The `recv_vec{4,8}_pv()` functions are used to implement a partial write to
a vector. As parameters they take both the value and the width of the
value.
All callers of of these functions pass `val.size()` or a variation thereof
as the width of the value. And all implementations that do anything with
the data have an assert that `val.size() == wid`.
Remove the `wid` parameter from these functions and just use `val.size()`
directly where needed. This allows to simplify the interface and also
to remove the asserts.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Most vvp functors need to support recv_vec4_pv. Any that are strength-aware
also need to support recv_vec8_pv. Note the simplifying assumption that is
documented in the base class recv_vec4_pv_ implementation.
This generates an EQZ LPM device that carries the case-z-ness to
the code generator.
Also add to the vvp code generator support for the EQZ device so
that the synthesis results can be simulated.
Account for the wildcard devices in the sizer.
BOOL values have a specific cast from LOGIC, this node takes care
of it. Also arrange for the elaboration to insert them in the right
planes and for the code generator to generate them.
This patch splits any VVP net functor that needs to access both
statically and automatically allocated state into two sub-classes,
one for handling operations on statically allocated state, the
other for handling operations on automatically allocated state.
This undoes the increase in run-time memory use introduced when
automatic task/function support was first introduced.
This patch also fixes various issues with event handling in automatic
scopes. Event expressions in automatic scopes may now reference either
statically or automatically allocated variables or arrays, or part
selects or word selects thereof. More complex expressions (e.g.
containing arithmetic or logical operators, function calls, etc.) are
not currently supported.
This patch introduces some error checking for language constructs
that may not reference automatically allocated variables. Further
error checking will follow in a subsequent patch.
This patch adds .cast/int and updates .cast/real to act as a local
(temporary) net and to support either a signed or unsigned input.
The vvp_vector4_t class not can convert an arbitrarily sized double
to a vector value. This removes the restriction of lround().
Also document the new statements.
This handles the general case of a non-real operand to a real-valued
division. This can turn up if only 1 operand of a divide is real. In
this case the division as a whole is real and the other operand must
be cast to real.
This method creates an extra node, but it should be a very compact
node and this node does no evaluation tricks so in the run time should
be no more expensive then folding the cast into the .arith/div.r itself.
This patch adds the power operator for signed bit based values
in a continuous assignment. It also fixes a few other power
expression width problems. The expression width is still not
calculated correctly, since the correct method can produce huge
possible bit widths. The result is currently limited to the width
of the native long. This is because lround() is used to convert
from a double to an integer. A check in the code generator protects
the runtime from this limitation.
This patch adds the power operator for unsigned bit based values
in a continuous assignment. It also refactors the power code for
normal expressions and continuous assignments.