k))
for k in range(self.num_r_ports):
self.add_pin("rbl{}".format(k))
self.add_pin("rbl_bar{}".format(k))
for k in range(self.num_rw_ports):
self.add_pin("rwwl{}".format(k))
for k in range(self.num_w_ports):
self.add_pin("wwl{}".format(k))
for k in range(self.num_r_ports):
self.add_pin("rwl{}".format(k))
self.add_pin("vdd")
self.add_pin("gnd")
def add_modules(self):
# if there are any read/write ports, then the inverter nmos is sized based the number of them
if(self.num_rw_ports > 0):
inverter_nmos_width = self.num_rw_ports*3*parameter["min_tx_size"]
inverter_pmos_width = parameter["min_tx_size"]
readwrite_nmos_width = 1.5*parameter["min_tx_size"]
write_nmos_width = parameter["min_tx_size"]
read_nmos_width = 2*parameter["min_tx_size"]
# if there are no read/write ports, then the inverter nmos is sized for the dual port case
else:
inverter_nmos_width = 2*parameter["min_tx_size"]
inverter_pmos_width = parameter["min_tx_size"]
readwrite_nmos_width = 1.5*parameter["min_tx_size"]
write_nmos_width = parameter["min_tx_size"]
read_nmos_width = 2*parameter["min_tx_size"]
""" Create ptx for all transistors """
# create ptx for inverter transistors
self.inverter_nmos = ptx(width=inverter_nmos_width,
tx_type="nmos")
self.add_mod(self.inverter_nmos)
self.inverter_pmos = ptx(width=inverter_pmos_width,
tx_type="pmos")
self.add_mod(self.inverter_pmos)
# create ptx for readwrite transitors
self.readwrite_nmos = ptx(width=readwrite_nmos_width,
tx_type="nmos")
self.add_mod(self.readwrite_nmos)
# create ptx for write transitors
self.write_nmos = ptx(width=write_nmos_width,
tx_type="nmos")
self.add_mod(self.write_nmos)
# create ptx for read transistors
self.read_nmos = ptx(width=read_nmos_width,
tx_type="nmos")
self.add_mod(self.read_nmos)
def calculate_spacing(self):
""" Calculate transistor spacings """
# calculate metal contact extensions over transistor active
self.inverter_pmos_contact_extension = 0.5*(self.inverter_pmos.active_contact.height - self.inverter_pmos.active_height)
self.readwrite_nmos_contact_extension = 0.5*(self.readwrite_nmos.active_contact.height - self.readwrite_nmos.active_height)
self.write_nmos_contact_extension = 0.5*(self.write_nmos.active_contact.height - self.write_nmos.active_height)
self.read_nmos_contact_extension = 0.5*(self.read_nmos.active_contact.height - self.read_nmos.active_height)
# calculate the distance threshold for different gate contact spacings
self.gate_contact_thres = drc["poly_to_active"] - drc["minwidth_metal2"]
#calculations for horizontal transistor to tansistor spacing
# inverter spacings
self.inverter_to_inverter_spacing = contact.poly.height + drc["minwidth_metal1"]
self.inverter_to_write_spacing = drc["pwell_to_nwell"] + 2*drc["well_enclosure_active"]
# readwrite to readwrite transistor spacing (also acts as readwrite to write transistor spacing)
if(self.readwrite_nmos_contact_extension > self.gate_contact_thres):
self.readwrite_to_readwrite_spacing = drc["minwidth_metal2"] + self.readwrite_nmos_contact_extension + contact.poly.width + drc["poly_to_polycontact"] + drc["poly_extend_active"]
else:
self.readwrite_to_readwrite_spacing = drc["poly_to_active"] + contact.poly.width + drc["poly_to_polycontact"] + drc["poly_extend_active"]
# write to write transistor spacing
if(self.write_nmos_contact_extension > self.gate_contact_thres):
self.write_to_write_spacing = drc["minwidth_metal2"] + self.write_nmos_contact_extension + contact.poly.width + drc["poly_to_polycontact"] + drc["poly_extend_active"]
else:
self.write_to_write_spacing = drc["poly_to_active"] + contact.poly.width + drc["poly_to_polycontact"] + drc["poly_extend_active"]
# read to read transistor spacing
if(self.read_nmos_contact_extension > self.gate_contact_thres):
self.read_to_read_spacing = 2*(drc["minwidth_metal2"] + self.read_nmos_contact_extension) + drc["minwidth_metal1"] + 2*contact.poly.width
else:
self.read_to_read_spacing = 2*drc["poly_to_active"] + drc["minwidth_metal1"] + 2*contact.poly.width
# write to read transistor spacing (also acts as readwrite to read transistor spacing)
# calculation is dependent on whether the read transistor is adjacent to a write transistor or a readwrite transistor
if(self.num_w_ports > 0):
if(self.write_nmos_contact_extension > self.gate_contact_thres):
write_portion = drc["minwidth_metal2"] + self.write_nmos_contact_extension
else:
write_portion = drc["poly_to_active"]
else:
if(self.readwrite_nmos_contact_extension > self.gate_contact_thres):
write_portion = drc["minwidth_metal2"] + self.readwrite_nmos_contact_extension
else:
write_portion = drc["poly_to_active"]
if(self.read_nmos_contact_extension > self.gate_contact_thres):
read_portion = drc["minwidth_metal2"] + self.read_nmos_contact_extension
else:
read_portion = drc["poly_to_active"]
self.write_to_read_spacing = write_portion + read_portion + 2*contact.poly.width + drc["poly_to_polycontact"]
""" calculations for transistor tiling (transistor + spacing) """
self.inverter_tile_width = self.inverter_nmos.active_width + 0.5*self.inverter_to_inverter_spacing
self.readwrite_tile_width = self.readwrite_to_readwrite_spacing + self.readwrite_nmos.active_height
self.write_tile_width = self.write_to_write_spacing + self.write_nmos.active_height
self.read_tile_width = self.read_to_read_spacing + self.read_nmos.active_height
""" calculation for row line tiling """
self.rail_tile_height = drc["active_to_body_active"] + contact.well.width #0.5*(drc["minwidth_tx"] - drc["minwidth_metal1"]) + drc["minwidth_metal1"]
self.rowline_tile_height = drc["minwidth_metal1"] + contact.m1m2.width
""" calculations related to inverter connections """
self.inverter_gap = drc["poly_to_active"] + drc["poly_to_polycontact"] + 2*contact.poly.width + drc["minwidth_metal1"] + self.inverter_pmos_contact_extension
self.cross_couple_lower_ypos = self.inverter_nmos.active_height + drc["poly_to_active"] + 0.5*contact.poly.width
self.cross_couple_upper_ypos = self.inverter_nmos.active_height + drc["poly_to_active"] + drc["poly_to_polycontact"] + 1.5*contact.poly.width
def calculate_postions(self):
"""
Calculate positions that describe the edges of the cell
"""
# create flags for excluding readwrite, write, or read port calculations if they are not included in the bitcell
if(self.num_rw_ports > 0):
self.readwrite_port_flag = True
else:
self.readwrite_port_flag = False
if(self.num_w_ports > 0):
self.write_port_flag = True
else:
self.write_port_flag = False
if(self.num_r_ports > 0):
self.read_port_flag = True
else:
self.read_port_flag = False
# determine the distance of the leftmost/rightmost transistor gate connection
if (self.num_r_ports > 0):
if(self.read_nmos_contact_extension > self.gate_contact_thres):
end_connection = drc["minwidth_metal2"] + self.read_nmos_contact_extension + contact.m1m2.height
else:
end_connection = drc["poly_to_active"] + contact.m1m2.height
else:
if(self.readwrite_nmos_contact_extension > self.gate_contact_thres):
end_connection = drc["minwidth_metal2"] + self.readwrite_nmos_contact_extension + contact.m1m2.height
else:
end_connection = drc["poly_to_active"] + contact.m1m2.height
# leftmost position = storage width + read/write ports width + write ports width + read ports width + end transistor gate connections + metal spacing necessary for tiling the bitcell
self.leftmost_xpos = -self.inverter_tile_width \
- self.inverter_to_write_spacing \
- self.readwrite_port_flag*(self.readwrite_nmos.active_height + (self.num_rw_ports-1)*self.readwrite_tile_width) \
- self.write_port_flag*self.readwrite_port_flag*self.write_to_write_spacing \
- self.write_port_flag*(self.write_nmos.active_height + (self.num_w_ports-1)*self.write_tile_width) \
- self.read_port_flag*self.write_to_read_spacing \
- self.read_port_flag*(self.read_nmos.active_height + (self.num_r_ports-1)*self.read_tile_width) \
- end_connection \
- 0.5*drc["poly_to_polycontact"]
self.rightmost_xpos = -self.leftmost_xpos
# bottommost position = gnd height + rwwl height + wwl height + rwl height + space needed between tiled bitcells
array_tiling_offset = 0.5*drc["minwidth_metal2"]
self.botmost_ypos = -self.rail_tile_height \
- self.num_rw_ports*self.rowline_tile_height \
- self.num_w_ports*self.rowline_tile_height \
- self.num_r_ports*self.rowline_tile_height \
- array_tiling_offset
# topmost position = height of the inverter + height of vdd
self.topmost_ypos = self.inverter_nmos.active_height + self.inverter_gap + self.inverter_pmos.active_height \
+ self.rail_tile_height
# calculations for the cell dimensions
array_vdd_overlap = 0.5*contact.well.width
self.width = -2*self.leftmost_xpos
self.height = self.topmost_ypos - self.botmost_ypos - array_vdd_overlap
def create_storage(self):
"""
Creates the crossed coupled inverters that act as storage for the bitcell.
The stored value of the cell is denoted as "Q", and the inverted value as "Q_bar".
"""
# create active for nmos
self.inverter_nmos_left = self.add_inst(name="inverter_nmos_left",
mod=self.inverter_nmos)
self.connect_inst(["Q_bar", "Q", "gnd", "gnd"])
self.inverter_nmos_right = self.add_inst(name="inverter_nmos_right",
mod=self.inverter_nmos)
self.connect_inst(["gnd", "Q_bar", "Q", "gnd"])
# create active for pmos
self.inverter_pmos_left = self.add_inst(name="inverter_pmos_left",
mod=self.inverter_pmos)
self.connect_inst(["Q_bar", "Q", "vdd", "vdd"])
self.inverter_pmos_right = self.add_inst(name="inverter_pmos_right",
mod=self.inverter_pmos)
self.connect_inst(["vdd", "Q_bar", "Q", "vdd"])
def place_storage(self):
"""
Places the crossed coupled inverters that act as storage for the bitcell.
The stored value of the cell is denoted as "Q", and the inverted value as "Q_bar".
"""
# calculate transistor offsets
left_inverter_xpos = -0.5*self.inverter_to_inverter_spacing - self.inverter_nmos.active_width
right_inverter_xpos = 0.5*self.inverter_to_inverter_spacing
inverter_pmos_ypos = self.inverter_nmos.active_height + self.inverter_gap
# create active for nmos
self.inverter_nmos_left.place([left_inverter_xpos,0])
self.inverter_nmos_right.place([right_inverter_xpos,0])
# create active for pmos
self.inverter_pmos_left.place([left_inverter_xpos, inverter_pmos_ypos])
self.inverter_pmos_right.place([right_inverter_xpos, inverter_pmos_ypos])
def route_storage(self):
# connect input (gate) of inverters
self.add_path("poly", [self.inverter_nmos_left.get_pin("G").uc(), self.inverter_pmos_left.get_pin("G").bc()])
self.add_path("poly", [self.inverter_nmos_right.get_pin("G").uc(), self.inverter_pmos_right.get_pin("G").bc()])
# connect output (drain/source) of inverters
self.add_path("metal1", [self.inverter_nmos_left.get_pin("D").uc(), self.inverter_pmos_left.get_pin("D").bc()], width=contact.well.second_layer_width)
self.add_path("metal1", [self.inverter_nmos_right.get_pin("S").uc(), self.inverter_pmos_right.get_pin("S").bc()], width=contact.well.second_layer_width)
# add contacts to connect gate poly to drain/source metal1 (to connect Q to Q_bar)
contact_offset_left = vector(self.inverter_nmos_left.get_pin("D").rc().x + 0.5*contact.poly.height, self.cross_couple_upper_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=contact_offset_left,
rotate=90)
contact_offset_right = vector(self.inverter_nmos_right.get_pin("S").lc().x - 0.5*contact.poly.height, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=contact_offset_right,
rotate=90)
# connect contacts to gate poly (cross couple connections)
gate_offset_right = vector(self.inverter_nmos_right.get_pin("G").lc().x, contact_offset_left.y)
self.add_path("poly", [contact_offset_left, gate_offset_right])
gate_offset_left = vector(self.inverter_nmos_left.get_pin("G").rc().x, contact_offset_right.y)
self.add_path("poly", [contact_offset_right, gate_offset_left])
# update furthest left and right transistor edges (this will propagate to further transistor offset calculations)
self.left_building_edge = -self.inverter_tile_width
self.right_building_edge = self.inverter_tile_width
def route_rails(self):
"""
Add gnd and vdd rails and connects them to the inverters
"""
# Add rails for vdd and gnd
self.gnd_position = vector(self.leftmost_xpos, -self.rail_tile_height)
self.gnd = self.add_layout_pin(text="gnd",
layer="metal1",
offset=self.gnd_position,
width=self.width,
height=contact.well.second_layer_width)
vdd_ypos = self.inverter_nmos.active_height + self.inverter_gap + self.inverter_pmos.active_height \
+ drc["active_to_body_active"] + 0.5*(drc["minwidth_tx"] - drc["minwidth_metal1"])
self.vdd_position = vector(self.leftmost_xpos, vdd_ypos)
self.vdd = self.add_layout_pin(text="vdd",
layer="metal1",
offset=self.vdd_position,
width=self.width,
height=drc["minwidth_metal1"])
# Connect inverters to rails
# connect inverter nmos to gnd
gnd_pos_left = vector(self.inverter_nmos_left.get_pin("S").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.inverter_nmos_left.get_pin("S").bc(), gnd_pos_left])
gnd_pos_right = vector(self.inverter_nmos_right.get_pin("D").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.inverter_nmos_right.get_pin("D").bc(), gnd_pos_right])
# connect inverter pmos to vdd
vdd_pos_left = vector(self.inverter_nmos_left.get_pin("S").uc().x, self.vdd_position.y)
self.add_path("metal1", [self.inverter_pmos_left.get_pin("S").uc(), vdd_pos_left])
vdd_pos_right = vector(self.inverter_nmos_right.get_pin("D").uc().x, self.vdd_position.y)
self.add_path("metal1", [self.inverter_pmos_right.get_pin("D").uc(), vdd_pos_right])
def create_readwrite_ports(self):
"""
Creates read/write ports to the bit cell. A differential pair of transistor can both read and write, like in a 6T cell.
A read or write is enabled by setting a Read-Write-Wordline (RWWL) high, subsequently turning on the transistor.
The transistor is connected between a Read-Write-Bitline (RWBL) and the storage component of the cell (Q).
In a write operation, driving RWBL high or low sets the value of the cell.
In a read operation, RWBL is precharged, then is either remains high or is discharged depending on the value of the cell.
This is a differential design, so each write port has a mirrored port that connects RWBL_bar to Q_bar.
"""
# define write transistor variables as empty arrays based on the number of write ports
self.readwrite_nmos_left = [None] * self.num_rw_ports
self.readwrite_nmos_right = [None] * self.num_rw_ports
# iterate over the number of read/write ports
for k in range(0,self.num_rw_ports):
# add read/write transistors
self.readwrite_nmos_left[k] = self.add_inst(name="readwrite_nmos_left{}".format(k),
mod=self.readwrite_nmos)
self.connect_inst(["Q", "rwwl{}".format(k), "rwbl{}".format(k), "gnd"])
self.readwrite_nmos_right[k] = self.add_inst(name="readwrite_nmos_right{}".format(k),
mod=self.readwrite_nmos)
self.connect_inst(["Q_bar", "rwwl{}".format(k), "rwbl_bar{}".format(k), "gnd"])
def place_readwrite_ports(self):
"""
Places read/write ports in the bit cell.
"""
# Define variables relevant to write transistors
self.rwwl_positions = [None] * self.num_rw_ports
self.rwbl_positions = [None] * self.num_rw_ports
self.rwbl_bar_positions = [None] * self.num_rw_ports
# define offset correction due to rotation of the ptx module
readwrite_rotation_correct = self.readwrite_nmos.active_height
# iterate over the number of read/write ports
for k in range(0,self.num_rw_ports):
# Add transistors
# calculate read/write transistor offsets
left_readwrite_transistor_xpos = self.left_building_edge \
- self.inverter_to_write_spacing \
- self.readwrite_nmos.active_height - k*self.readwrite_tile_width \
+ readwrite_rotation_correct
right_readwrite_transistor_xpos = self.right_building_edge \
+ self.inverter_to_write_spacing \
+ k*self.readwrite_tile_width \
+ readwrite_rotation_correct
# add read/write transistors
self.readwrite_nmos_left[k].place(offset=[left_readwrite_transistor_xpos,0],
rotate=90)
self.readwrite_nmos_right[k].place(offset=[right_readwrite_transistor_xpos,0],
rotate=90)
# Add RWWL lines
# calculate RWWL position
rwwl_ypos = self.gnd_position.y - (k+1)*self.rowline_tile_height
self.rwwl_positions[k] = vector(self.leftmost_xpos, rwwl_ypos)
# add pin for RWWL
self.add_layout_pin(text="rwwl{}".format(k),
layer="metal1",
offset=self.rwwl_positions[k],
width=self.width,
height=contact.m1m2.width)
# Source/RWBL/RWBL_bar connections
# add metal1-to-metal2 contacts on top of read/write transistor source pins for connection to WBL and WBL_bar
offset_left = self.readwrite_nmos_left[k].get_pin("S").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_left,
rotate=90)
offset_right = self.readwrite_nmos_right[k].get_pin("S").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_right,
rotate=90)
# add pins for RWBL and RWBL_bar, overlaid on source contacts
self.rwbl_positions[k] = vector(self.readwrite_nmos_left[k].get_pin("S").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="rwbl{}".format(k),
layer="metal2",
offset=self.rwbl_positions[k],
width=drc["minwidth_metal2"],
height=self.height)
self.rwbl_bar_positions[k] = vector(self.readwrite_nmos_right[k].get_pin("S").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="rwbl_bar{}".format(k),
layer="metal2",
offset=self.rwbl_bar_positions[k],
width=drc["minwidth_metal2"],
height=self.height)
# Gate/RWWL connections
# add poly-to-meltal2 contacts to connect gate of read/write transistors to RWWL (contact next to gate)
# contact must be placed a metal1 width below the source pin to avoid drc from source pin routings
if(self.readwrite_nmos_contact_extension > self.gate_contact_thres):
contact_xpos = self.readwrite_nmos_left[k].get_pin("S").lc().x - drc["minwidth_metal2"] - 0.5*contact.m1m2.width
else:
contact_xpos = left_readwrite_transistor_xpos - self.readwrite_nmos.active_height - drc["poly_to_active"] - 0.5*contact.poly.width
contact_ypos = self.readwrite_nmos_left[k].get_pin("D").bc().y - drc["minwidth_metal1"] - 0.5*contact.m1m2.height
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_gate_contact)
if(self.readwrite_nmos_contact_extension > self.gate_contact_thres):
contact_xpos = self.readwrite_nmos_right[k].get_pin("S").rc().x + drc["minwidth_metal2"] + 0.5*contact.m1m2.width
else:
contact_xpos = right_readwrite_transistor_xpos + drc["poly_to_active"] + 0.5*contact.poly.width
contact_ypos = self.readwrite_nmos_right[k].get_pin("D").bc().y - drc["minwidth_metal1"] - 0.5*contact.m1m2.height
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_gate_contact)
# connect gate of read/write transistor to contact (poly path)
midL = vector(left_gate_contact.x, self.readwrite_nmos_left[k].get_pin("G").lc().y)
self.add_path("poly", [self.readwrite_nmos_left[k].get_pin("G").lc(), midL, left_gate_contact], width=contact.poly.width)
midR = vector(right_gate_contact.x, self.readwrite_nmos_right[k].get_pin("G").rc().y)
self.add_path("poly", [self.readwrite_nmos_right[k].get_pin("G").rc(), midR, right_gate_contact], width=contact.poly.width)
# add metal1-to-metal2 contacts to RWWL lines
left_rwwl_contact = vector(left_gate_contact.x, self.rwwl_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_rwwl_contact,
rotate=90)
right_rwwl_contact = vector(right_gate_contact.x, self.rwwl_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_rwwl_contact,
rotate=90)
# connect read/write transistor gate contacts to RWWL contacts (metal2 path)
self.add_path("metal2", [left_gate_contact, left_rwwl_contact])
self.add_path("metal2", [right_gate_contact, right_rwwl_contact])
# Drain/Storage connections
# this path only needs to be drawn once on the last iteration of the loop
if(k == self.num_rw_ports-1):
# add contacts to connect gate of inverters to drain of read/write transistors
left_storage_contact = vector(self.inverter_nmos_left.get_pin("G").lc().x - drc["poly_to_polycontact"] - 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_storage_contact,
rotate=90)
right_storage_contact = vector(self.inverter_nmos_right.get_pin("G").rc().x + drc["poly_to_polycontact"] + 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_storage_contact,
rotate=90)
# connect gate of inverters to contacts (poly path)
inverter_gate_offset_left = vector(self.inverter_nmos_left.get_pin("G").lc().x, self.cross_couple_lower_ypos)
self.add_path("poly", [left_storage_contact, inverter_gate_offset_left])
inverter_gate_offset_right = vector(self.inverter_nmos_right.get_pin("G").rc().x, self.cross_couple_lower_ypos)
self.add_path("poly", [right_storage_contact, inverter_gate_offset_right])
# connect contacts to drains of read/write transistors (metal1 path)
midL0 = vector(self.inverter_nmos_left.get_pin("S").lc().x - 1.5*drc["minwidth_metal1"], left_storage_contact.y)
midL1 = vector(self.inverter_nmos_left.get_pin("S").lc().x - 1.5*drc["minwidth_metal1"], self.readwrite_nmos_left[k].get_pin("D").lc().y)
self.add_path("metal1", [left_storage_contact, midL0], width=contact.poly.second_layer_width) # width needed to avoid drc error
self.add_path("metal1", [midL0+vector(0,0.5*contact.poly.second_layer_width), midL1, self.readwrite_nmos_left[k].get_pin("D").lc()])
midR0 = vector(self.inverter_nmos_right.get_pin("D").rc().x + 1.5*drc["minwidth_metal1"], right_storage_contact.y)
midR1 = vector(self.inverter_nmos_right.get_pin("D").rc().x + 1.5*drc["minwidth_metal1"], self.readwrite_nmos_right[k].get_pin("D").rc().y)
self.add_path("metal1", [right_storage_contact, midR0], width=contact.poly.second_layer_width)
self.add_path("metal1", [midR0+vector(0,0.5*contact.poly.second_layer_width), midR1, self.readwrite_nmos_right[k].get_pin("D").rc()])
# end if
# end for
# update furthest left and right transistor edges
self.left_building_edge = left_readwrite_transistor_xpos - self.readwrite_nmos.active_height
self.right_building_edge = right_readwrite_transistor_xpos
def create_write_ports(self):
"""
Creates write ports in the bit cell. A differential pair of transistors can write only.
A write is enabled by setting a Write-Rowline (WWL) high, subsequently turning on the transistor.
The transistor is connected between a Write-Bitline (WBL) and the storage component of the cell (Q).
In a write operation, driving WBL high or low sets the value of the cell.
This is a differential design, so each write port has a mirrored port that connects WBL_bar to Q_bar.
"""
# Define variables relevant to write transistors
# define offset correction due to rotation of the ptx module
write_rotation_correct = self.write_nmos.active_height
# define write transistor variables as empty arrays based on the number of write ports
self.write_nmos_left = [None] * self.num_w_ports
self.write_nmos_right = [None] * self.num_w_ports
# iterate over the number of write ports
for k in range(0,self.num_w_ports):
# add write transistors
self.write_nmos_left[k] = self.add_inst(name="write_nmos_left{}".format(k),
mod=self.write_nmos)
self.connect_inst(["Q", "wwl{}".format(k), "wbl{}".format(k), "gnd"])
self.write_nmos_right[k] = self.add_inst(name="write_nmos_right{}".format(k),
mod=self.write_nmos)
self.connect_inst(["Q_bar", "wwl{}".format(k), "wbl_bar{}".format(k), "gnd"])
def place_write_ports(self):
"""
Places write ports in the bit cell.
"""
# Define variables relevant to write transistors
self.wwl_positions = [None] * self.num_w_ports
self.wbl_positions = [None] * self.num_w_ports
self.wbl_bar_positions = [None] * self.num_w_ports
# define offset correction due to rotation of the ptx module
write_rotation_correct = self.write_nmos.active_height
# iterate over the number of write ports
for k in range(0,self.num_w_ports):
# Add transistors
# calculate write transistor offsets
left_write_transistor_xpos = self.left_building_edge \
- (not self.readwrite_port_flag)*self.inverter_to_write_spacing \
- (self.readwrite_port_flag)*self.readwrite_to_readwrite_spacing \
- self.write_nmos.active_height - k*self.write_tile_width \
+ write_rotation_correct
right_write_transistor_xpos = self.right_building_edge \
+ (not self.readwrite_port_flag)*self.inverter_to_write_spacing \
+ (self.readwrite_port_flag)*self.readwrite_to_readwrite_spacing \
+ k*self.write_tile_width \
+ write_rotation_correct
# add write transistors
self.write_nmos_left[k].place(offset=[left_write_transistor_xpos,0],
rotate=90)
self.write_nmos_right[k].place(offset=[right_write_transistor_xpos,0],
rotate=90)
# Add WWL lines
# calculate WWL position
wwl_ypos = self.gnd_position.y \
- self.num_rw_ports*self.rowline_tile_height \
- (k+1)*self.rowline_tile_height
self.wwl_positions[k] = vector(self.leftmost_xpos, wwl_ypos)
# add pin for WWL
self.add_layout_pin(text="wwl{}".format(k),
layer="metal1",
offset=self.wwl_positions[k],
width=self.width,
height=contact.m1m2.width)
# Source/WBL/WBL_bar connections
# add metal1-to-metal2 contacts on top of write transistor source pins for connection to WBL and WBL_bar
offset_left = self.write_nmos_left[k].get_pin("S").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_left,
rotate=90)
offset_right = self.write_nmos_right[k].get_pin("S").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_right,
rotate=90)
# add pins for WBL and WBL_bar, overlaid on source contacts
self.wbl_positions[k] = vector(self.write_nmos_left[k].get_pin("S").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="wbl{}".format(k),
layer="metal2",
offset=self.wbl_positions[k],
width=drc["minwidth_metal2"],
height=self.height)
self.wbl_bar_positions[k] = vector(self.write_nmos_right[k].get_pin("S").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="wbl_bar{}".format(k),
layer="metal2",
offset=self.wbl_bar_positions[k],
width=drc["minwidth_metal2"],
height=self.height)
# Gate/WWL connections
# add poly-to-meltal2 contacts to connect gate of write transistors to WWL (contact next to gate)
# contact must be placed a metal width below the source pin to avoid drc from source pin routings
if(self.write_nmos_contact_extension > self.gate_contact_thres):
contact_xpos = self.write_nmos_left[k].get_pin("S").lc().x - drc["minwidth_metal2"] - 0.5*contact.m1m2.width
else:
contact_xpos = left_write_transistor_xpos - self.write_nmos.active_height - drc["poly_to_active"] - 0.5*contact.poly.width
contact_ypos = self.write_nmos_left[k].get_pin("D").bc().y - drc["minwidth_metal1"] - 0.5*contact.m1m2.height
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_gate_contact)
if(self.write_nmos_contact_extension > self.gate_contact_thres):
contact_xpos = self.write_nmos_right[k].get_pin("S").rc().x + drc["minwidth_metal2"] + 0.5*contact.m1m2.width
else:
contact_xpos = right_write_transistor_xpos + drc["poly_to_active"] + 0.5*contact.poly.width
contact_ypos = self.write_nmos_right[k].get_pin("D").bc().y - drc["minwidth_metal1"] - 0.5*contact.m1m2.height
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_gate_contact)
# connect gate of write transistor to contact (poly path)
midL = vector(left_gate_contact.x, self.write_nmos_left[k].get_pin("G").lc().y)
self.add_path("poly", [self.write_nmos_left[k].get_pin("G").lc(), midL, left_gate_contact], width=contact.poly.width)
midR = vector(right_gate_contact.x, self.write_nmos_right[k].get_pin("G").rc().y)
self.add_path("poly", [self.write_nmos_right[k].get_pin("G").rc(), midR, right_gate_contact], width=contact.poly.width)
# add metal1-to-metal2 contacts to WWL lines
left_wwl_contact = vector(left_gate_contact.x, self.wwl_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_wwl_contact,
rotate=90)
right_wwl_contact = vector(right_gate_contact.x, self.wwl_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_wwl_contact,
rotate=90)
# connect write transistor gate contacts to WWL contacts (metal2 path)
self.add_path("metal2", [left_gate_contact, left_wwl_contact])
self.add_path("metal2", [right_gate_contact, right_wwl_contact])
# Drain/Storage connections
# this path only needs to be drawn once on the last iteration of the loop
if(k == self.num_w_ports-1):
# add contacts to connect gate of inverters to drain of write transistors
left_storage_contact = vector(self.inverter_nmos_left.get_pin("G").lc().x - drc["poly_to_polycontact"] - 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_storage_contact,
rotate=90)
right_storage_contact = vector(self.inverter_nmos_right.get_pin("G").rc().x + drc["poly_to_polycontact"] + 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_storage_contact,
rotate=90)
# connect gate of inverters to contacts (poly path)
inverter_gate_offset_left = vector(self.inverter_nmos_left.get_pin("G").lc().x, self.cross_couple_lower_ypos)
self.add_path("poly", [left_storage_contact, inverter_gate_offset_left])
inverter_gate_offset_right = vector(self.inverter_nmos_right.get_pin("G").rc().x, self.cross_couple_lower_ypos)
self.add_path("poly", [right_storage_contact, inverter_gate_offset_right])
# connect contacts to drains of write transistors (metal1 path)
midL0 = vector(self.inverter_nmos_left.get_pin("S").lc().x - 1.5*drc["minwidth_metal1"], left_storage_contact.y)
midL1 = vector(self.inverter_nmos_left.get_pin("S").lc().x - 1.5*drc["minwidth_metal1"], self.write_nmos_left[k].get_pin("D").lc().y)
self.add_path("metal1", [left_storage_contact, midL0], width=contact.poly.second_layer_width) # width needed to avoid drc error
self.add_path("metal1", [midL0+vector(0,0.5*contact.poly.second_layer_width), midL1, self.write_nmos_left[k].get_pin("D").lc()])
midR0 = vector(self.inverter_nmos_right.get_pin("D").rc().x + 1.5*drc["minwidth_metal1"], right_storage_contact.y)
midR1 = vector(self.inverter_nmos_right.get_pin("D").rc().x + 1.5*drc["minwidth_metal1"], self.write_nmos_right[k].get_pin("D").rc().y)
self.add_path("metal1", [right_storage_contact, midR0], width=contact.poly.second_layer_width)
self.add_path("metal1", [midR0+vector(0,0.5*contact.poly.second_layer_width), midR1, self.write_nmos_right[k].get_pin("D").rc()])
# update furthest left and right transistor edges
self.left_building_edge = left_write_transistor_xpos - self.write_nmos.active_height
self.right_building_edge = right_write_transistor_xpos
def create_read_ports(self):
"""
Creates read ports in the bit cell. A differential pair of ports can read only.
Two transistors function as a read port, denoted as the "read transistor" and the "read-access transistor".
The read transistor is connected to RWL (gate), RBL (drain), and the read-access transistor (source).
The read-access transistor is connected to Q_bar (gate), gnd (source), and the read transistor (drain).
A read is enabled by setting a Read-Rowline (RWL) high, subsequently turning on the read transistor.
The Read-Bitline (RBL) is precharged to high, and when the value of Q_bar is high, the read-access transistor
is turned on, creating a connection between RBL and gnd. RBL subsequently discharges allowing for a differential read
using sense amps. This is a differential design, so each read port has a mirrored port that connects RBL_bar to Q.
"""
# define read transistor variables as empty arrays based on the number of read ports
self.read_nmos_left = [None] * self.num_r_ports
self.read_nmos_right = [None] * self.num_r_ports
self.read_access_nmos_left = [None] * self.num_r_ports
self.read_access_nmos_right = [None] * self.num_r_ports
# iterate over the number of read ports
for k in range(0,self.num_r_ports):
# add read-access transistors
self.read_access_nmos_left[k] = self.add_inst(name="read_access_nmos_left{}".format(k),
mod=self.read_nmos)
self.connect_inst(["RA_to_R_left{}".format(k), " Q_bar", "gnd", "gnd"])
self.read_access_nmos_right[k] = self.add_inst(name="read_access_nmos_right{}".format(k),
mod=self.read_nmos)
self.connect_inst(["RA_to_R_right{}".format(k), "Q", "gnd", "gnd"])
# add read transistors
self.read_nmos_left[k] = self.add_inst(name="read_nmos_left{}".format(k),
mod=self.read_nmos)
self.connect_inst(["rbl{}".format(k), "rwl{}".format(k), "RA_to_R_left{}".format(k), "gnd"])
self.read_nmos_right[k] = self.add_inst(name="read_nmos_right{}".format(k),
mod=self.read_nmos)
self.connect_inst(["rbl_bar{}".format(k), "rwl{}".format(k), "RA_to_R_right{}".format(k), "gnd"])
def place_read_ports(self):
"""
Places the read ports in the bit cell.
"""
# Define variables relevant to read transistors
self.rwl_positions = [None] * self.num_r_ports
self.rbl_positions = [None] * self.num_r_ports
self.rbl_bar_positions = [None] * self.num_r_ports
# define offset correction due to rotation of the ptx module
read_rotation_correct = self.read_nmos.active_height
# calculate offset to overlap the drain of the read-access transistor with the source of the read transistor
overlap_offset = self.read_nmos.get_pin("D").ll() - self.read_nmos.get_pin("S").ll()
# iterate over the number of read ports
for k in range(0,self.num_r_ports):
# Add transistors
# calculate transistor offsets
left_read_transistor_xpos = self.left_building_edge \
- self.write_to_read_spacing \
- self.read_nmos.active_height - k*self.read_tile_width \
+ read_rotation_correct
right_read_transistor_xpos = self.right_building_edge \
+ self.write_to_read_spacing \
+ k*self.read_tile_width \
+ read_rotation_correct
# add read-access transistors
self.read_access_nmos_left[k].place(offset=[left_read_transistor_xpos,0],
rotate=90)
self.read_access_nmos_right[k].place(offset=[right_read_transistor_xpos,0],
rotate=90)
# add read transistors
self.read_nmos_left[k].place(offset=[left_read_transistor_xpos,overlap_offset.x],
rotate=90)
self.read_nmos_right[k].place(offset=[right_read_transistor_xpos,overlap_offset.x],
rotate=90)
# Add RWL lines
# calculate RWL position
rwl_ypos = self.gnd_position.y \
- self.num_rw_ports*self.rowline_tile_height \
- self.num_w_ports*self.rowline_tile_height \
- (k+1)*self.rowline_tile_height
self.rwl_positions[k] = vector(self.leftmost_xpos, rwl_ypos)
# add pin for RWL
self.add_layout_pin(text="rwl{}".format(k),
layer="metal1",
offset=self.rwl_positions[k],
width=self.width,
height=contact.m1m2.width)
# Drain of read transistor / RBL & RBL_bar connection
# add metal1-to-metal2 contacts on top of read transistor drain pins for connection to RBL and RBL_bar
offset_left = self.read_nmos_left[k].get_pin("D").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_left,
rotate=90)
offset_right = self.read_nmos_right[k].get_pin("D").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_right,
rotate=90)
# add pins for RBL and RBL_bar, overlaid on drain contacts
self.rbl_positions[k] = vector(self.read_nmos_left[k].get_pin("D").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="rbl{}".format(k),
layer="metal2",
offset=self.rbl_positions[k],
width=drc["minwidth_metal2"],
height=self.height)
self.rbl_bar_positions[k] = vector(self.read_nmos_right[k].get_pin("D").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="rbl_bar{}".format(k),
layer="metal2",
offset=self.rbl_bar_positions[k],
width=drc["minwidth_metal2"],
height=self.height)
# Gate of read transistor / RWL connection
# add poly-to-meltal2 contacts to connect gate of read transistors to RWL (contact next to gate)
if(self.read_nmos_contact_extension > self.gate_contact_thres):
contact_xpos = self.read_nmos_left[k].get_pin("S").lc().x - drc["minwidth_metal2"] - 0.5*contact.m1m2.width
else:
contact_xpos = left_read_transistor_xpos - self.read_nmos.active_height - drc["poly_to_active"] - 0.5*contact.poly.width
contact_ypos = self.read_nmos_left[k].get_pin("G").lc().y
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_gate_contact)
if(self.read_nmos_contact_extension > self.gate_contact_thres):
contact_xpos = self.read_nmos_right[k].get_pin("S").rc().x + drc["minwidth_metal2"] + 0.5*contact.m1m2.width
else:
contact_xpos = right_read_transistor_xpos + drc["poly_to_active"] + 0.5*contact.poly.width
contact_ypos = self.read_nmos_right[k].get_pin("G").rc().y
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_gate_contact)
# connect gate of read transistor to contact (poly path)
self.add_path("poly", [self.read_nmos_left[k].get_pin("G").lc(), left_gate_contact])
self.add_path("poly", [self.read_nmos_right[k].get_pin("G").rc(), right_gate_contact])
# add metal1-to-metal2 contacts to RWL lines
left_rwl_contact = vector(left_gate_contact.x, self.rwl_positions[k].y + 0.5*contact.poly.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_rwl_contact,
rotate=90)
right_rwl_contact = vector(right_gate_contact.x, self.rwl_positions[k].y + 0.5*contact.poly.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_rwl_contact,
rotate=90)
# connect read transistor gate contacts to RWL contacts (metal2 path)
self.add_path("metal2", [left_gate_contact, left_rwl_contact])
self.add_path("metal2", [right_gate_contact, right_rwl_contact])
# Source of read-access transistor / GND connection
# connect source of read-access transistor to GND (metal1 path)
gnd_offset_left = vector(self.read_access_nmos_left[k].get_pin("S").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.read_access_nmos_left[k].get_pin("S").bc(), gnd_offset_left])
gnd_offset_right = vector(self.read_access_nmos_right[k].get_pin("S").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.read_access_nmos_right[k].get_pin("S").bc(), gnd_offset_right])
# Gate of read-access transistor / storage connection
# add poly-to-metal1 contacts to connect gate of read-access transistors to output of inverters (contact next to gate)
if(self.read_nmos_contact_extension > self.gate_contact_thres):
contact_xpos = self.read_nmos_left[k].get_pin("S").rc().x + drc["minwidth_metal2"] + 0.5*contact.m1m2.width
else:
contact_xpos = left_read_transistor_xpos + drc["poly_to_active"] + 0.5*contact.poly.width
contact_ypos = self.read_access_nmos_left[k].get_pin("G").rc().y
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
if(self.read_nmos_contact_extension > self.gate_contact_thres):
contact_xpos = self.read_nmos_right[k].get_pin("S").lc().x - drc["minwidth_metal2"] - 0.5*contact.m1m2.width
else:
contact_xpos = right_read_transistor_xpos - self.read_nmos.active_height - drc["poly_to_active"] - 0.5*contact.poly.width
contact_ypos = self.read_access_nmos_right[k].get_pin("G").lc().y
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
# connect gate of read-access transistor to contact (poly path)
self.add_path("poly", [self.read_access_nmos_left[k].get_pin("G").rc(), left_gate_contact])
self.add_path("poly", [self.read_access_nmos_right[k].get_pin("G").lc(), right_gate_contact])
# save the positions of the first gate contacts for use in later iterations
if(k == 0):
left_gate_contact0 = left_gate_contact
right_gate_contact0 = right_gate_contact
# connect contact to output of inverters (metal1 path)
# mid0: metal1 path must route over the read transistors (above drain of read transistor)
# mid1: continue metal1 path horizontally until at first read access gate contact
# mid2: route up or down to be level with inverter output
# endpoint at drain/source of inverter
midL0 = vector(left_gate_contact.x, self.read_nmos_left[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midL1 = vector(left_gate_contact0.x, self.read_nmos_left[0].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midL2 = vector(left_gate_contact0.x, self.cross_couple_upper_ypos)
left_inverter_offset = vector(self.inverter_nmos_left.get_pin("D").center().x, self.cross_couple_upper_ypos)
self.add_path("metal1", [left_gate_contact, midL0, midL1, midL2, left_inverter_offset])
midR0 = vector(right_gate_contact.x, self.read_nmos_right[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midR1 = vector(right_gate_contact0.x, self.read_nmos_right[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midR2 = vector(right_gate_contact0.x, self.cross_couple_upper_ypos)
right_inverter_offset = vector(self.inverter_nmos_right.get_pin("S").center().x, self.cross_couple_upper_ypos)
self.add_path("metal1", [right_gate_contact, midR0, midR1, midR2, right_inverter_offset])
# end for
def extend_well(self):
"""
Connects wells between ptx modules to avoid drc spacing issues.
Since the pwell of the read ports rise higher than the nwell of the inverters,
the well connections must be done piecewise to avoid pwell and nwell overlap.
"""
# extend pwell to encompass entire nmos region of the cell up to the height of the inverter nmos well
offset = vector(self.leftmost_xpos, self.botmost_ypos)
well_height = -self.botmost_ypos + self.inverter_nmos.cell_well_height - drc["well_enclosure_active"]
self.add_rect(layer="pwell",
offset=offset,
width=self.width,
height=well_height)
# extend pwell over read/write and write transistors to the
# height of the write transistor well (read/write and write
# transistors are the same height)
if(self.num_w_ports > 0):
# calculate the edge of the write transistor well closest to the center
left_write_well_xpos = self.write_nmos_left[0].offset.x + drc["well_enclosure_active"]
right_write_well_xpos = self.write_nmos_right[0].offset.x - self.write_nmos.active_height - drc["well_enclosure_active"]
else:
# calculate the edge of the read/write transistor well closest to the center
left_write_well_xpos = self.readwrite_nmos_left[0].offset.x + drc["well_enclosure_active"]
right_write_well_xpos = self.readwrite_nmos_right[0].offset.x - self.readwrite_nmos.active_height - drc["well_enclosure_active"]
# calculate a width that will halt at the edge of the write transistors
write_well_width = -(self.leftmost_xpos - left_write_well_xpos)
write_well_height = self.write_nmos.cell_well_width - drc["well_enclosure_active"]
offset = vector(left_write_well_xpos - write_well_width, 0)
self.add_rect(layer="pwell",
offset=offset,
width=write_well_width,
height=write_well_height)
offset = vector(right_write_well_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=write_well_width,
height=write_well_height)
# extend pwell over the read transistors to the height of the bitcell
if(self.num_r_ports > 0):
# calculate the edge of the read transistor well clostest to the center
left_read_well_xpos = self.read_nmos_left[0].offset.x + drc["well_enclosure_active"]
right_read_well_xpos = self.read_nmos_right[0].offset.x - self.read_nmos.active_height - drc["well_enclosure_active"]
# calculate a width that will halt at the edge of the read transistors
read_well_width = -(self.leftmost_xpos - left_read_well_xpos)
read_well_height = self.topmost_ypos
offset = vector(self.leftmost_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=read_well_width,
height=read_well_height)
offset = vector(right_read_well_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=read_well_width,
height=read_well_height)
# extend nwell to encompass inverter_pmos
# calculate offset of the left pmos well
inverter_well_xpos = -self.inverter_tile_width - drc["well_enclosure_active"]
inverter_well_ypos = self.inverter_nmos.active_height + self.inverter_gap - drc["well_enclosure_active"]
# calculate width of the two combined nwells
# calculate height to encompass nimplant connected to vdd
well_width = 2*self.inverter_tile_width + 2*drc["well_enclosure_active"]
well_height = self.vdd_position.y - inverter_well_ypos + drc["well_enclosure_active"] + drc["minwidth_tx"]
offset = [inverter_well_xpos,inverter_well_ypos]
self.add_rect(layer="nwell",
offset=offset,
width=well_width,
height=well_height)
# add well contacts
# connect pimplants to gnd
offset = vector(0, self.gnd_position.y + 0.5*contact.well.second_layer_width)
self.add_contact_center(layers=("active", "contact", "metal1"),
offset=offset,
rotate=90,
implant_type="p",
well_type="p")
# connect nimplants to vdd
offset = vector(0, self.vdd_position.y + 0.5*drc["minwidth_metal1"])
self.add_contact_center(layers=("active", "contact", "metal1"),
offset=offset,
rotate=90,
implant_type="n",
well_type="n")
def list_bitcell_pins(self, col, row):
""" Creates a list of connections in the bitcell, indexed by column and row, for instance use in bitcell_array """
bitcell_pins = []
for k in range(self.num_rw_ports):
bitcell_pins.append("rwbl{0}[{1}]".format(k,col))
bitcell_pins.append("rwbl_bar{0}[{1}]".format(k,col))
for k in range(self.num_w_ports):
bitcell_pins.append("wbl{0}[{1}]".format(k,col))
bitcell_pins.append("wbl_bar{0}[{1}]".format(k,col))
for k in range(self.num_r_ports):
bitcell_pins.append("rbl{0}[{1}]".format(k,col))
bitcell_pins.append("rbl_bar{0}[{1}]".format(k,col))
for k in range(self.num_rw_ports):
bitcell_pins.append("rwwl{0}[{1}]".format(k,row))
for k in range(self.num_w_ports):
bitcell_pins.append("wwl{0}[{1}]".format(k,row))
for k in range(self.num_r_ports):
bitcell_pins.append("rwl{0}[{1}]".format(k,row))
bitcell_pins.append("vdd")
bitcell_pins.append("gnd")
return bitcell_pins
def list_all_wl_names(self):
""" Creates a list of all wordline pin names """
row_pins = []
for k in range(self.num_rw_ports):
row_pins.append("rwwl{0}".format(k))
for k in range(self.num_w_ports):
row_pins.append("wwl{0}".format(k))
for k in range(self.num_r_ports):
row_pins.append("rwl{0}".format(k))
return row_pins
def list_read_wl_names(self):
""" Creates a list of wordline pin names associated with read ports """
row_pins = []
for k in range(self.num_rw_ports):
row_pins.append("rwwl{0}".format(k))
for k in range(self.num_r_ports):
row_pins.append("rwl{0}".format(k))
return row_pins
def list_write_wl_names(self):
""" Creates a list of wordline pin names associated with write ports """
row_pins = []
for k in range(self.num_rw_ports):
row_pins.append("rwwl{0}".format(k))
for k in range(self.num_w_ports):
row_pins.append("wwl{0}".format(k))
return row_pins
def list_all_bitline_names(self):
""" Creates a list of all bitline pin names (both bl and br) """
column_pins = []
for k in range(self.num_rw_ports):
column_pins.append("rwbl{0}".format(k))
column_pins.append("rwbl_bar{0}".format(k))
for k in range(self.num_w_ports):
column_pins.append("wbl{0}".format(k))
column_pins.append("wbl_bar{0}".format(k))
for k in range(self.num_r_ports):
column_pins.append("rbl{0}".format(k))
column_pins.append("rbl_bar{0}".format(k))
return column_pins
def list_all_bl_names(self):
""" Creates a list of all bl pins names """
column_pins = []
for k in range(self.num_rw_ports):
column_pins.append("rwbl{0}".format(k))
for k in range(self.num_w_ports):
column_pins.append("wbl{0}".format(k))
for k in range(self.num_r_ports):
column_pins.append("rbl{0}".format(k))
return column_pins
def list_all_br_names(self):
""" Creates a list of all br pins names """
column_pins = []
for k in range(self.num_rw_ports):
column_pins.append("rwbl_bar{0}".format(k))
for k in range(self.num_w_ports):
column_pins.append("wbl_bar{0}".format(k))
for k in range(self.num_r_ports):
column_pins.append("rbl_bar{0}".format(k))
return column_pins
def list_read_bl_names(self):
""" Creates a list of bl pin names associated with read ports """
column_pins = []
for k in range(self.num_rw_ports):
column_pins.append("rwbl{0}".format(k))
for k in range(self.num_r_ports):
column_pins.append("rbl{0}".format(k))
return column_pins
def list_read_br_names(self):
""" Creates a list of br pin names associated with read ports """
column_pins = []
for k in range(self.num_rw_ports):
column_pins.append("rwbl_bar{0}".format(k))
for k in range(self.num_r_ports):
column_pins.append("rbl_bar{0}".format(k))
return column_pins
def list_write_bl_names(self):
""" Creates a list of bl pin names associated with write ports """
column_pins = []
for k in range(self.num_rw_ports):
column_pins.append("rwbl{0}".format(k))
for k in range(self.num_w_ports):
column_pins.append("wbl{0}".format(k))
return column_pins
def list_write_br_names(self):
""" Creates a list of br pin names asscociated with write ports"""
column_pins = []
for k in range(self.num_rw_ports):
column_pins.append("rwbl_bar{0}".format(k))
for k in range(self.num_w_ports):
column_pins.append("wbl_bar{0}".format(k))
return column_pins