OpenRAM/compiler/pgates/pbitcell.py

774 lines
45 KiB
Python
Raw Normal View History

import contact
import pgate
import design
import debug
from tech import drc, parameter, spice
from vector import vector
from ptx import ptx
from globals import OPTS
class pbitcell(pgate.pgate):
"""
This module implements a parametrically sized multi-port bitcell
"""
def __init__(self, num_write=1, num_read=4):
name = "pbitcell_{0}W_{1}R".format(num_write, num_read)
pgate.pgate.__init__(self, name)
debug.info(2, "create a multi-port bitcell with {0} write ports and {1} read ports".format(num_write, num_read))
self.num_write = num_write
self.num_read = num_read
self.add_pins()
self.create_layout()
self.DRC_LVS()
def add_pins(self):
for k in range(self.num_write):
self.add_pin("wbl{}".format(k))
self.add_pin("wbl_bar{}".format(k))
for k in range(self.num_read):
self.add_pin("rbl{}".format(k))
self.add_pin("rbl_bar{}".format(k))
for k in range(self.num_write):
self.add_pin("wwl{}".format(k))
for k in range(self.num_read):
self.add_pin("rwl{}".format(k))
self.add_pin("vdd")
self.add_pin("gnd")
def create_layout(self):
self.create_ptx()
self.add_globals()
self.add_storage()
self.add_rails()
self.add_write_ports()
if(self.num_read > 0):
self.add_read_ports()
self.extend_well()
self.offset_all_coordinates()
#offset = vector(0, -0.5*drc["minwidth_metal2"])
#self.translate_all(offset)
#self.add_fail()
def create_ptx(self):
""" Calculate transistor sizes """
# if there are no read ports then write transistors are being used as read/write ports, like in a 6T cell
if(self.num_read == 0):
inverter_nmos_width = self.num_write*3*parameter["min_tx_size"]
inverter_pmos_width = parameter["min_tx_size"]
write_nmos_width = 1.5*parameter["min_tx_size"]
read_nmos_width = parameter["min_tx_size"] # read transistor not necessary but included as to not generate errors in the code when referenced
# used for the dual port case where there are separate write and read ports
else:
inverter_nmos_width = 2*parameter["min_tx_size"]
inverter_pmos_width = parameter["min_tx_size"]
write_nmos_width = parameter["min_tx_size"]
read_nmos_width = 2*parameter["min_tx_size"]
""" Create ptx for all transistors """
# create ptx for inverter transistors
self.inverter_nmos = ptx(width=inverter_nmos_width,
tx_type="nmos")
self.add_mod(self.inverter_nmos)
self.inverter_pmos = ptx(width=inverter_pmos_width,
tx_type="pmos")
self.add_mod(self.inverter_pmos)
# create ptx for write transitors
self.write_nmos = ptx(width=write_nmos_width,
tx_type="nmos")
self.add_mod(self.write_nmos)
# create ptx for read transistors
self.read_nmos = ptx(width=read_nmos_width,
tx_type="nmos")
self.add_mod(self.read_nmos)
def add_globals(self):
""" Define pbitcell global variables """
# calculate metal contact extensions over transistor active
self.inverter_pmos_contact_extension = 0.5*(self.inverter_pmos.active_contact.height - self.inverter_pmos.active_height)
self.write_nmos_contact_extension = 0.5*(self.write_nmos.active_contact.height - self.write_nmos.active_height)
# calculation for transistor spacing (exact solutions)
self.inverter_to_inverter_spacing = contact.poly.height + drc["minwidth_metal1"]
self.inverter_to_write_spacing = drc["pwell_to_nwell"] + 2*drc["well_enclosure_active"]
self.write_to_write_spacing = drc["minwidth_metal2"] + self.write_nmos_contact_extension + contact.poly.width + drc["poly_to_field_poly"] + drc["poly_extend_active"]
self.write_to_read_spacing = drc["minwidth_poly"] + drc["poly_to_field_poly"] + drc["minwidth_metal2"] + 2*contact.poly.width + self.write_nmos_contact_extension
self.read_to_read_spacing = 2*drc["minwidth_poly"] + drc["minwidth_metal1"] + 2*contact.poly.width
# calculation for transistor spacing (symmetric solutions)
#self.inverter_to_inverter_spacing = 3*parameter["min_tx_size"]
#self.inverter_to_write_spacing = need to calculate
#spacing_option1 = contact.poly.width + 2*drc["poly_to_field_poly"] + 2*drc["poly_extend_active"]
#spacing_option2 = contact.poly.width + 2*drc["minwidth_metal2"] + 2*self.write_nmos_contact_extension
#self.write_to_write_spacing = max(spacing_option1, spacing_option2)
#self.write_to_read_spacing = drc["poly_to_field_poly"] + 2*contact.poly.width + 2*drc["minwidth_metal2"] + 2*self.write_nmos_contact_extension
#self.read_to_read_spacing = drc["minwidth_metal1"] + 2*contact.poly.width + 2*drc["minwidth_poly"]
# calculations for transistor tiling (includes transistor and spacing)
self.inverter_tile_width = self.inverter_nmos.active_width + 0.5*self.inverter_to_inverter_spacing
self.write_tile_width = self.write_to_write_spacing + self.write_nmos.active_height
self.read_tile_width = self.read_to_read_spacing + self.read_nmos.active_height
# calculation for row line tiling
self.rail_tile_height = drc["active_to_body_active"] + 0.5*(drc["minwidth_tx"] - drc["minwidth_metal1"]) + drc["minwidth_metal1"]
self.rowline_tile_height = drc["minwidth_metal1"] + contact.m1m2.width
# calculations related to inverter connections
self.inverter_gap = drc["poly_to_active"] + drc["poly_to_field_poly"] + 2*contact.poly.width + drc["minwidth_metal1"] + self.inverter_pmos_contact_extension
self.cross_couple_lower_ypos = self.inverter_nmos.active_height + drc["poly_to_active"] + 0.5*contact.poly.width
self.cross_couple_upper_ypos = self.inverter_nmos.active_height + drc["poly_to_active"] + drc["poly_to_field_poly"] + 1.5*contact.poly.width
""" Calculations for the edges of the cell """
# create a flag for excluding read port calculations if they are not included in the bitcell
if(self.num_read > 0):
read_port_flag = 1
else:
read_port_flag = 0
# leftmost position = storage width + write ports width + read ports width + read transistor gate connections + metal spacing necessary for tiling the bitcell
self.leftmost_xpos = -self.inverter_tile_width \
- self.inverter_to_write_spacing - self.write_nmos.active_height - (self.num_write-1)*self.write_tile_width \
- read_port_flag*(self.write_to_read_spacing + self.read_nmos.active_height + (self.num_read-1)*self.read_tile_width) \
- drc["minwidth_poly"] - contact.m1m2.height \
- 0.5*drc["minwidth_metal2"]
self.rightmost_xpos = -self.leftmost_xpos
# bottommost position = gnd height + wwl height + rwl height + space needed between tiled bitcells
array_tiling_offset = 0.5*drc["minwidth_metal2"]
self.botmost_ypos = -self.rail_tile_height \
- self.num_write*self.rowline_tile_height \
- read_port_flag*(self.num_read*self.rowline_tile_height) \
- array_tiling_offset
# topmost position = height of the inverter + height of vdd
self.topmost_ypos = self.inverter_nmos.active_height + self.inverter_gap + self.inverter_pmos.active_height \
+ self.rail_tile_height
# calculations for the cell dimensions
array_vdd_overlap = 0.5*drc["minwidth_metal1"]
self.width = -2*self.leftmost_xpos
self.height = self.topmost_ypos - self.botmost_ypos - array_vdd_overlap
def add_storage(self):
"""
Creates the crossed coupled inverters that act as storage for the bitcell.
The stored value of the cell is denoted as "Q", and the inverted value as "Q_bar".
"""
# calculate transistor offsets
left_inverter_xpos = -0.5*self.inverter_to_inverter_spacing - self.inverter_nmos.active_width
right_inverter_xpos = 0.5*self.inverter_to_inverter_spacing
inverter_pmos_ypos = self.inverter_nmos.active_height + self.inverter_gap
# create active for nmos
self.inverter_nmos_left = self.add_inst(name="inverter_nmos_left",
mod=self.inverter_nmos,
offset=[left_inverter_xpos,0])
self.connect_inst(["Q_bar", "Q", "gnd", "gnd"])
self.inverter_nmos_right = self.add_inst(name="inverter_nmos_right",
mod=self.inverter_nmos,
offset=[right_inverter_xpos,0])
self.connect_inst(["gnd", "Q_bar", "Q", "gnd"])
# create active for pmos
self.inverter_pmos_left = self.add_inst(name="inverter_pmos_left",
mod=self.inverter_pmos,
offset=[left_inverter_xpos, inverter_pmos_ypos])
self.connect_inst(["Q_bar", "Q", "vdd", "vdd"])
self.inverter_pmos_right = self.add_inst(name="inverter_pmos_right",
mod=self.inverter_pmos,
offset=[right_inverter_xpos, inverter_pmos_ypos])
self.connect_inst(["vdd", "Q_bar", "Q", "vdd"])
# connect input (gate) of inverters
self.add_path("poly", [self.inverter_nmos_left.get_pin("G").uc(), self.inverter_pmos_left.get_pin("G").bc()])
self.add_path("poly", [self.inverter_nmos_right.get_pin("G").uc(), self.inverter_pmos_right.get_pin("G").bc()])
# connect output (drain/source) of inverters
self.add_path("metal1", [self.inverter_nmos_left.get_pin("D").uc(), self.inverter_pmos_left.get_pin("D").bc()], width=contact.well.second_layer_width)
self.add_path("metal1", [self.inverter_nmos_right.get_pin("S").uc(), self.inverter_pmos_right.get_pin("S").bc()], width=contact.well.second_layer_width)
# add contacts to connect gate poly to drain/source metal1 (to connect Q to Q_bar)
contact_offset_left = vector(self.inverter_nmos_left.get_pin("D").rc().x + 0.5*contact.poly.height, self.cross_couple_upper_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=contact_offset_left,
rotate=90)
contact_offset_right = vector(self.inverter_nmos_right.get_pin("S").lc().x - 0.5*contact.poly.height, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=contact_offset_right,
rotate=90)
# connect contacts to gate poly (cross couple)
gate_offset_right = vector(self.inverter_nmos_right.get_pin("G").lc().x, contact_offset_left.y)
self.add_path("poly", [contact_offset_left, gate_offset_right])
gate_offset_left = vector(self.inverter_nmos_left.get_pin("G").rc().x, contact_offset_right.y)
self.add_path("poly", [contact_offset_right, gate_offset_left])
def add_rails(self):
"""
Add gnd and vdd rails and connects them to the inverters
"""
""" Add rails for vdd and gnd """
self.gnd_position = vector(self.leftmost_xpos, -self.rail_tile_height)
self.gnd = self.add_layout_pin(text="gnd",
layer="metal1",
offset=self.gnd_position,
2018-03-02 19:53:29 +01:00
width=self.width,
height=contact.well.second_layer_width)
vdd_ypos = self.inverter_nmos.active_height + self.inverter_gap + self.inverter_pmos.active_height \
+ drc["active_to_body_active"] + 0.5*(drc["minwidth_tx"] - drc["minwidth_metal1"])
#vdd_ypos = self.inverter_pmos_left.get_pin("S").uc().y + drc["minwidth_metal1"]
self.vdd_position = vector(self.leftmost_xpos, vdd_ypos)
self.vdd = self.add_layout_pin(text="vdd",
layer="metal1",
offset=self.vdd_position,
2018-03-02 19:53:29 +01:00
width=self.width,
height=drc["minwidth_metal1"])
""" Connect inverters to rails """
# connect inverter nmos to gnd
gnd_pos_left = vector(self.inverter_nmos_left.get_pin("S").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.inverter_nmos_left.get_pin("S").bc(), gnd_pos_left])
gnd_pos_right = vector(self.inverter_nmos_right.get_pin("D").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.inverter_nmos_right.get_pin("D").bc(), gnd_pos_right])
# connect inverter pmos to vdd
vdd_pos_left = vector(self.inverter_nmos_left.get_pin("S").uc().x, self.vdd_position.y)
self.add_path("metal1", [self.inverter_pmos_left.get_pin("S").uc(), vdd_pos_left])
vdd_pos_right = vector(self.inverter_nmos_right.get_pin("D").uc().x, self.vdd_position.y)
self.add_path("metal1", [self.inverter_pmos_right.get_pin("D").uc(), vdd_pos_right])
def add_write_ports(self):
"""
Adds write ports to the bit cell. A single transistor acts as the write port.
A write is enabled by setting a Write-Rowline (WWL) high, subsequently turning on the transistor.
The transistor is connected between a Write-Bitline (WBL) and the storage component of the cell (Q).
Driving WBL high or low sets the value of the cell.
This is a differential design, so each write port has a mirrored port that connects WBL_bar to Q_bar.
"""
""" Define variables relevant to write transistors """
# define offset correction due to rotation of the ptx cell
write_rotation_correct = self.write_nmos.active_height
# define write transistor variables as empty arrays based on the number of write ports
self.write_nmos_left = [None] * self.num_write
self.write_nmos_right = [None] * self.num_write
self.wwl_positions = [None] * self.num_write
self.wbl_positions = [None] * self.num_write
self.wbl_bar_positions = [None] * self.num_write
# iterate over the number of write ports
for k in range(0,self.num_write):
""" Add transistors """
# calculate write transistor offsets
left_write_transistor_xpos = -self.inverter_tile_width \
- self.inverter_to_write_spacing - self.write_nmos.active_height - k*self.write_tile_width \
+ write_rotation_correct
right_write_transistor_xpos = self.inverter_tile_width \
+ self.inverter_to_write_spacing + k*self.write_tile_width \
+ write_rotation_correct
# add write transistors
self.write_nmos_left[k] = self.add_inst(name="write_nmos_left{}".format(k),
mod=self.write_nmos,
offset=[left_write_transistor_xpos,0],
rotate=90)
self.connect_inst(["Q", "wwl{}".format(k), "wbl{}".format(k), "gnd"])
self.write_nmos_right[k] = self.add_inst(name="write_nmos_right{}".format(k),
mod=self.write_nmos,
offset=[right_write_transistor_xpos,0],
rotate=90)
self.connect_inst(["Q_bar", "wwl{}".format(k), "wbl_bar{}".format(k), "gnd"])
""" Add WWL lines """
# calculate WWL position
wwl_ypos = self.gnd_position.y - (k+1)*self.rowline_tile_height
self.wwl_positions[k] = vector(self.leftmost_xpos, wwl_ypos)
# add pin for WWL
self.add_layout_pin(text="wwl{}".format(k),
layer="metal1",
offset=self.wwl_positions[k],
2018-03-02 19:53:29 +01:00
width=self.width,
height=contact.m1m2.width)
""" Source/WBL/WBL_bar connections """
# add metal1-to-metal2 contacts on top of write transistor source pins for connection to WBL and WBL_bar
offset_left = self.write_nmos_left[k].get_pin("S").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_left,
rotate=90)
offset_right = self.write_nmos_right[k].get_pin("S").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_right,
rotate=90)
# add pins for WBL and WBL_bar, overlaid on source contacts
self.wbl_positions[k] = vector(self.write_nmos_left[k].get_pin("S").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="wbl{}".format(k),
layer="metal2",
offset=self.wbl_positions[k],
width=drc["minwidth_metal2"],
2018-03-02 19:53:29 +01:00
height=self.height)
self.wbl_bar_positions[k] = vector(self.write_nmos_right[k].get_pin("S").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="wbl_bar{}".format(k),
layer="metal2",
offset=self.wbl_bar_positions[k],
width=drc["minwidth_metal2"],
2018-03-02 19:53:29 +01:00
height=self.height)
""" Gate/WWL connections """
# add poly-to-meltal2 contacts to connect gate of write transistors to WWL (contact next to gate)
# contact must be placed a metal width below the source pin to avoid drc from routing to the source pins
contact_xpos = self.write_nmos_left[k].get_pin("S").lc().x - drc["minwidth_metal2"] - 0.5*contact.m1m2.width
contact_ypos = self.write_nmos_left[k].get_pin("D").bc().y - drc["minwidth_metal1"] - 0.5*contact.m1m2.height
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_gate_contact)
contact_xpos = self.write_nmos_right[k].get_pin("S").rc().x + drc["minwidth_metal2"] + 0.5*contact.m1m2.width
contact_ypos = self.write_nmos_right[k].get_pin("D").bc().y - drc["minwidth_metal1"] - 0.5*contact.m1m2.height
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_gate_contact)
# connect gate of write transistor to contact (poly path)
midL = vector(left_gate_contact.x, self.write_nmos_left[k].get_pin("G").lc().y)
self.add_path("poly", [self.write_nmos_left[k].get_pin("G").lc(), midL, left_gate_contact], width=contact.poly.width)
midR = vector(right_gate_contact.x, self.write_nmos_right[k].get_pin("G").rc().y)
self.add_path("poly", [self.write_nmos_right[k].get_pin("G").rc(), midR, right_gate_contact], width=contact.poly.width)
# add metal1-to-metal2 contacts to WWL lines
left_wwl_contact = vector(left_gate_contact.x, self.wwl_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_wwl_contact,
rotate=90)
right_wwl_contact = vector(right_gate_contact.x, self.wwl_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_wwl_contact,
rotate=90)
# connect write transistor gate contacts to WWL contacts (metal2 path)
self.add_path("metal2", [left_gate_contact, left_wwl_contact])
self.add_path("metal2", [right_gate_contact, right_wwl_contact])
""" Drain/Storage connections """
# this path only needs to be drawn once on the last iteration of the loop
if(k == self.num_write-1):
# add contacts to connect gate of inverters to drain of write transistors
left_storage_contact = vector(self.inverter_nmos_left.get_pin("G").lc().x - drc["poly_to_field_poly"] - 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_storage_contact,
rotate=90)
right_storage_contact = vector(self.inverter_nmos_right.get_pin("G").rc().x + drc["poly_to_field_poly"] + 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_storage_contact,
rotate=90)
# connect gate of inverters to contacts (poly path)
inverter_gate_offset_left = vector(self.inverter_nmos_left.get_pin("G").lc().x, self.cross_couple_lower_ypos)
self.add_path("poly", [left_storage_contact, inverter_gate_offset_left])
inverter_gate_offset_right = vector(self.inverter_nmos_right.get_pin("G").rc().x, self.cross_couple_lower_ypos)
self.add_path("poly", [right_storage_contact, inverter_gate_offset_right])
# connect contacts to drains of write transistors (metal1 path)
midL0 = vector(left_storage_contact.x - 0.5*contact.poly.height - 1.5*drc["minwidth_metal1"], left_storage_contact.y)
midL1 = vector(left_storage_contact.x - 0.5*contact.poly.height - 1.5*drc["minwidth_metal1"], self.write_nmos_left[k].get_pin("D").lc().y)
self.add_path("metal1", [left_storage_contact, midL0, midL1, self.write_nmos_left[k].get_pin("D").lc()])
midR0 = vector(right_storage_contact.x + 0.5*contact.poly.height + 1.5*drc["minwidth_metal1"], right_storage_contact.y)
midR1 = vector(right_storage_contact.x + 0.5*contact.poly.height + 1.5*drc["minwidth_metal1"], self.write_nmos_right[k].get_pin("D").rc().y)
self.add_path("metal1", [right_storage_contact, midR0, midR1, self.write_nmos_right[k].get_pin("D").rc()])
def add_read_ports(self):
"""
Adds read ports to the bit cell. Two transistors function as a read port.
The two transistors in the port are denoted as the "read transistor" and the "read-access transistor".
The read transistor is connected to RWL (gate), RBL (drain), and the read-access transistor (source).
The read-access transistor is connected to Q_bar (gate), gnd (source), and the read transistor (drain).
A read is enabled by setting a Read-Rowline (RWL) high, subsequently turning on the read transistor.
The Read-Bitline (RBL) is precharged to high, and when the value of Q_bar is high, the read-access transistor
is turned on, creating a connection between RBL and gnd. RBL subsequently discharges allowing for a differential read
using sense amps. This is a differential design, so each read port has a mirrored port that connects RBL_bar to Q.
"""
""" Define variables relevant to read transistors """
# define offset correction due to rotation of the ptx cell
read_rotation_correct = self.read_nmos.active_height
# calculate offset to overlap the drain of the read-access transistor with the source of the read transistor
overlap_offset = self.read_nmos.get_pin("D").ll() - self.read_nmos.get_pin("S").ll()
# define read transistor variables as empty arrays based on the number of read ports
self.read_nmos_left = [None] * self.num_read
self.read_nmos_right = [None] * self.num_read
self.read_access_nmos_left = [None] * self.num_read
self.read_access_nmos_right = [None] * self.num_read
self.rwl_positions = [None] * self.num_read
self.rbl_positions = [None] * self.num_read
self.rbl_bar_positions = [None] * self.num_read
# iterate over the number of read ports
for k in range(0,self.num_read):
""" Add transistors """
# calculate transistor offsets
left_read_transistor_xpos = -self.inverter_tile_width \
- self.inverter_to_write_spacing - self.write_nmos.active_height - (self.num_write-1)*self.write_tile_width \
- self.write_to_read_spacing - self.read_nmos.active_height - k*self.read_tile_width \
+ read_rotation_correct
right_read_transistor_xpos = self.inverter_tile_width \
+ self.inverter_to_write_spacing + self.write_nmos.active_height + (self.num_write-1)*self.write_tile_width \
+ self.write_to_read_spacing + k*self.read_tile_width \
+ read_rotation_correct
# add read-access transistors
self.read_access_nmos_left[k] = self.add_inst(name="read_access_nmos_left{}".format(k),
mod=self.read_nmos,
offset=[left_read_transistor_xpos,0],
rotate=90)
self.connect_inst(["RA_to_R_left{}".format(k), " Q_bar", "gnd", "gnd"])
self.read_access_nmos_right[k] = self.add_inst(name="read_access_nmos_right{}".format(k),
mod=self.read_nmos,
offset=[right_read_transistor_xpos,0],
rotate=90)
self.connect_inst(["RA_to_R_right{}".format(k), "Q", "gnd", "gnd"])
# add read transistors
self.read_nmos_left[k] = self.add_inst(name="read_nmos_left{}".format(k),
mod=self.read_nmos,
offset=[left_read_transistor_xpos,overlap_offset.x],
rotate=90)
self.connect_inst(["rbl{}".format(k), "rwl{}".format(k), "RA_to_R_left{}".format(k), "gnd"])
self.read_nmos_right[k] = self.add_inst(name="read_nmos_right{}".format(k),
mod=self.read_nmos,
offset=[right_read_transistor_xpos,overlap_offset.x],
rotate=90)
self.connect_inst(["rbl_bar{}".format(k), "rwl{}".format(k), "RA_to_R_right{}".format(k), "gnd"])
""" Add RWL lines """
# calculate RWL position
rwl_ypos = self.gnd_position.y \
- self.num_write*self.rowline_tile_height \
- (k+1)*self.rowline_tile_height
self.rwl_positions[k] = vector(self.leftmost_xpos, rwl_ypos)
# add pin for RWL
self.add_layout_pin(text="rwl{}".format(k),
layer="metal1",
offset=self.rwl_positions[k],
2018-03-02 19:53:29 +01:00
width=self.width,
height=contact.m1m2.width)
""" Drain of read transistor / RBL & RBL_bar connection """
# add metal1-to-metal2 contacts on top of read transistor drain pins for connection to RBL and RBL_bar
offset_left = self.read_nmos_left[k].get_pin("D").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_left,
rotate=90)
offset_right = self.read_nmos_right[k].get_pin("D").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offset_right,
rotate=90)
# add pins for RBL and RBL_bar, overlaid on drain contacts
self.rbl_positions[k] = vector(self.read_nmos_left[k].get_pin("D").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="rbl{}".format(k),
layer="metal2",
offset=self.rbl_positions[k],
width=drc["minwidth_metal2"],
2018-03-02 19:53:29 +01:00
height=self.height)
self.rbl_bar_positions[k] = vector(self.read_nmos_right[k].get_pin("D").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="rbl_bar{}".format(k),
layer="metal2",
offset=self.rbl_bar_positions[k],
width=drc["minwidth_metal2"],
2018-03-02 19:53:29 +01:00
height=self.height)
""" Gate of read transistor / RWL connection """
# add poly-to-meltal2 contacts to connect gate of read transistors to RWL (contact next to gate)
contact_xpos = left_read_transistor_xpos - self.read_nmos.active_height - drc["minwidth_poly"] - 0.5*contact.poly.width
contact_ypos = self.read_nmos_left[k].get_pin("G").lc().y
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_gate_contact)
contact_xpos = right_read_transistor_xpos + drc["minwidth_poly"] + 0.5*contact.poly.width
contact_ypos = self.read_nmos_right[k].get_pin("G").rc().y
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_gate_contact)
# connect gate of read transistor to contact (poly path)
self.add_path("poly", [self.read_nmos_left[k].get_pin("G").lc(), left_gate_contact])
self.add_path("poly", [self.read_nmos_right[k].get_pin("G").rc(), right_gate_contact])
# add metal1-to-metal2 contacts to RWL lines
left_rwl_contact = vector(left_gate_contact.x, self.rwl_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_rwl_contact,
rotate=90)
right_rwl_contact = vector(right_gate_contact.x, self.rwl_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_rwl_contact,
rotate=90)
# connect read transistor gate contacts to RWL contacts (metal2 path)
self.add_path("metal2", [left_gate_contact, left_rwl_contact])
self.add_path("metal2", [right_gate_contact, right_rwl_contact])
""" Source of read-access transistor / GND connection """
# connect source of read-access transistor to GND (metal1 path)
gnd_offset_left = vector(self.read_access_nmos_left[k].get_pin("S").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.read_access_nmos_left[k].get_pin("S").bc(), gnd_offset_left])
gnd_offset_right = vector(self.read_access_nmos_right[k].get_pin("S").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.read_access_nmos_right[k].get_pin("S").bc(), gnd_offset_right])
""" Gate of read-access transistor / storage connection """
# add poly-to-metal1 contacts to connect gate of read-access transistors to output of inverters (contact next to gate)
contact_xpos = left_read_transistor_xpos + drc["minwidth_poly"] + 0.5*contact.poly.width
contact_ypos = self.read_access_nmos_left[k].get_pin("G").rc().y
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
contact_xpos = right_read_transistor_xpos - self.read_nmos.active_height - drc["minwidth_poly"] - 0.5*contact.poly.width
contact_ypos = self.read_access_nmos_right[k].get_pin("G").lc().y
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
# connect gate of read-access transistor to contact (poly path)
self.add_path("poly", [self.read_access_nmos_left[k].get_pin("G").rc(), left_gate_contact])
self.add_path("poly", [self.read_access_nmos_right[k].get_pin("G").lc(), right_gate_contact])
# connect contact to output of inverters (metal1 path)
# mid0: metal1 path must route over the read transistors (above drain of read transistor)
# mid1: continue metal1 path horizontally until at inverter
# mid2: route down to be level with inverter output
# endpoint at drain/source of inverter
midL0 = vector(left_gate_contact.x, self.read_nmos_left[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midL1 = vector(self.inverter_nmos_left.get_pin("S").lc().x - 1.5*drc["minwidth_metal1"], self.read_nmos_left[0].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midL2 = vector(self.inverter_nmos_left.get_pin("S").lc().x - 1.5*drc["minwidth_metal1"], self.cross_couple_upper_ypos)
left_inverter_offset = vector(self.inverter_nmos_left.get_pin("D").center().x, self.cross_couple_upper_ypos)
self.add_path("metal1", [left_gate_contact, midL0, midL1, midL2, left_inverter_offset])
midR0 = vector(right_gate_contact.x, self.read_nmos_right[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midR1 = vector(self.inverter_nmos_right.get_pin("D").rc().x + 1.5*drc["minwidth_metal1"], self.read_nmos_right[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midR2 = vector(self.inverter_nmos_right.get_pin("D").rc().x + 1.5*drc["minwidth_metal1"], self.cross_couple_upper_ypos)
right_inverter_offset = vector(self.inverter_nmos_right.get_pin("S").center().x, self.cross_couple_upper_ypos)
self.add_path("metal1", [right_gate_contact, midR0, midR1, midR2, right_inverter_offset])
def extend_well(self):
"""
Connects wells between ptx cells to avoid drc spacing issues.
Since the pwell of the read ports rise higher than the pmos of the inverters,
the well connections must be done piecewise to avoid pwell and nwell overlap.
"""
""" extend pwell to encompass entire nmos region of the cell up to the height of the inverter nmos well """
offset = vector(self.leftmost_xpos, self.botmost_ypos)
well_height = -self.botmost_ypos + self.inverter_nmos.cell_well_height - drc["well_enclosure_active"]
self.add_rect(layer="pwell",
offset=offset,
2018-03-02 19:53:29 +01:00
width=self.width,
height=well_height)
""" extend pwell over write transistors to the height of the write transistor well """
# calculate the edge of the write transistor well closest to the center
left_write_well_xpos = -(self.inverter_tile_width + self.write_to_write_spacing - drc["well_enclosure_active"])
right_write_well_xpos = self.inverter_tile_width + self.write_to_write_spacing - drc["well_enclosure_active"]
# calculate a width that will halt at the edge of the write transistors
write_well_width = -(self.leftmost_xpos - left_write_well_xpos)
write_well_height = self.write_nmos.cell_well_width - drc["well_enclosure_active"]
offset = vector(left_write_well_xpos - write_well_width, 0)
self.add_rect(layer="pwell",
offset=offset,
width=write_well_width,
height=write_well_height)
offset = vector(right_write_well_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=write_well_width,
height=write_well_height)
""" extend pwell over the read transistors to the height of the bitcell """
if(self.num_read > 0):
# calculate the edge of the read transistor well clostest to the center
left_read_well_xpos = -(self.inverter_tile_width + self.num_write*self.write_tile_width + self.write_to_read_spacing - drc["well_enclosure_active"])
right_read_well_xpos = self.inverter_tile_width + self.num_write*self.write_tile_width + self.write_to_read_spacing - drc["well_enclosure_active"]
# calculate a width that will halt at the edge of the read transistors
read_well_width = -(self.leftmost_xpos - left_read_well_xpos)
read_well_height = self.topmost_ypos
offset = vector(self.leftmost_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=read_well_width,
height=read_well_height)
offset = vector(right_read_well_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=read_well_width,
height=read_well_height)
""" extend nwell to encompass inverter_pmos """
# calculate offset of the left pmos well
inverter_well_xpos = -self.inverter_tile_width - drc["well_enclosure_active"]
inverter_well_ypos = self.inverter_nmos.active_height + self.inverter_gap - drc["well_enclosure_active"]
# calculate width of the two combined nwells
# calculate height to encompass nimplant connected to vdd
well_width = 2*self.inverter_tile_width + 2*drc["well_enclosure_active"]
well_height = self.vdd_position.y - inverter_well_ypos + drc["well_enclosure_active"] + drc["minwidth_tx"]
offset = [inverter_well_xpos,inverter_well_ypos]
self.add_rect(layer="nwell",
offset=offset,
width=well_width,
height=well_height)
""" add well contacts """
# connect pimplants to gnd
offset = vector(0, self.gnd_position.y + 0.5*contact.well.second_layer_width)
self.add_contact_center(layers=("active", "contact", "metal1"),
offset=offset,
rotate=90)
self.add_rect_center(layer="pimplant",
offset=offset,
width=drc["minwidth_tx"],
height=drc["minwidth_tx"])
# connect nimplants to vdd
offset = vector(0, self.vdd_position.y + 0.5*drc["minwidth_metal1"])
self.add_contact_center(layers=("active", "contact", "metal1"),
offset=offset,
rotate=90)
self.add_rect_center(layer="nimplant",
offset=offset,
width=drc["minwidth_tx"],
height=drc["minwidth_tx"])
def list_bitcell_pins(self, col, row):
# Creates a list of connections in the bitcell, indexed by column and row, for instance use in bitcell_array
bitcell_pins = []
for k in range(self.num_write):
bitcell_pins.append("wbl{0}[{1}]".format(k,col))
bitcell_pins.append("wbl_bar{0}[{1}]".format(k,col))
for k in range(self.num_read):
bitcell_pins.append("rbl{0}[{1}]".format(k,col))
bitcell_pins.append("rbl_bar{0}[{1}]".format(k,col))
for k in range(self.num_write):
bitcell_pins.append("wwl{0}[{1}]".format(k,row))
for k in range(self.num_read):
bitcell_pins.append("rwl{0}[{1}]".format(k,row))
bitcell_pins.append("vdd")
bitcell_pins.append("gnd")
return bitcell_pins
def list_row_pins(self):
# Creates a list of row pins
row_pins = []
for k in range(self.num_write):
row_pins.append("wwl{0}".format(k))
for k in range(self.num_read):
row_pins.append("rwl{0}".format(k))
return row_pins
def list_column_pins(self):
# Creates a list of column pins
column_pins = []
for k in range(self.num_write):
column_pins.append("wbl{0}".format(k))
column_pins.append("wbl_bar{0}".format(k))
for k in range(self.num_read):
column_pins.append("rbl{0}".format(k))
column_pins.append("rbl_bar{0}".format(k))
return column_pins
def add_fail(self):
# for failing drc when I want to observe the gds layout
fail_position = vector(-4*drc["minwidth_metal1"], 0) # for tiling purposes
self.add_layout_pin(text="fail1",
layer="metal1",
offset=fail_position,
width=drc["minwidth_metal1"],
height=drc["minwidth_metal1"])
fail_position2 = vector(-4*drc["minwidth_metal1"], -1.5*drc["minwidth_metal1"])
self.add_layout_pin(text="fail2",
layer="metal1",
offset=fail_position2,
width=drc["minwidth_metal1"],
height=drc["minwidth_metal1"])