iverilog/t-xnf.cc

247 lines
6.0 KiB
C++
Raw Normal View History

/*
* Copyright (c) 1998 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
#ident "$Id: t-xnf.cc,v 1.3 1998/11/23 00:20:24 steve Exp $"
#endif
/* XNF BACKEND
* This target supports generating Xilinx Netlist Format netlists for
* use by Xilinx tools, and other tools that accepts Xilinx designs.
*
* FLAGS
* The XNF backend uses the following flags from the command line to
* affect the generated file:
*
* part=<foo>
* Specify the part type. The part string is written into the
* PART record. Valid types are defined by Xilinx or the
* receiving tools
*/
# include "netlist.h"
# include "target.h"
class target_xnf : public target_t {
public:
void start_design(ostream&os, const Design*);
void end_design(ostream&os, const Design*);
void signal(ostream&os, const NetNet*);
void logic(ostream&os, const NetLogic*);
private:
static string mangle(const string&);
};
/*
* This function takes a signal name and mangles it into an equivilent
* name that is suitable to the XNF format.
*/
string target_xnf::mangle(const string&name)
{
string result;
for (unsigned idx = 0 ; idx < name.length() ; idx += 1)
switch (name[idx]) {
case '.':
result = result + "/";
break;
default:
result = result + name[idx];
break;
}
return result;
}
void target_xnf::start_design(ostream&os, const Design*des)
{
os << "LCANET,6" << endl;
os << "PROG,verilog,0.0,\"Steve's Verilog\"" << endl;
os << "PART," << des->get_flag("part") << endl;
}
void target_xnf::end_design(ostream&os, const Design*)
{
os << "EOF" << endl;
}
void scrape_pad_info(string&str, char&dir, unsigned&num)
{
while (str[0] == ' ')
str = str.substr(1);
switch (str[0]) {
case 'b':
case 'B':
dir = 'B';
break;
case 'o':
case 'O':
dir = 'O';
break;
case 'i':
case 'I':
dir = 'I';
break;
case 't':
case 'T':
dir = 'T';
break;
default:
dir = '?';
break;
}
str = str.substr(1);
unsigned val = 0;
while (str.size() && isdigit(str[0])) {
val = val * 10 + (str[0]-'0');
str = str.substr(1);
}
num = val;
while (str.size() && str[0] == ' ')
str = str.substr(1);
if (str.size() && str[0] == ',')
str = str.substr(1);
}
/*
* Look for signals that have attributes that are pertinent to XNF
* files. The most obvious are those that have the PAD attribute.
*
* Individual signals are easy, the pad description is a letter
* followed by a decimal number that is the pin.
*
* The PAD attribute for a vector is a comma separated pin
* descriptions, that enumerate the pins from most significant to
* least significant.
*/
void target_xnf::signal(ostream&os, const NetNet*net)
{
string pad = net->attribute("PAD");
if (pad != "") {
if (net->pin_count() == 1) {
char dir;
unsigned num;
scrape_pad_info(pad, dir, num);
os << "EXT, " << mangle(net->name()) << ", " << dir
<< ", " << num << endl;
} else for (unsigned idx = net->pin_count(); idx > 0; idx -= 1) {
char dir;
unsigned num;
scrape_pad_info(pad, dir, num);
os << "EXT, " << mangle(net->name()) << "<" << (idx-1)
<< ">, " << dir << ", " << num << endl;
}
}
}
/*
* The logic gates I know so far can be translated directly into XNF
* standard symbol types. This is a fairly obvious transformation.
*/
void target_xnf::logic(ostream&os, const NetLogic*net)
{
os << "SYM, " << mangle(net->name()) << ", ";
switch (net->type()) {
case NetLogic::AND:
os << "AND";
break;
case NetLogic::NAND:
os << "NAND";
break;
case NetLogic::NOR:
os << "NOR";
break;
case NetLogic::NOT:
os << "INV";
break;
case NetLogic::OR:
os << "OR";
break;
case NetLogic::XNOR:
os << "XNOR";
break;
case NetLogic::XOR:
os << "XOR";
break;
}
os << ", LIBVER=2.0.0" << endl;
for (unsigned idx = 0 ; idx < net->pin_count() ; idx += 1) {
unsigned cpin;
const NetObj*cur;
for (net->pin(idx).next_link(cur, cpin)
; (cur != net) || (cpin != idx)
; cur->pin(cpin).next_link(cur, cpin)) {
const NetNet*sig = dynamic_cast<const NetNet*>(cur);
if (sig) {
os << " PIN, ";
if (idx == 0) {
os << "O, O, ";
} else {
os << "I";
if (net->pin_count() > 2)
os << idx-1;
os << ", I, ";
}
os << mangle(sig->name());
if (sig->pin_count() > 1)
os << "<" << cpin << ">";
os << endl;
}
}
}
os << "END" << endl;
}
static target_xnf target_xnf_obj;
extern const struct target tgt_xnf = { "xnf", &target_xnf_obj };
/*
* $Log: t-xnf.cc,v $
* Revision 1.3 1998/11/23 00:20:24 steve
* NetAssign handles lvalues as pin links
* instead of a signal pointer,
* Wire attributes added,
* Ability to parse UDP descriptions added,
* XNF generates EXT records for signals with
* the PAD attribute.
*
* Revision 1.2 1998/11/18 04:25:22 steve
* Add -f flags for generic flag key/values.
*
* Revision 1.1 1998/11/16 05:03:53 steve
* Add the sigfold function that unlinks excess
* signal nodes, and add the XNF target.
*
*/