OpenRAM/compiler/bitcells/bitcell_base.py

122 lines
4.4 KiB
Python
Raw Normal View History

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import debug
import design
from globals import OPTS
import logical_effort
from tech import parameter, drc, layer
class bitcell_base(design.design):
"""
Base bitcell parameters to be over-riden.
"""
def __init__(self, name):
design.design.__init__(self, name)
def get_stage_effort(self, load):
parasitic_delay = 1
# This accounts for bitline being drained
# thought the access TX and internal node
size = 0.5
# Assumes always a minimum sizes inverter.
# Could be specified in the tech.py file.
cin = 3
# min size NMOS gate load
read_port_load = 0.5
return logical_effort.logical_effort('bitline',
size,
cin,
load + read_port_load,
parasitic_delay,
False)
def analytical_power(self, corner, load):
"""Bitcell power in nW. Only characterizes leakage."""
from tech import spice
leakage = spice["bitcell_leakage"]
# FIXME
dynamic = 0
total_power = self.return_power(dynamic, leakage)
return total_power
def input_load(self):
""" Return the relative capacitance of the access transistor gates """
# FIXME: This applies to bitline capacitances as well.
# FIXME: sizing is not accurate with the handmade cell.
# Change once cell widths are fixed.
access_tx_cin = parameter["6T_access_size"] / drc["minwidth_tx"]
return 2 * access_tx_cin
def get_wl_cin(self):
"""Return the relative capacitance of the access transistor gates"""
# This is a handmade cell so the value must be entered
# in the tech.py file or estimated.
# Calculated in the tech file by summing the widths of all
# the related gates and dividing by the minimum width.
# FIXME: sizing is not accurate with the handmade cell.
# Change once cell widths are fixed.
access_tx_cin = parameter["6T_access_size"] / drc["minwidth_tx"]
return 2 * access_tx_cin
def get_storage_net_names(self):
"""
Returns names of storage nodes in bitcell in
[non-inverting, inverting] format.
"""
# Checks that they do exist
if self.nets_match:
return self.storage_nets
else:
fmt_str = "Storage nodes={} not found in spice file."
debug.info(1, fmt_str.format(self.storage_nets))
return None
def get_storage_net_offset(self):
"""
Gets the location of the storage net labels to add top level
labels for pex simulation.
"""
# If we generated the bitcell, we already know where Q and Q_bar are
if OPTS.bitcell is not "pbitcell":
self.storage_net_offsets = []
for i in range(0, len(self.get_storage_net_names())):
for text in self.gds.getTexts(layer["metal1"]):
if self.storage_nets[i] == text.textString.rstrip('\x00'):
print(text.textString + "sucess")
return(self.storage_net_offsets)
def get_normalized_storage_net_offset(self):
"""
Convert storage net offset to be relative to the bottom left corner
of the bitcell. This is useful for making sense of offsets outside
of the bitcell.
"""
print("get normalized")
Q_x = self.get_storage_net_offset()[0][0] - self.leftmost_xpos
Q_y = self.get_storage_net_offset()[0][1] - self.botmost_ypos
Q_bar_x = self.get_storage_net_offset()[1][0] - self.leftmost_xpos
Q_bar_y = self.get_storage_net_offset()[1][1] - self.botmost_ypos
normalized_storage_net_offset = [[Q_x,Q_y],[Q_bar_x,Q_bar_y]]
return normalized_storage_net_offset
def build_graph(self, graph, inst_name, port_nets):
"""
By default, bitcells won't be part of the graph.
"""
return