sides of the output when presenting side-by-side results. This
matches up net or device names within a partition. Where net or
device names match, the contents are also aligned on either side.
I attempted to also do a "best match" of contents between sides,
but as this involves a lot of analyzing the contents, it is very
computationally expensive, and so the code has been disabled. It
could be added back in as an option. There are also various ways
to optimize it for speed.
pins for enabling parallel combinations, which could cause a crash.
Added a "-force" option to "equate pins" to allow pins to be matched
even on subcircuits that did not correctly match; this was done in
conjuction with an extra option to the "lvs" command "-noflatten="
to pass a list of cellname to not be flattened even if they do not
match. This is generally discouraged, as it prevents netgen from
resolving differences between layout and schematic hierarchy, but it
can be useful for checking that the hierarchy above a certain cell
is correct, given that if a subcell is really unmatched, then its
errors will keep propagating up the top level, making additional
errors hard to diagnose.
can be turned on or off from the setup using "property parallel open"
to allow parallelizing devices with no-connect pins vs. "property
parallel connected" to only allow parallelizing of devices with all
pins connected.
devices in parallel with unconnected pins would be confused with
N devices in parallel with those pins all tied together. This is
treated as a property error.
to generate incorrect results on occasion. The method to parallelize
cells with the same no-connect pins should avoid the worst-case
symmetry breaking that was previously plaguing the LVS of large
standard-cell layouts.
parallel if the same pins are no-connects. These were previously not
treated as parallel because each no-connect has a unique node number,
and cells were only considered as parallel if all pins connected to
the same node numbers. This avoids issues with long-running symmetry
breaking on standard cell designs due to cells like antenna taps or
any cell that is placed without connecting it up. To do: This
makes indistinguishable certain cases, e.g., N cells in circuit 1
with pin X open vs. N cells in circuit 2 with pin X all tied together.
This could be caught during property matching.
to go into an infinite loop and fill memory until it crashes, due
to a complete pin mismatch between devices causing one device to
have its pins removed and replaced with proxy pins.
was running through the entire object linked list to find the
predecessor of a record that it had already found. Solved by simply
keeping track of the predecessor record.
format files to the SPICE parser, so that netgen can be run
directly on a testbench file and not generate errors due to
statements in the control block.
I have a design that is taking quite a long time for netgen to complete LVS
checking. Profiles show a large chunk of runtime is in the hash functions.
Some of the hashtables are very sparsely populated, but others are
heavily used. One hashtable has chains of over 250. Longer term it would
be worth investigating resizing the hashtables (or perhaps using other
data strutures), but for now I looked at what changing the number of
hash buckets (OBJHASHSIZE) does for performance:
OBJHASHSIZE time (mm:ss)
997 24:18
10093 4:42
42073 3:12
104729 2:51
I somewhat arbitrarily chose 42073 which gives us a 7.6x improvement in
runtime.
file input so that pins occur first before nodes, as they do in a
SPICE netlist. Certain parts of the comparison code depend on pins
being first in the netlist, and reordering them when reading input
is easier than rewriting the rest of the code.
The previous script would swallow the exit code of the `./configure`
script and thus it looked like doing a configure always succeeded.
Signed-off-by: Tim 'mithro' Ansell <me@mith.ro>
introduced in revision 150 can result in an incorrect result
reporting a bad match where the match is actually good (as proven
by running the full symmetry breaking on the same netlist).
Because the fast symmetry breaking is orders of magnitude faster
for large circuits, and because the false positive result appears
to be rare, I have introduced a command "symmetry" to switch
methods between fast and full. So fast symmetry breaking can be
run unless the result fails on symmetry breaking, in which case
the method can be switched to full to see if the problem is a
false positive or not. This is not an ideal solution, and some
investigation is needed to determine if there is a way to apply
fast symmetry breaking without encountering a false positive
error.