OpenRAM/compiler/bitcells/bitcell_base.py

182 lines
6.7 KiB
Python
Raw Normal View History

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import debug
import design
import utils
from globals import OPTS
import logical_effort
from tech import GDS, parameter, drc, layer
class bitcell_base(design.design):
"""
Base bitcell parameters to be over-riden.
"""
2020-11-14 00:55:55 +01:00
def __init__(self, name, prop=None):
design.design.__init__(self, name)
2020-11-14 00:55:55 +01:00
if prop:
self.pins = prop.port_names
self.add_pin_types(prop.port_types)
self.nets_match = self.do_nets_exist(prop.storage_nets)
self.mirror = prop.mirror
self.end_caps = prop.end_caps
(self.width, self.height) = utils.get_libcell_size(self.cell_name,
GDS["unit"],
2020-11-14 00:55:55 +01:00
layer[prop.boundary_layer])
self.pin_map = utils.get_libcell_pins(self.pins,
self.cell_name,
GDS["unit"])
2020-11-03 15:29:17 +01:00
def get_stage_effort(self, load):
parasitic_delay = 1
# This accounts for bitline being drained
# thought the access TX and internal node
size = 0.5
# Assumes always a minimum sizes inverter.
# Could be specified in the tech.py file.
cin = 3
# min size NMOS gate load
read_port_load = 0.5
return logical_effort.logical_effort('bitline',
size,
cin,
load + read_port_load,
parasitic_delay,
False)
def analytical_power(self, corner, load):
"""Bitcell power in nW. Only characterizes leakage."""
from tech import spice
leakage = spice["bitcell_leakage"]
# FIXME
dynamic = 0
total_power = self.return_power(dynamic, leakage)
return total_power
def input_load(self):
""" Return the relative capacitance of the access transistor gates """
2020-11-03 15:29:17 +01:00
# FIXME: This applies to bitline capacitances as well.
# FIXME: sizing is not accurate with the handmade cell.
# Change once cell widths are fixed.
access_tx_cin = parameter["6T_access_size"] / drc["minwidth_tx"]
return 2 * access_tx_cin
2020-11-03 15:29:17 +01:00
def get_wl_cin(self):
"""Return the relative capacitance of the access transistor gates"""
# This is a handmade cell so the value must be entered
# in the tech.py file or estimated.
# Calculated in the tech file by summing the widths of all
# the related gates and dividing by the minimum width.
# FIXME: sizing is not accurate with the handmade cell.
# Change once cell widths are fixed.
access_tx_cin = parameter["6T_access_size"] / drc["minwidth_tx"]
return 2 * access_tx_cin
def get_storage_net_names(self):
"""
Returns names of storage nodes in bitcell in
[non-inverting, inverting] format.
"""
# Checks that they do exist
if self.nets_match:
return self.storage_nets
else:
fmt_str = "Storage nodes={} not found in spice file."
debug.info(1, fmt_str.format(self.storage_nets))
return None
def get_storage_net_offset(self):
"""
2020-11-03 15:29:17 +01:00
Gets the location of the storage net labels to add top level
labels for pex simulation.
"""
# If we generated the bitcell, we already know where Q and Q_bar are
if OPTS.bitcell is not "pbitcell":
self.storage_net_offsets = []
for i in range(len(self.get_storage_net_names())):
2020-07-31 14:27:19 +02:00
for text in self.gds.getTexts(layer["m1"]):
if self.storage_nets[i] == text.textString.rstrip('\x00'):
self.storage_net_offsets.append(text.coordinates[0])
2020-11-03 15:29:17 +01:00
for i in range(len(self.storage_net_offsets)):
self.storage_net_offsets[i] = tuple([self.gds.info["units"][0] * x for x in self.storage_net_offsets[i]])
return(self.storage_net_offsets)
2020-01-20 13:16:30 +01:00
def get_bitline_offset(self):
bl_names = self.get_all_bl_names()
br_names = self.get_all_br_names()
found_bl = []
found_br = []
self.bl_offsets = []
self.br_offsets = []
for i in range(len(bl_names)):
2020-07-31 14:27:19 +02:00
for text in self.gds.getTexts(layer["m2"]):
if not bl_names[i] in found_bl:
if bl_names[i] == text.textString.rstrip('\x00'):
self.bl_offsets.append(text.coordinates[0])
found_bl.append(bl_names[i])
2020-11-03 15:29:17 +01:00
continue
for i in range(len(br_names)):
2020-07-31 14:27:19 +02:00
for text in self.gds.getTexts(layer["m2"]):
if not br_names[i] in found_br:
if br_names[i] == text.textString.rstrip('\x00'):
self.br_offsets.append(text.coordinates[0])
found_br.append(br_names[i])
continue
for i in range(len(self.bl_offsets)):
self.bl_offsets[i] = tuple([self.gds.info["units"][0] * x for x in self.bl_offsets[i]])
for i in range(len(self.br_offsets)):
2020-11-03 15:29:17 +01:00
self.br_offsets[i] = tuple([self.gds.info["units"][0] * x for x in self.br_offsets[i]])
2020-01-28 01:28:55 +01:00
return(self.bl_offsets, self.br_offsets, found_bl, found_br)
2020-01-20 13:16:30 +01:00
2020-11-03 15:29:17 +01:00
def get_normalized_storage_nets_offset(self):
"""
Convert storage net offset to be relative to the bottom left corner
2020-11-03 15:29:17 +01:00
of the bitcell. This is useful for making sense of offsets outside
of the bitcell.
2020-11-03 15:29:17 +01:00
"""
if OPTS.bitcell is not "pbitcell":
normalized_storage_net_offset = self.get_storage_net_offset()
else:
net_offset = self.get_storage_net_offset()
Q_x = net_offset[0][0] - self.leftmost_xpos
Q_y = net_offset[0][1] - self.botmost_ypos
Q_bar_x = net_offset[1][0] - self.leftmost_xpos
Q_bar_y = net_offset[1][1] - self.botmost_ypos
normalized_storage_net_offset = [[Q_x,Q_y],[Q_bar_x,Q_bar_y]]
return normalized_storage_net_offset
2020-01-20 13:16:30 +01:00
def get_normalized_bitline_offset(self):
return self.get_bitline_offset()
def build_graph(self, graph, inst_name, port_nets):
"""
By default, bitcells won't be part of the graph.
"""
return