This patch fixes a bug in the VVP code generator that causes syntactically
incorrect code to be generated if an event expression contains a memory or
array port.
This patch adds .cast/int and updates .cast/real to act as a local
(temporary) net and to support either a signed or unsigned input.
The vvp_vector4_t class not can convert an arbitrarily sized double
to a vector value. This removes the restriction of lround().
Also document the new statements.
This handles the general case of a non-real operand to a real-valued
division. This can turn up if only 1 operand of a divide is real. In
this case the division as a whole is real and the other operand must
be cast to real.
This method creates an extra node, but it should be a very compact
node and this node does no evaluation tricks so in the run time should
be no more expensive then folding the cast into the .arith/div.r itself.
The load-and-add for vectors %load/vp0/s can be combined with the
load-and-add for array words, and the %load/avp0/s added to round
out the combinations. This can make for fewer instructions when
words are padded in arithmetic expressions.
The %load/vp0 instruction adds a signed value to the signal value being
loaded, but it doesn't allow for a signed source vector. Add the
%load/vp0/s instruction that pads the loaded vector, and add the code
generator details to properly use it.
Actually, the immediate value handling is a little chaotic and should
be cleaned up. This patch opens the door for allowing signed immediate
values, and uses them in a few places where they are explicitly handled.
We must go through the opcodes that can take immediate values and make
explicit whether they are signed/unsigned/etc, and what their size
limits are.
The part select of a vector is converted by the compiler during
elaboration to a 0-based canonical address. But since it is legal
to address bits below the LSB, the canonical address can be negative.
So make the part select base for selecting from signals work with
signed arithmetic and make the code generator generate negative
indices when needed.
This is not a solution to all the problems, but is a better catch-all
then what is currently there. Allow the index field to be a T<> that
accesses the thread to get the address index.
Note that the lexor.lex currently returns the T<> as a T_SYMBOL, and the
users of T_SYMBOL objects need to interpret the meaning. This is
probably not the best idea, in light of all the other *<> formats that
now exist.
Fold the bi-directional part select into the pass switch (tran) support
so that it can be really bi-directional. This involves adding a new
tranvp device that does part select in tran islands, and reworking the
tran island resolution to handle non-identical nodes. This will be needed
for resistive tran devices anyhow.
The draw_net_input function is modified to account for nexus that is
a port of an island. Draw the ports (and the islands if necessary)
to the island and use the port output for the nexus instead of the
port input. This allows the bi-directional behavior of the port to
interpose itself in the data flow.
In this process of these changes, the draw_net_input function was
reorganized, and all the considerable amount of code for it was
moved to a file of its own. (vvp_scope.c is pretty unruly.)
The handling of immediate add used to do 16bits at a time. When it went
up to 32bits, the need to work in chunks vanished, but the chunk handling
was still there, this time shifting by 32, which causes problems on 32bit
machines. Simplify the %addi handling to avoid this.
Clarify that operands are typically 32bits, and have the code generator
make better use of this.
Also improve the %movi implementation to work well with marger vectors.
Add the %andi instruction to use immediate operands.
The MinGW system() implementation appears to return the straight
return value instead of the waitpid() like result that more
normal systems return. Because of this just return the system()
result without processing for MinGW compilations.
Older version of the MinGW runtime (pre 3.14) just used the
underlying vsnprintf(). Which has some problems. The 3.14 version
has some nice improvements, but it has a sever bug when processing
"%*.*f", -1, -1, <some_real_value>. Because of this we need to use
the underlying version without the enhancements for now.
snprintf prints %p differently than the other printf routines
so use _snprintf to get consistent results.
Only build the PDF files if both man and ps2pdf exist.
MinGW does not know about the z modifier for %d, %u, etc.
Add some missing Makefile check targets.
Array words don't have a vpiHandle with a label, so the %vpi_call
needs a special syntac for arguments that reference array words.
This syntax creates an array word reference that persists and can
be used at a VPI object by system tasks.
Memory words may have part selects assigned, but the code messed up
the testing for the validity of the part select base. This fixes do
detect constant bases so that base validity tests are handled at
compile time.
The draw_input_from_net function was being used to access words of
a var array, which doesn't work. Have the draw_input_from_net punt
on that case, and by the way the mux inputs don't need to use that
function, instead they should use the general draw_net_input function
to get the input labels.
It is possible for an array to have 1 word in it, so using the array
count to detect an array is incorrect. Use the ivl_signal_dimensions
function, which is there exactly for that purpose.
Save tons of space per memory word by not creating a vpi handle for
each and every word of a variable array. (Net arrays still get a
vpiHandle for every word.) The consequence of this is that all
accesses to a variable array need to go through the indexing.
This commit handles the most common places where this impacts, but
there are still problems.
It is a quirk of the $signed() system function that the argument
is converted to signed, but the operation that is performed is
not changed. So arithmetic operators on unsigned arguments inside
a $signed() expression still perform unsigned arithmetic.
The abs() function needs to be able to turn -0.0 into 0.0. This proved
to be too clunky (and perhaps impossible) to do with tests and jumps,
so add an %abs/wr opcode to do it using fabs().
The min/max functions need to take special care with the handling
of NaN operands. These matter, so generate the extra code to handle
them.
This patch adds file and line information for parameters and
local parameters. It also adds file/line stubs for signals in
the tgt-* files. It adds the pform code needed to eventually
do genvar checks and passing of genvar file/line information.
It verifies that a genvar does not have the same name as a
parameter/local parameter.
Implement in behavioral the abs/min/max operators for real values.
The parser treats these builtin functions as operators, unary or
binary, and elaborates them appropriately.
Also add enough code generator support to handle real valued expressions
in thread context.
This patch adds code to push the file and line information
for scope objects (modules, functions, tasks, etc.) to the
runtime. For modules, this includes the definition fields.
This patch adds ifnone functionality. It does not produce an
error when both an ifnone and an unconditional simple module
path are given. For this case the ifnone delays are ignored.
When generating a real expression you can have bits of the
expression that use vector only operands. When this happens
evaluate that part of the expression as a vector and then
convert it to a real value.
Detect thread bit allocation failures and fail gracefully. Print an
error message that points at the expression in question, and return
with an error code so that the compiler exits with an error.
This patch adds the ability to assign/deassign a bit or part select.
It also cleans up the code and fixes some problem in the forcing of
strength aware nets.
This patch adds a %assign/av/d opcode. This is a version of %assign/av
that allows a delay expression. Ultimately this allows a dynamically
indexed array to have a delay expression (non-constant delay value).
This patch removes the overly optimistic lookaside save for a signal
that has been set (%set/v). This is incorrect because if a force or
assign are active the value will not be set as expected.