The power operator defines 2**-1 and -2**-1 to be zero. This patch fixes
both the procedural and continuous assignments to work correctly. It also
fixes a problem in the compiler power code so that the one constant value
always has at least two bits.
The functions (malloc, free, etc.) that used to be provided in
malloc.h are now provided in cstdlib for C++ files and stdlib.h for
C files. Since we require a C99 compliant compiler it makes sense
that malloc.h is no longer needed.
This patch also modifies all the C++ files to use the <c...>
version of the standard C header files (e.g. <cstdlib> vs
<stdlib.h>). Some of the files used the C++ version and others did
not. There are still a few other header changes that could be done,
but this takes care of much of it.
(Cherry-picked from 1993bf6f69)
When the width of a long long match the vector width we do not need
to sign extend and using the << operator for this case is undefined.
(cherry picked from commit 23a1ec9f53)
The vpi_get_value() function should not crash when called during
the compiletf phase. This patch fixes this by returning 'bx for
any vectors in thread space. It also fixes some other minor things
that my test code uncovered. Most of the other objects work as
expected.
(cherry picked from commit bc7a5a9725)
The vvp thread word storage had previously been changed to always store
64-bit values, but some instructions still only operate on native long
values. This patch ensures all instructions that modify thread words
support 64-bit values.
The fix for pr1830834 causes vvp to only delete a completed thread
when the simulation time next advances. If a procedural model is
being simulated which makes many task or function calls within a
single time step, this can lead to excessive memory use. This patch
modifies the behaviour so that thread deletion is only delayed if
that thread has caused a sync event to be placed in the event queue.
This should catch all cases where the thread private data can be
accessed after a thread has terminated.
(cherry picked from commit c7b0aef414)
The %shiftr/i0 and %shiftl/i0 opcodes are used for some part
selects and if we have a negative shift we want the value to be
padded with 'bx. This patch enhances the two %shift/i0 opcodes
to work with negative shifts and for negative shifts pad with
'bx instead of 'b0.
It also fixes %ix/get/s to use a uint64_t instead of a unsigned
long to avoid problems with sign extension on 32 bit machines.
(cherry picked from commit ecb00017cb)
These opcodes need to return 'bx or 0.0 for the real opcode when
the array index is undefined.
The patch also documents the auto incrementing of the bit
index register done by the %load/avx.p opcode.
(cherry picked from commit 8623f804f2)
This patch fixes the three %assign/v0/x1 operators to correctly
notice that the select has fallen off the start of the vector
for the case that the negative offset equaled the width.
The Multiword division was not handling some degenerate high
guesses for the intermediate division result guess. The end result
was an assertion. Recover from this case.
(Does the addinb back of bp need to be optimized better?)
(cherry picked from commit 6715426833)
This patch adds support for 64 bit non-blocking delays in procedural
code. We fixed the procedural delay operator (blocking delays) earlier.
This patch mostly mimics what was done there. The continuous assignment
delay operator still needs to be fixed.
This patch adds code to free most of the memory when vvp
finishes. It also adds valgrind hooks to manage the various
memory pools. The functionality is enabled by passing
--with-valgrind to configure. It requires that the
valgrind/memcheck.h header from a recent version of
valgrind be available. It check for the existence of this
file, but not that it is new enough (version 3.1.3 is known
to not work and version 3.4.0 is known to work).
You can still use valgrind when this option is not given,
but you will have memory that is not released and the
memory pools show as a single block.
With this vvp is 100% clean for many of the tests in the
test suite. There are still a few things that need to be
cleaned up, but it should be much easier to find any real
leaks now.
Enabling this causes a negligible increase in run time and
memory. The memory could be a problem for very large
simulations. The increase in run time is only noticeable on
very short simulations where it should not matter.
This patch adds the procedural power function %pow/s for signed
values. This has bit based inputs and outputs, but uses the double
pow() function to calculate the value.
The VVP %join function was incorrectly treating the return from a
non-automatic function as a return from an automatic function in
the case that the non-automatic function result was being used as
a parameter to an automatic function. This patch fixes this error.
This patch fixes a number of problems related to the divide and
modulus operators.
The net version (CA) of modulus did not support a signed version.
Division or modulus of a value wider than the machine word did
not correctly check for division by zero and return 'bx.
Fixed a problem in procedural modulus. The sign of the result is
only dependent on the L-value.
Division or modulus of a signed value that was the same width as
the machine word was creating an incorrect sign mask.
Division of a signed value that would fit into a single machine
word was not checking for division by zero.
Division or modulus of a wide value was always being done as
unsigned.
Added a negative operator for vvp_vector2_t. This made
implementing the signed wide division and modulus easier.
Support arrays of realtime variable arrays and net arrays. This
involved a simple fix to the ivl core parser, proper support in
the code generator, and rework the runtime support in vvp.
This patch splits any VVP net functor that needs to access both
statically and automatically allocated state into two sub-classes,
one for handling operations on statically allocated state, the
other for handling operations on automatically allocated state.
This undoes the increase in run-time memory use introduced when
automatic task/function support was first introduced.
This patch also fixes various issues with event handling in automatic
scopes. Event expressions in automatic scopes may now reference either
statically or automatically allocated variables or arrays, or part
selects or word selects thereof. More complex expressions (e.g.
containing arithmetic or logical operators, function calls, etc.) are
not currently supported.
This patch introduces some error checking for language constructs
that may not reference automatically allocated variables. Further
error checking will follow in a subsequent patch.
Start cleaning up shadowed variables, flagged by turning on -Wshadow.
No intended change in functionality. Patch looks right, and is tested
to compile and run on my machine. YMMV.
This patch adds non-blocking event control for array words.
It also fixes a problem where the word used to put the
calculated delay for a non-blocking array assignment was
not being released. It also fixes the non-blocking array
assignments to correctly handle off the end/beginning part
selects.
Since some event control assignments can be skipped we need an
event control clear so that future %evctl statements do not fail
their assert. This patch adds %evctl/c and uses it in the compiler
as appropriate to keep the event control information in sync.
This patch adds full event control for vectors and parts of a
vector. It also fixes the other non-blocking part select code
to correctly handle a negative offset ([1:-2] of a [4:0] will
have an offset of -2).
This patch pushes the non-blocking event control information to
the code generator. It adds the %evctl statements that are used
to put the event control information into the special thread
event control registers. The signed version (%evctl/s) required
the implementation of %ix/getv/s to load a signed value into
an index register. It then adds %assign/wr/e event control based
non-blocking assignment for real values. It also fixes the other
non-blocking real assignments to use Transport instead of inertial
delays.
Nothing to do with tab width! Eliminates useless
trailing spaces and tabs, and nearly all <space><tab>
pairings. No change to derived files (e.g., .vvp),
non-master files (e.g., lxt2_write.c) or the new tgt-vhdl
directory.
Low priority, simple entropy reduction. Please apply
unless it deletes some steganographic content you want
to keep.
This patch causes a thread that is created to evaluate a function
to be executed immediately. The parent thread is resumed when the
function thread terminates.
Logical (in)equality needs to look at all the bits of both operands,
and cannot short circuit the test unless defined bits differ. If there
are undefined bits, the equality is undefined at that point, but return
x only if there are not other bits that make the results clearly
unequal.
This patch updates the %cvt/vr command to use the new double to vector
constructor. This allows the resulting bit pattern to be larger than
a long. The old method was producing incorrect results without a
warning for large bit values.
The schedule_assign_plucked_vector is a better way to implement the
schedule_assign_vector, or at least no worse, so remove the now
redundent schedule_assign_vector.
It is legal (though worthy of a warning, I think) for the part select
of an l-value to me out of bounds, so replace the error message with
a warning, and generate the appropriate code. In the process, clean
up some of the code for signal l-values to divide out the various kinds
of processing that can be done. This cleans things up a bit.
The load-and-add for vectors %load/vp0/s can be combined with the
load-and-add for array words, and the %load/avp0/s added to round
out the combinations. This can make for fewer instructions when
words are padded in arithmetic expressions.
The %load/vp0 instruction adds a signed value to the signal value being
loaded, but it doesn't allow for a signed source vector. Add the
%load/vp0/s instruction that pads the loaded vector, and add the code
generator details to properly use it.
The vvp_net_t objects are never deleted, so overload the new operator
to do a more space efficient permanent allocation.
The %assign/v instruction copied the vvp_vector4_t object needlessly
on its way to the scheduler. Eliminate that duplication.(cherry picked from commit d0f303463d)
The %load/v instruction was doing some spurious resizes of the vector
that comes from the signal. Eliminate those resizes that can be
removed, and optimize some that remain.