OpenSTA/search/CheckSlewLimits.cc

365 lines
9.7 KiB
C++
Raw Normal View History

2018-09-28 17:54:21 +02:00
// OpenSTA, Static Timing Analyzer
2020-03-07 03:50:37 +01:00
// Copyright (c) 2020, Parallax Software, Inc.
2018-09-28 17:54:21 +02:00
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
2020-04-05 23:53:44 +02:00
#include "CheckSlewLimits.hh"
2020-04-05 20:35:51 +02:00
2020-04-05 23:53:44 +02:00
#include "Fuzzy.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "Sdc.hh"
#include "Graph.hh"
#include "DcalcAnalysisPt.hh"
#include "GraphDelayCalc.hh"
#include "StaState.hh"
#include "Corner.hh"
#include "PathVertex.hh"
#include "PortDirection.hh"
2020-04-05 23:53:44 +02:00
#include "Search.hh"
2018-09-28 17:54:21 +02:00
namespace sta {
class PinSlewLimitSlackLess
{
public:
PinSlewLimitSlackLess(const Corner *corner,
const MinMax *min_max,
2018-09-28 17:54:21 +02:00
CheckSlewLimits *check_slew_limit,
const StaState *sta);
bool operator()(Pin *pin1,
Pin *pin2) const;
private:
const Corner *corner_;
2018-09-28 17:54:21 +02:00
const MinMax *min_max_;
CheckSlewLimits *check_slew_limit_;
const StaState *sta_;
};
PinSlewLimitSlackLess::PinSlewLimitSlackLess(const Corner *corner,
const MinMax *min_max,
2018-09-28 17:54:21 +02:00
CheckSlewLimits *check_slew_limit,
const StaState *sta) :
corner_(corner),
2018-09-28 17:54:21 +02:00
min_max_(min_max),
check_slew_limit_(check_slew_limit),
sta_(sta)
{
}
bool
PinSlewLimitSlackLess::operator()(Pin *pin1,
Pin *pin2) const
{
const Corner *corner1, *corner2;
2019-11-11 23:30:19 +01:00
const RiseFall *rf1, *rf2;
2018-09-28 17:54:21 +02:00
Slew slew1, slew2;
float limit1, limit2, slack1, slack2;
2020-06-09 05:37:46 +02:00
check_slew_limit_->checkSlew(pin1, corner_, min_max_, true,
corner1, rf1, slew1, limit1, slack1);
check_slew_limit_->checkSlew(pin2, corner_, min_max_, true,
corner2, rf2, slew2, limit2, slack2);
2020-05-15 03:09:42 +02:00
return fuzzyLess(slack1, slack2)
2018-09-28 17:54:21 +02:00
|| (fuzzyEqual(slack1, slack2)
// Break ties for the sake of regression stability.
&& sta_->network()->pinLess(pin1, pin2));
}
////////////////////////////////////////////////////////////////
CheckSlewLimits::CheckSlewLimits(const StaState *sta) :
sta_(sta)
{
}
void
2020-06-09 05:37:46 +02:00
CheckSlewLimits::checkSlew(const Pin *pin,
const Corner *corner,
const MinMax *min_max,
bool check_clks,
// Return values.
const Corner *&corner1,
const RiseFall *&rf,
Slew &slew,
float &limit,
float &slack) const
2018-09-28 17:54:21 +02:00
{
2019-03-13 01:25:53 +01:00
corner1 = nullptr;
2019-11-11 23:30:19 +01:00
rf = nullptr;
2018-12-05 23:18:41 +01:00
slew = 0.0;
limit = 0.0;
2018-09-28 17:54:21 +02:00
slack = MinMax::min()->initValue();
if (corner)
2020-06-09 05:37:46 +02:00
checkSlews1(pin, corner, min_max, check_clks,
2019-11-11 23:30:19 +01:00
corner1, rf, slew, limit, slack);
else {
2019-07-18 15:19:00 +02:00
for (auto corner : *sta_->corners()) {
2020-06-09 05:37:46 +02:00
checkSlews1(pin, corner, min_max, check_clks,
2019-11-11 23:30:19 +01:00
corner1, rf, slew, limit, slack);
}
}
}
void
CheckSlewLimits::checkSlews1(const Pin *pin,
const Corner *corner,
const MinMax *min_max,
2020-06-09 05:37:46 +02:00
bool check_clks,
// Return values.
const Corner *&corner1,
2019-11-11 23:30:19 +01:00
const RiseFall *&rf,
Slew &slew,
float &limit,
float &slack) const
{
2018-09-28 17:54:21 +02:00
Vertex *vertex, *bidirect_drvr_vertex;
sta_->graph()->pinVertices(pin, vertex, bidirect_drvr_vertex);
if (vertex
&& !vertex->isDisabledConstraint())
2020-06-09 05:37:46 +02:00
checkSlews1(vertex, corner, min_max, check_clks,
2020-05-08 02:10:19 +02:00
corner1, rf, slew, limit, slack);
if (bidirect_drvr_vertex
&& !vertex->isDisabledConstraint())
2020-06-09 05:37:46 +02:00
checkSlews1(bidirect_drvr_vertex, corner, min_max, check_clks,
2019-11-11 23:30:19 +01:00
corner1, rf, slew, limit, slack);
}
void
CheckSlewLimits::checkSlews1(Vertex *vertex,
const Corner *corner1,
const MinMax *min_max,
2020-06-09 05:37:46 +02:00
bool check_clks,
// Return values.
const Corner *&corner,
2019-11-11 23:30:19 +01:00
const RiseFall *&rf,
Slew &slew,
float &limit,
float &slack) const
{
2019-11-11 23:30:19 +01:00
for (auto rf1 : RiseFall::range()) {
2018-09-28 17:54:21 +02:00
float limit1;
bool limit1_exists;
2020-06-09 05:37:46 +02:00
findLimit(vertex->pin(), vertex, rf1, min_max, check_clks,
limit1, limit1_exists);
2018-09-28 17:54:21 +02:00
if (limit1_exists) {
2020-06-09 05:37:46 +02:00
checkSlew(vertex, corner1, rf1, min_max, limit1,
2019-11-11 23:30:19 +01:00
corner, rf, slew, slack, limit);
2018-09-28 17:54:21 +02:00
}
}
}
// return the tightest limit.
2018-09-28 17:54:21 +02:00
void
CheckSlewLimits::findLimit(const Pin *pin,
const Vertex *vertex,
2019-11-11 23:30:19 +01:00
const RiseFall *rf,
2018-09-28 17:54:21 +02:00
const MinMax *min_max,
2020-06-09 05:37:46 +02:00
bool check_clks,
2018-09-28 17:54:21 +02:00
// Return values.
float &limit,
bool &exists) const
2018-09-28 17:54:21 +02:00
{
exists = false;
if (!sta_->graphDelayCalc()->isIdealClk(vertex)) {
const Network *network = sta_->network();
Sdc *sdc = sta_->sdc();
2020-06-12 23:51:46 +02:00
// Default to top ("design") limit.
Cell *top_cell = network->cell(network->topInstance());
sdc->slewLimit(top_cell, min_max,
limit, exists);
float limit1;
bool exists1;
2020-06-09 05:37:46 +02:00
if (check_clks) {
// Look for clock slew limits.
bool is_clk = sta_->search()->isClock(vertex);
ClockSet clks;
clockDomains(vertex, clks);
ClockSet::Iterator clk_iter(clks);
while (clk_iter.hasNext()) {
Clock *clk = clk_iter.next();
PathClkOrData clk_data = is_clk ? PathClkOrData::clk : PathClkOrData::data;
sdc->slewLimit(clk, rf, clk_data, min_max,
limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
2018-09-28 17:54:21 +02:00
}
}
2020-06-09 02:16:15 +02:00
if (network->isTopLevelPort(pin)) {
Port *port = network->port(pin);
sdc->slewLimit(port, min_max, limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
2018-09-28 17:54:21 +02:00
}
2020-06-09 02:16:15 +02:00
}
else {
LibertyPort *port = network->libertyPort(pin);
if (port) {
port->slewLimit(min_max, limit1, exists1);
if (!exists1
&& port->direction()->isAnyOutput()
&& min_max == MinMax::max())
port->libertyLibrary()->defaultMaxSlew(limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
2018-09-28 17:54:21 +02:00
}
}
}
void
CheckSlewLimits::clockDomains(const Vertex *vertex,
// Return value.
ClockSet &clks) const
{
VertexPathIterator path_iter(const_cast<Vertex*>(vertex), sta_);
while (path_iter.hasNext()) {
Path *path = path_iter.next();
Clock *clk = path->clock(sta_);
if (clk)
clks.insert(clk);
}
}
void
CheckSlewLimits::checkSlew(Vertex *vertex,
const Corner *corner1,
2019-11-11 23:30:19 +01:00
const RiseFall *rf1,
2020-06-09 05:37:46 +02:00
const MinMax *min_max,
float limit1,
2018-09-28 17:54:21 +02:00
// Return values.
const Corner *&corner,
2019-11-11 23:30:19 +01:00
const RiseFall *&rf,
2018-09-28 17:54:21 +02:00
Slew &slew,
float &slack,
float &limit) const
{
const DcalcAnalysisPt *dcalc_ap = corner1->findDcalcAnalysisPt(min_max);
2019-11-11 23:30:19 +01:00
Slew slew1 = sta_->graph()->slew(vertex, rf1, dcalc_ap->index());
2018-09-28 17:54:21 +02:00
float slew2 = delayAsFloat(slew1);
float slack1 = (min_max == MinMax::max())
? limit1 - slew2 : slew2 - limit1;
2019-03-13 01:25:53 +01:00
if (corner == nullptr
2018-09-28 17:54:21 +02:00
|| (slack1 < slack
// Break ties for the sake of regression stability.
|| (fuzzyEqual(slack1, slack)
2019-11-11 23:30:19 +01:00
&& rf1->index() < rf->index()))) {
2018-09-28 17:54:21 +02:00
corner = corner1;
2019-11-11 23:30:19 +01:00
rf = rf1;
2018-09-28 17:54:21 +02:00
slew = slew1;
slack = slack1;
limit = limit1;
}
}
PinSeq *
CheckSlewLimits::pinSlewLimitViolations(const Corner *corner,
const MinMax *min_max)
2018-09-28 17:54:21 +02:00
{
const Network *network = sta_->network();
PinSeq *violators = new PinSeq;
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinSlewLimitViolations(inst, corner, min_max, violators);
2018-09-28 17:54:21 +02:00
}
delete inst_iter;
// Check top level ports.
pinSlewLimitViolations(network->topInstance(), corner, min_max, violators);
sort(violators, PinSlewLimitSlackLess(corner, min_max, this, sta_));
2018-09-28 17:54:21 +02:00
return violators;
}
void
CheckSlewLimits::pinSlewLimitViolations(Instance *inst,
const Corner *corner,
2018-09-28 17:54:21 +02:00
const MinMax *min_max,
PinSeq *violators)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
const Corner *corner1;
2019-11-11 23:30:19 +01:00
const RiseFall *rf;
2018-09-28 17:54:21 +02:00
Slew slew;
float limit, slack;
2020-06-09 05:37:46 +02:00
checkSlew(pin, corner, min_max, true, corner1, rf, slew, limit, slack);
2020-06-13 04:59:02 +02:00
if (rf && slack < 0.0 && !fuzzyInf(slack))
2018-09-28 17:54:21 +02:00
violators->push_back(pin);
}
delete pin_iter;
}
Pin *
CheckSlewLimits::pinMinSlewLimitSlack(const Corner *corner,
const MinMax *min_max)
2018-09-28 17:54:21 +02:00
{
const Network *network = sta_->network();
2020-06-03 03:11:50 +02:00
Pin *min_slack_pin = nullptr;
2018-09-28 17:54:21 +02:00
float min_slack = MinMax::min()->initValue();
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinMinSlewLimitSlack(inst, corner, min_max, min_slack_pin, min_slack);
2018-09-28 17:54:21 +02:00
}
delete inst_iter;
// Check top level ports.
pinMinSlewLimitSlack(network->topInstance(), corner, min_max,
2018-09-28 17:54:21 +02:00
min_slack_pin, min_slack);
return min_slack_pin;
}
void
CheckSlewLimits::pinMinSlewLimitSlack(Instance *inst,
const Corner *corner,
2018-09-28 17:54:21 +02:00
const MinMax *min_max,
// Return values.
Pin *&min_slack_pin,
float &min_slack)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
const Corner *corner1;
2019-11-11 23:30:19 +01:00
const RiseFall *rf;
2018-09-28 17:54:21 +02:00
Slew slew;
float limit, slack;
2020-06-09 05:37:46 +02:00
checkSlew(pin, corner, min_max, true, corner1, rf, slew, limit, slack);
2019-11-11 23:30:19 +01:00
if (rf
2020-06-03 03:11:50 +02:00
&& (min_slack_pin == nullptr
2018-09-28 17:54:21 +02:00
|| slack < min_slack)) {
min_slack_pin = pin;
min_slack = slack;
}
}
delete pin_iter;
}
} // namespace