iverilog/t-xnf.cc

702 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright (c) 1998 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
#ident "$Id: t-xnf.cc,v 1.16 1999/11/17 01:31:28 steve Exp $"
#endif
/* XNF BACKEND
* This target supports generating Xilinx Netlist Format netlists for
* use by Xilinx tools, and other tools that accepts Xilinx designs.
*
* FLAGS
* The XNF backend uses the following flags from the command line to
* affect the generated file:
*
* part=<foo>
* Specify the part type. The part string is written into the
* PART record. Valid types are defined by Xilinx or the
* receiving tools.
*
* ncf=<path>
* Specify the path to a NCF file. This is an OUTPUT file into
* which the code generator will write netlist constraints that
* relate to pin assignments, CLB placement, etc. If this flag is
* not given, no NCF file will be written.
*
* WIRE ATTRIBUTES
*
* PAD = <io><n>
* Tell the XNF generator that this wire goes to a PAD. The <io>
* is a single character that tells the direction, and <n> is the
* pin number. For example, "o31" is output on pin 31. The PAD
* attribute is not practically connected to a vector, as all the
* bits would go to the same pad.
*
* NODE ATTRIBUTES
*
* XNF-LCA = <lname>:<pin>,<pin>...
* Specify the LCA library part type for the gate. The lname
* is the name of the symbol to use (i.e. DFF) and the comma
* separated list is the names of the pins, in the order they
* appear in the verilog source. If the name is prefixed with a
* tilde (~) then the pin is inverted, and the proper "INV" token
* will be added to the PIN record.
*
* This attribute can override even the typical generation of
* gates that one might naturally expect of the code generator,
* but may be used by the optimizers for placing parts.
*
* An example is "XNF-LCA=OBUF:O,~I". This attribute means that
* the object is an OBUF. Pin 0 is called "O", and pin 1 is
* called "I". In addition, pin 1 is inverted.
*/
# include "netlist.h"
# include "target.h"
# include <fstream>
class target_xnf : public target_t {
public:
void start_design(ostream&os, const Design*);
void end_design(ostream&os, const Design*);
void signal(ostream&os, const NetNet*);
void lpm_add_sub(ostream&os, const NetAddSub*);
void lpm_ff(ostream&os, const NetFF*);
void lpm_mux(ostream&os, const NetMux*);
void net_const(ostream&os, const NetConst*);
void logic(ostream&os, const NetLogic*);
1999-08-26 00:22:08 +02:00
void bufz(ostream&os, const NetBUFZ*);
void udp(ostream&os, const NetUDP*);
private:
static string mangle(const string&);
static void draw_pin(ostream&os, const string&name,
const NetObj::Link&lnk);
static void draw_sym_with_lcaname(ostream&os, string lca,
const NetNode*net);
static void draw_xor(ostream&os, const NetAddSub*, unsigned idx);
enum adder_type {FORCE0, LOWER, UPPER, DOUBLE };
static void draw_carry(ostream&os, const NetAddSub*, unsigned idx,
enum adder_type);
ofstream ncf_;
};
/*
* This function takes a signal name and mangles it into an equivalent
* name that is suitable to the XNF format.
*/
string target_xnf::mangle(const string&name)
{
string result;
for (unsigned idx = 0 ; idx < name.length() ; idx += 1)
switch (name[idx]) {
case '.':
result = result + "/";
break;
default:
result = result + name[idx];
break;
}
return result;
}
void target_xnf::draw_pin(ostream&os, const string&name,
const NetObj::Link&lnk)
{
bool inv = false;
string use_name = name;
if (use_name[0] == '~') {
inv = true;
use_name = use_name.substr(1);
}
char type;
switch (lnk.get_dir()) {
case NetObj::Link::INPUT:
case NetObj::Link::PASSIVE:
type = 'I';
break;
case NetObj::Link::OUTPUT:
type = 'O';
break;
}
unsigned cpin;
const NetObj*cur;
for (lnk.next_link(cur, cpin)
; cur->pin(cpin) != lnk
; cur->pin(cpin).next_link(cur, cpin)) {
const NetNet*sig = dynamic_cast<const NetNet*>(cur);
if (sig) {
os << " PIN, " << use_name << ", " << type << ", "
<< mangle(sig->name());
if (sig->pin_count() > 1)
os << "<" << cpin << ">";
if (inv)
os << ",,INV";
os << endl;
}
}
}
static string scrape_pin_name(string&list)
{
unsigned idx = list.find(',');
string name = list.substr(0, idx);
list = list.substr(idx+1);
return name;
}
/*
* This method draws an LCA item based on the XNF-LCA attribute
* given. The LCA attribute gives enough information to completely
* draw the node in XNF, which is pretty handy at this point.
*/
void target_xnf::draw_sym_with_lcaname(ostream&os, string lca,
const NetNode*net)
{
unsigned idx = lca.find(':');
string lcaname = lca.substr(0, idx);
lca = lca.substr(idx+1);
os << "SYM, " << mangle(net->name()) << ", " << lcaname
<< ", LIBVER=2.0.0" << endl;
for (idx = 0 ; idx < net->pin_count() ; idx += 1)
draw_pin(os, scrape_pin_name(lca), net->pin(idx));
os << "END" << endl;
}
void target_xnf::start_design(ostream&os, const Design*des)
{
string ncfpath = des->get_flag("ncf");
if (ncfpath != "")
ncf_.open(ncfpath.c_str());
os << "LCANET,6" << endl;
os << "PROG,verilog,0.2PRE,\"Icarus Verilog\"" << endl;
ncf_ << "# Generated by Icarus Verilog 0.2PRE" << endl;
if (des->get_flag("part") != "") {
os << "PART," << des->get_flag("part") << endl;
ncf_ << "CONFIG PART=" << des->get_flag("part") << ";" << endl;
}
}
void target_xnf::end_design(ostream&os, const Design*)
{
os << "EOF" << endl;
ncf_.close();
}
void scrape_pad_info(string str, char&dir, unsigned&num)
{
// Get rid of leading white space
while (str[0] == ' ')
str = str.substr(1);
// Get the direction letter
switch (str[0]) {
case 'b':
case 'B':
dir = 'B';
break;
case 'o':
case 'O':
dir = 'O';
break;
case 'i':
case 'I':
dir = 'I';
break;
case 't':
case 'T':
dir = 'T';
break;
default:
dir = '?';
break;
}
// Get the number part.
str = str.substr(1);
unsigned val = 0;
while (str.size() && isdigit(str[0])) {
val = val * 10 + (str[0]-'0');
str = str.substr(1);
}
num = val;
}
/*
* Look for signals that have attributes that are pertinent to XNF
* files. The most obvious are those that have the PAD attribute.
*
* Individual signals are easy, the pad description is a letter
* followed by a decimal number that is the pin.
*
* The PAD attribute for a vector is a comma separated pin
* descriptions, that enumerate the pins from most significant to
* least significant.
*/
void target_xnf::signal(ostream&os, const NetNet*net)
{
string pad = net->attribute("PAD");
if (pad == "")
return;
if (net->pin_count() > 1) {
cerr << "Signal ``" << net->name() << "'' with PAD=" <<
pad << " is a vector." << endl;
return;
}
char dir;
unsigned num;
scrape_pad_info(pad, dir, num);
os << "EXT, " << mangle(net->name()) << ", " << dir
<< ", " << num << endl;
ncf_ << "# Assignment to pin " << num << " (DIR=" << dir <<
") by $attribute(" << net->name() << ", \"PAD\", \"" <<
pad << "\")" << endl;
ncf_ << "NET " << mangle(net->name()) << " LOC=P" << num << ";"
<< endl;
}
void target_xnf::draw_xor(ostream &os, const NetAddSub*gate, unsigned idx)
{
string name = mangle(gate->name());
string name_add = name;
string name_cout = name + "/COUT";
// We only need to pick up the
// carry if we are not the 0 bit. (We know it is 0).
os << "SYM, " << name_add << "<" << (idx+0) << ">, XOR, "
"LIBVER=2.0.0" << endl;
draw_pin(os, "O", gate->pin_Result(idx));
draw_pin(os, "I0", gate->pin_DataA(idx));
draw_pin(os, "I1", gate->pin_DataB(idx));
if (idx > 0) {
os << " PIN, I2, I, " << name_cout << "<" <<
idx << ">" << endl;
}
os << "END" << endl;
}
void target_xnf::draw_carry(ostream &os, const NetAddSub*gate, unsigned idx,
enum adder_type type)
{
string name = mangle(gate->name());
string name_cy4 = name + "/CY";
string name_cym = name + "/CM";
string name_cout = name + "/COUT";
os << "SYM, " << name_cy4 << "<" << idx << ">, CY4, "
"LIBVER=2.0.0" << endl;
// Less significant bit addends, if any
if ( type == LOWER || type == DOUBLE ) {
draw_pin(os, "A0", gate->pin_DataA(idx));
draw_pin(os, "B0", gate->pin_DataB(idx));
}
// More significant bit addends, if any
if ( type == UPPER || type == DOUBLE ) {
unsigned int i = (type==UPPER)?idx:(idx+1);
draw_pin(os, "A1", gate->pin_DataA(i));
draw_pin(os, "B1", gate->pin_DataB(i));
}
// Carry input
if ( type != FORCE0 && type != UPPER ) {
os << " PIN, CIN, I, " << name_cout << "<" <<
idx << ">" << endl;
}
// Connect the Cout0 to a signal so that I can connect
// it to the adder.
if ( type == LOWER || type == DOUBLE ) {
os << " PIN, COUT0, O, " << name_cout << "<" << (idx+1) <<
">" << endl;
}
// Connect the Cout, this will connect to the next Cin
if ( type == FORCE0 || type == UPPER || type == DOUBLE ) {
unsigned int to = (type==FORCE0)?(0):(idx+2);
if (type==UPPER) to=idx+1;
os << " PIN, COUT, O, " << name_cout << "<" << to <<
">" << endl;
}
// Carry In for mode UPPER comes from a strange place
if ( type == UPPER ) {
os << " PIN, A0, I, " << name_cout << "<dummy>" << endl;
}
// These are the mode inputs from the CY_xx pseudo-device
for (unsigned cn = 0 ; cn < 8 ; cn += 1) {
os << " PIN, C" << cn << ", I, " << name << "/C"
<< cn << "<" << (idx) << ">" << endl;
}
os << "END" << endl;
// Complete the dummy force used above
if ( type == UPPER ) {
os << "PWR, 0, " << name_cout << "<dummy>" << endl;
}
// On to the CY_xx pseudo-device itself
os << "SYM, " << name_cym << "<" << (idx) << ">, ";
switch (type) {
case FORCE0:
os << "CY4_37, CYMODE=FORCE-0" << endl;
break;
case LOWER:
os << "CY4_01, CYMODE=ADD-F-CI" << endl;
break;
case UPPER:
os << "CY4_03, CYMODE=ADD-G-F1" << endl;
break;
case DOUBLE:
os << "CY4_02, CYMODE=ADD-FG-CI" << endl;
break;
}
for (unsigned cn = 0 ; cn < 8 ; cn += 1) {
os << " PIN, C" << cn << ", O, " << name << "/C"
<< cn << "<" << (idx) << ">" << endl;
}
os << "END" << endl;
}
/*
* This function makes an adder out of carry logic symbols. It makes
* as many 2 bit adders as are possible, then the top bit is made into
* a 1-bit adder (with carry in) in the F unit. The low carry is
* initialized with the FORCE-0 configuration of a carry unit below
* the 0 bit. This takes up the carry logic of the CLB below, but not
* the G function.
*
* References:
* XNF 6.1 Specification
* Application note XAPP013
* Xilinx Libraries Guide, Chapter 12
*/
void target_xnf::lpm_add_sub(ostream&os, const NetAddSub*gate)
{
unsigned width = gate->width();
// Don't handle carry output yet
// assert (count_outputs(gate->pin_Cout())==0);
unsigned carry_width = width-1;
/* Make the force-0 cary mode object to initialize the bottom
bits of the carry chain. Label this with the width instead
of the bit position so that symbols don't clash. */
if (carry_width%2) {
draw_carry(os, gate, width, FORCE0);
} else {
draw_carry(os, gate, 0, UPPER);
}
/* Now make the 2 bit adders that chain from the cin
initializer and up. Save the tail bit (if there is one) for
later. */
for (unsigned idx = 1-(carry_width%2) ; idx < carry_width-1 ; idx += 2) {
draw_carry(os, gate, idx, DOUBLE);
}
/* Always have a tail bit */
draw_carry(os, gate, carry_width-1, LOWER);
for (unsigned idx = 0 ; idx < width ; ++idx) {
draw_xor(os, gate, idx);
}
}
void target_xnf::lpm_ff(ostream&os, const NetFF*net)
{
string type = net->attribute("LPM_FFType");
if (type == "") type = "DFF";
// XXXX For now, only support DFF
assert(type == "DFF");
// XXXX For now, I do not now how to deal with XNF-LCA attributes.
assert(net->attribute("XNF-LCA") == "");
for (unsigned idx = 0 ; idx < net->width() ; idx += 1) {
os << "SYM, " << mangle(net->name()) << "<" << idx
<< ">, DFF, LIBVER=2.0.0" << endl;
draw_pin(os, "Q", net->pin_Q(idx));
draw_pin(os, "D", net->pin_Data(idx));
if (net->attribute("Clock:LPM_Polarity") == "INVERT")
draw_pin(os, "~C", net->pin_Clock());
else
draw_pin(os, "C", net->pin_Clock());
if (count_outputs(net->pin_Enable()) > 0)
draw_pin(os, "CE", net->pin_Enable());
os << "END" << endl;
}
}
/*
* Generate an LPM_MUX.
*
* XXXX NOTE: For now, this only supports combinational LPM_MUX
* devices that have a single select input. These are typically
* generated from ?: expressions.
*/
void target_xnf::lpm_mux(ostream&os, const NetMux*net)
{
assert(net->sel_width() == 1);
assert(net->size() == 2);
for (unsigned idx = 0 ; idx < net->width() ; idx += 1) {
1999-11-05 19:43:12 +01:00
os << "SYM, " << mangle(net->name()) << "<" << idx << ">,"
<< " EQN, EQN=(I0 * I2) + (~I0 * I1)" << endl;
draw_pin(os, "I0", net->pin_Sel(0));
draw_pin(os, "I1", net->pin_Data(idx,0));
draw_pin(os, "I2", net->pin_Data(idx,1));
draw_pin(os, "O", net->pin_Result(idx));
os << "END" << endl;
}
}
void target_xnf::net_const(ostream&os, const NetConst*c)
{
verinum::V v=c->value();
assert(v==verinum::V0 || v==verinum::V1);
const NetObj::Link& lnk = c->pin(0);
// Code parallels draw_pin above, some smart c++ guru should
// find a way to make a method out of this.
unsigned cpin;
const NetObj*cur;
for (lnk.next_link(cur, cpin)
; cur->pin(cpin) != lnk
; cur->pin(cpin).next_link(cur, cpin)) {
const NetNet*sig = dynamic_cast<const NetNet*>(cur);
if (sig) {
os << "PWR, " << v << ", " << mangle(sig->name());
if (sig->pin_count() > 1)
os << "<" << cpin << ">";
os << endl;
}
}
}
/*
* The logic gates I know so far can be translated directly into XNF
* standard symbol types. This is a fairly obvious transformation.
*/
void target_xnf::logic(ostream&os, const NetLogic*net)
{
// The XNF-LCA attribute overrides anything I might guess
// about this object.
string lca = net->attribute("XNF-LCA");
if (lca != "") {
draw_sym_with_lcaname(os, lca, net);
return;
}
os << "SYM, " << mangle(net->name()) << ", ";
switch (net->type()) {
case NetLogic::AND:
os << "AND";
break;
case NetLogic::BUF:
os << "BUF";
break;
case NetLogic::NAND:
os << "NAND";
break;
case NetLogic::NOR:
os << "NOR";
break;
case NetLogic::NOT:
os << "INV";
break;
case NetLogic::OR:
os << "OR";
break;
case NetLogic::XNOR:
os << "XNOR";
break;
case NetLogic::XOR:
os << "XOR";
break;
default:
cerr << "XNF: Unhandled logic type." << endl;
break;
}
os << ", LIBVER=2.0.0" << endl;
draw_pin(os, "O", net->pin(0));
1998-12-09 03:43:19 +01:00
if (net->pin_count() == 2) {
draw_pin(os, "I", net->pin(1));
} else for (unsigned idx = 1 ; idx < net->pin_count() ; idx += 1) {
string name = "I";
assert(net->pin_count() <= 11);
name += (char)('0'+idx-1);
draw_pin(os, name, net->pin(idx));
}
os << "END" << endl;
}
1999-08-26 00:22:08 +02:00
void target_xnf::bufz(ostream&os, const NetBUFZ*net)
{
static int warned_once=0;
if (!warned_once) {
cerr << "Warning: BUFZ object found for xnf output."
" Try -Fnobufz." << endl;
warned_once=1;
}
os << "SYM, " << mangle(net->name()) << ", BUF, LIBVER=2.0.0" << endl;
assert(net->pin_count() == 2);
draw_pin(os, "O", net->pin(0));
draw_pin(os, "I", net->pin(1));
os << "END" << endl;
}
void target_xnf::udp(ostream&os, const NetUDP*net)
{
string lca = net->attribute("XNF-LCA");
// I only know how to draw a UDP if it has the XNF-LCA
// attribute attached to it.
if (lca == "") {
cerr << "I don't understand this UDP." << endl;
return;
}
draw_sym_with_lcaname(os, lca, net);
}
static target_xnf target_xnf_obj;
extern const struct target tgt_xnf = { "xnf", &target_xnf_obj };
/*
* $Log: t-xnf.cc,v $
* Revision 1.16 1999/11/17 01:31:28 steve
* Clean up warnings that add_sub got from Alliance
*
* Revision 1.15 1999/11/06 04:51:42 steve
* Support writing some XNF things into an NCF file.
*
1999-11-05 19:43:12 +01:00
* Revision 1.14 1999/11/05 18:43:12 steve
* fix syntax of EQN record.
*
* Revision 1.13 1999/11/05 07:10:45 steve
* Include the obvious XOR gates in the adders.
*
* Revision 1.12 1999/11/05 04:40:40 steve
* Patch to synthesize LPM_ADD_SUB from expressions,
* Thanks to Larry Doolittle. Also handle constants
* in expressions.
*
* Synthesize adders in XNF, based on a patch from
* Larry. Accept synthesis of constants from Larry
* as is.
*
* Revision 1.11 1999/11/04 03:53:26 steve
* Patch to synthesize unary ~ and the ternary operator.
* Thanks to Larry Doolittle <LRDoolittle@lbl.gov>.
*
* Add the LPM_MUX device, and integrate it with the
* ternary synthesis from Larry. Replace the lpm_mux
* generator in t-xnf.cc to use XNF EQU devices to
* put muxs into function units.
*
* Rewrite elaborate_net for the PETernary class to
* also use the LPM_MUX device.
*
* Revision 1.10 1999/11/02 04:55:34 steve
* Add the synthesize method to NetExpr to handle
* synthesis of expressions, and use that method
* to improve r-value handling of LPM_FF synthesis.
*
* Modify the XNF target to handle LPM_FF objects.
*
1999-08-26 00:22:08 +02:00
* Revision 1.9 1999/08/25 22:22:08 steve
* handle bufz in XNF backend.
*
* Revision 1.8 1999/08/18 04:00:02 steve
* Fixup spelling and some error messages. <LRDoolittle@lbl.gov>
*
1999-07-17 05:39:11 +02:00
* Revision 1.7 1999/07/17 03:39:11 steve
* simplified process scan for targets.
*
1998-12-09 03:43:19 +01:00
* Revision 1.6 1998/12/09 02:43:19 steve
* Fix 2pin logic gates.
*
* Revision 1.5 1998/12/07 04:53:17 steve
* Generate OBUF or IBUF attributes (and the gates
* to garry them) where a wire is a pad. This involved
* figuring out enough of the netlist to know when such
* was needed, and to generate new gates and signales
* to handle what's missing.
*
* Revision 1.4 1998/12/02 04:37:13 steve
* Add the nobufz function to eliminate bufz objects,
* Object links are marked with direction,
* constant propagation is more careful will wide links,
* Signal folding is aware of attributes, and
* the XNF target can dump UDP objects based on LCA
* attributes.
*
* Revision 1.3 1998/11/23 00:20:24 steve
* NetAssign handles lvalues as pin links
* instead of a signal pointer,
* Wire attributes added,
* Ability to parse UDP descriptions added,
* XNF generates EXT records for signals with
* the PAD attribute.
*
* Revision 1.2 1998/11/18 04:25:22 steve
* Add -f flags for generic flag key/values.
*
* Revision 1.1 1998/11/16 05:03:53 steve
* Add the sigfold function that unlinks excess
* signal nodes, and add the XNF target.
*
*/