OpenRAM/compiler/pgates/pbitcell.py

689 lines
40 KiB
Python
Raw Normal View History

import contact
import pgate
import design
import debug
from tech import drc, parameter, spice
from vector import vector
from ptx import ptx
from globals import OPTS
class pbitcell(pgate.pgate):
"""
This module implements a parametrically sized multi-port bitcell
"""
def __init__(self, num_write=1, num_read=1):
name = "pbitcell_{0}W_{1}R".format(num_write, num_read)
pgate.pgate.__init__(self, name)
debug.info(2, "create a multi-port bitcell with {0} write ports and {1} read ports".format(num_write, num_read))
self.num_write = num_write
self.num_read = num_read
self.add_pins()
self.create_layout()
self.DRC_LVS()
def add_pins(self):
for k in range(0,self.num_write):
self.add_pin("wrow{}".format(k))
for k in range(0,self.num_write):
self.add_pin("wbl{}".format(k))
self.add_pin("wbl_bar{}".format(k))
for k in range(0,self.num_read):
self.add_pin("rrow{}".format(k))
for k in range(0,self.num_read):
self.add_pin("rbl{}".format(k))
self.add_pin("rbl_bar{}".format(k))
self.add_pin("vdd")
self.add_pin("gnd")
def create_layout(self):
self.add_globals()
self.add_storage()
self.add_rails()
self.add_write_ports()
if(self.num_read > 0):
self.add_read_ports()
self.extend_well()
#self.add_fail()
def add_globals(self):
""" Calculate transistor sizes """
# if there are no read ports then write transistors are being used as read/write ports like in a 6T bitcell
if(self.num_read == 0):
inverter_nmos_width = 3*parameter["min_tx_size"]
inverter_pmos_width = parameter["min_tx_size"]
write_nmos_width = 1.5*parameter["min_tx_size"]
read_nmos_width = parameter["min_tx_size"]
# used for the dual port case where there are separate write and read ports
else:
inverter_nmos_width = 2*parameter["min_tx_size"]
inverter_pmos_width = parameter["min_tx_size"]
write_nmos_width = parameter["min_tx_size"]
read_nmos_width = 2*parameter["min_tx_size"]
""" Create ptx for all transistors """
# create ptx for inverter transistors
self.inverter_nmos = ptx(width=inverter_nmos_width,
tx_type="nmos")
self.add_mod(self.inverter_nmos)
self.inverter_pmos = ptx(width=inverter_pmos_width,
tx_type="pmos")
self.add_mod(self.inverter_pmos)
# create ptx for write transitors
self.write_nmos = ptx(width=write_nmos_width,
tx_type="nmos")
self.add_mod(self.write_nmos)
# create ptx for read transistors
self.read_nmos = ptx(width=read_nmos_width,
tx_type="nmos")
self.add_mod(self.read_nmos)
""" Define pbitcell global variables """
# determine metal contact extensions
self.ip_ex = 0.5*(self.inverter_pmos.active_contact.height - self.inverter_pmos.active_height)
self.w_ex = 0.5*(self.write_nmos.active_contact.height - self.write_nmos.active_height)
# calculation for transistor spacing
self.write_to_write_spacing = drc["minwidth_metal2"] + self.w_ex + contact.poly.width + drc["poly_to_field_poly"] + drc["poly_extend_active"]
self.read_to_read_spacing = 2*drc["minwidth_poly"] + drc["minwidth_metal1"] + 2*contact.poly.width
self.write_to_read_spacing = drc["minwidth_poly"] + drc["poly_to_field_poly"] + drc["minwidth_metal2"] + 2*contact.poly.width + self.w_ex
# calculations for transistor tiling (includes transistor and spacing)
self.inverter_tile_width = self.inverter_nmos.active_width + 1.5*parameter["min_tx_size"]
self.write_tile_width = self.write_to_write_spacing + self.write_nmos.active_height
self.read_tile_width = self.read_to_read_spacing + self.read_nmos.active_height
# calculation for row line tiling
self.rowline_tile_height = drc["minwidth_metal1"] + contact.m1m2.width
# calculations related to inverter connections
self.inverter_gap = drc["poly_to_active"] + drc["poly_to_field_poly"] + 2*contact.poly.width + drc["minwidth_metal1"] + self.ip_ex
self.cross_couple_lower_ypos = self.inverter_nmos.active_height + drc["poly_to_active"] + 0.5*contact.poly.width
self.cross_couple_upper_ypos = self.inverter_nmos.active_height + drc["poly_to_active"] + drc["poly_to_field_poly"] + 1.5*contact.poly.width
# calculations for the edges of the cell
if(self.num_read > 0):
read_port_flag = 1;
else:
read_port_flag = 0;
self.leftmost_xpos = -self.inverter_tile_width \
- self.num_write*self.write_tile_width \
- read_port_flag*(self.write_to_read_spacing - self.read_nmos.active_height - (self.num_read-1)*self.read_tile_width) \
- drc["minwidth_poly"] - contact.m1m2.height - 0.5*drc["minwidth_metal2"]
self.rightmost_xpos = -self.leftmost_xpos
self.botmost_ypos = -self.rowline_tile_height \
- self.num_write*self.rowline_tile_height \
- read_port_flag*(self.num_read*self.rowline_tile_height)
self.topmost_ypos = self.inverter_nmos.active_height + self.inverter_gap + self.inverter_pmos.active_height + drc["poly_extend_active"] + 2*drc["minwidth_metal1"]
# calculations for the cell dimensions
self.cell_width = -2*self.leftmost_xpos
self.cell_height = self.topmost_ypos - self.botmost_ypos
def add_storage(self):
"""
Creates the crossed coupled inverters that act as storage for the bitcell.
The stored value of the cell is denoted as "Q" and the inverted values as "Q_bar".
"""
# calculate transistor offsets
left_inverter_xpos = -(self.inverter_nmos.active_width + 1.5*parameter["min_tx_size"])
right_inverter_xpos = 1.5*parameter["min_tx_size"]
inverter_pmos_ypos = self.inverter_gap + self.inverter_nmos.active_height
# create active for nmos
self.inverter_nmos_left = self.add_inst(name="inverter_nmos_left",
mod=self.inverter_nmos,
offset=[left_inverter_xpos,0])
self.connect_inst(["Q_bar", "Q", "gnd", "gnd"])
self.inverter_nmos_right = self.add_inst(name="inverter_nmos_right",
mod=self.inverter_nmos,
offset=[right_inverter_xpos,0])
self.connect_inst(["gnd", "Q_bar", "Q", "gnd"])
# create active for pmos
self.inverter_pmos_left = self.add_inst(name="inverter_pmos_left",
mod=self.inverter_pmos,
offset=[left_inverter_xpos, inverter_pmos_ypos])
self.connect_inst(["Q_bar", "Q", "vdd", "vdd"])
self.inverter_pmos_right = self.add_inst(name="inverter_pmos_right",
mod=self.inverter_pmos,
offset=[right_inverter_xpos, inverter_pmos_ypos])
self.connect_inst(["vdd", "Q_bar", "Q", "vdd"])
# connect input (gate) of inverters
self.add_path("poly", [self.inverter_nmos_left.get_pin("G").uc(), self.inverter_pmos_left.get_pin("G").bc()])
self.add_path("poly", [self.inverter_nmos_right.get_pin("G").uc(), self.inverter_pmos_right.get_pin("G").bc()])
# connect output (drain/source) of inverters
self.add_path("metal1", [self.inverter_nmos_left.get_pin("D").uc(), self.inverter_pmos_left.get_pin("D").bc()], width=contact.well.width)
self.add_path("metal1", [self.inverter_nmos_right.get_pin("S").uc(), self.inverter_pmos_right.get_pin("S").bc()], width=contact.well.width)
# add contacts to connect gate poly to drain/source metal1 (to connect Q to Q_bar)
offsetL = vector(self.inverter_nmos_left.get_pin("D").rc().x + 0.5*contact.poly.width, self.cross_couple_upper_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=offsetL,
rotate=90)
offsetR = vector(self.inverter_nmos_right.get_pin("S").lc().x - 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=offsetR,
rotate=90)
# connect contacts to gate poly (cross couple)
gate_offsetR = vector(self.inverter_nmos_right.get_pin("G").lc().x, offsetL.y)
self.add_path("poly", [offsetL, gate_offsetR])
gate_offsetL = vector(self.inverter_nmos_left.get_pin("G").rc().x, offsetR.y)
self.add_path("poly", [offsetR, gate_offsetL])
def add_rails(self):
"""
Adds gnd and vdd rails and connects them to the storage element
"""
""" Add rails for vdd and gnd """
self.gnd_position = vector(self.leftmost_xpos, -self.rowline_tile_height)
self.gnd = self.add_layout_pin(text="gnd",
layer="metal1",
offset=self.gnd_position,
width=self.cell_width,
height=contact.well.second_layer_width)
self.vdd_position = vector(self.leftmost_xpos, self.inverter_pmos_left.get_pin("S").uc().y + drc["minwidth_metal1"])
self.vdd = self.add_layout_pin(text="vdd",
layer="metal1",
offset=self.vdd_position,
width=self.cell_width,
height=drc["minwidth_metal1"])
""" Connect inverters to rails """
# connect nmos to gnd
gnd_posL = vector(self.inverter_nmos_left.get_pin("S").bc().x, self.gnd_position.y + drc["minwidth_metal1"])
self.add_path("metal1", [self.inverter_nmos_left.get_pin("S").bc(), gnd_posL])
gnd_posR = vector(self.inverter_nmos_right.get_pin("D").bc().x, self.gnd_position.y + drc["minwidth_metal1"])
self.add_path("metal1", [self.inverter_nmos_right.get_pin("D").bc(), gnd_posR])
# connect pmos to vdd
vdd_posL = vector(self.inverter_nmos_left.get_pin("S").uc().x, self.vdd_position.y)
self.add_path("metal1", [self.inverter_pmos_left.get_pin("S").uc(), vdd_posL])
vdd_posR = vector(self.inverter_nmos_right.get_pin("D").uc().x, self.vdd_position.y)
self.add_path("metal1", [self.inverter_pmos_right.get_pin("D").uc(), vdd_posR])
def add_write_ports(self):
"""
Adds write ports to the bit cell. A single transistor acts as the write port.
A write is enabled by setting a Write-Rowline (WROW) high, subsequently turning on the transistor.
The transistor is connected between a Write-Bitline (WBL) and the storage component of the cell (Q).
Driving WBL high or low sets the value of the cell.
This is a differential design, so each write port has a mirrored port that connects WBL_bar to Q_bar.
"""
""" Define variables relevant to write transistors """
# define offset correction due to rotation of the ptx cell
write_rotation_correct = self.write_nmos.active_height
# define write transistor variables as empty arrays based on the number of write ports
self.write_nmos_left = [None] * self.num_write
self.write_nmos_right = [None] * self.num_write
self.wrow_positions = [None] * self.num_write
self.wbl_positions = [None] * self.num_write
self.wbl_bar_positions = [None] * self.num_write
# iterate over the number of write ports
for k in range(0,self.num_write):
""" Add transistors """
# calculate write transistor offsets
left_write_transistor_xpos = -self.inverter_tile_width \
- (k+1)*self.write_tile_width + write_rotation_correct
right_write_transistor_xpos = self.inverter_tile_width \
+ self.write_to_write_spacing + k*self.write_tile_width + write_rotation_correct
# add write transistors
self.write_nmos_left[k] = self.add_inst(name="write_nmos_left{}".format(k),
mod=self.write_nmos,
offset=[left_write_transistor_xpos,0],
rotate=90)
self.connect_inst(["Q", "wrow{}".format(k), "wbl{}".format(k), "gnd"])
self.write_nmos_right[k] = self.add_inst(name="write_nmos_right{}".format(k),
mod=self.write_nmos,
offset=[right_write_transistor_xpos,0],
rotate=90)
self.connect_inst(["Q_bar", "wrow{}".format(k), "wbl_bar{}".format(k), "gnd"])
""" Add WROW lines """
# calculate WROW position
wrow_ypos = self.gnd_position.y - (k+1)*self.rowline_tile_height
self.wrow_positions[k] = vector(self.leftmost_xpos, wrow_ypos)
# add pin for WROW
self.add_layout_pin(text="wrow{}".format(k),
layer="metal1",
offset=self.wrow_positions[k],
width=self.cell_width,
height=contact.m1m2.width)
""" Source/WBL/WBL_bar connections """
# add metal1-to-metal2 contacts on top of write transistor source pins for connection to WBL and WBL_bar
offsetL = self.write_nmos_left[k].get_pin("S").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offsetL,
rotate=90)
offsetR = self.write_nmos_right[k].get_pin("S").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offsetR,
rotate=90)
# add pins for WBL and WBL_bar, overlaid on source contacts
self.wbl_positions[k] = vector(self.write_nmos_left[k].get_pin("S").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="wbl{}".format(k),
layer="metal2",
offset=self.wbl_positions[k],
width=drc["minwidth_metal2"],
height=self.cell_height)
self.wbl_bar_positions[k] = vector(self.write_nmos_right[k].get_pin("S").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="wbl_bar{}".format(k),
layer="metal2",
offset=self.wbl_bar_positions[k],
width=drc["minwidth_metal2"],
height=self.cell_height)
""" Gate/WROW connections """
# add poly-to-meltal2 contacts to connect gate of write transistors to WROW (contact next to gate)
contact_xpos = self.write_nmos_left[k].get_pin("S").lc().x - drc["minwidth_metal2"] - 0.5*contact.m1m2.width
contact_ypos = self.write_nmos_left[k].get_pin("D").bc().y - drc["minwidth_metal1"] - 0.5*contact.m1m2.height
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_gate_contact)
self.add_rect_center(layer="poly",
offset=left_gate_contact,
width=contact.poly.width,
height=contact.poly.height)
contact_xpos = self.write_nmos_right[k].get_pin("S").rc().x + drc["minwidth_metal2"] + 0.5*contact.m1m2.width
contact_ypos = self.write_nmos_right[k].get_pin("D").bc().y - drc["minwidth_metal1"] - 0.5*contact.m1m2.height
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_gate_contact)
self.add_rect_center(layer="poly",
offset=right_gate_contact,
width=contact.poly.width,
height=contact.poly.height)
# connect gate of write transistor to contact (poly path)
midL = vector(left_gate_contact.x, self.write_nmos_left[k].get_pin("G").lc().y)
self.add_path("poly", [self.write_nmos_left[k].get_pin("G").lc(), midL, left_gate_contact])
midR = vector(right_gate_contact.x, self.write_nmos_right[k].get_pin("G").rc().y)
self.add_path("poly", [self.write_nmos_right[k].get_pin("G").rc(), midR, right_gate_contact])
# add metal1-to-metal2 contacts to WROW lines
left_wrow_contact = vector(left_gate_contact.x, self.wrow_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_wrow_contact,
rotate=90)
right_wrow_contact = vector(right_gate_contact.x, self.wrow_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_wrow_contact,
rotate=90)
# connect write transistor gate contacts to WROW contacts (metal2 path)
self.add_path("metal2", [left_gate_contact, left_wrow_contact])
self.add_path("metal2", [right_gate_contact, right_wrow_contact])
""" Drain/Storage connections """
# this path only needs to be drawn once on the last iteration of the loop
if(k == self.num_write-1):
# add contacts to connect gate of inverters to drain of write transistors
left_storage_contact = vector(self.inverter_nmos_left.get_pin("G").lc().x - drc["poly_to_field_poly"] - 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_storage_contact,
rotate=90)
right_storage_contact = vector(self.inverter_nmos_right.get_pin("G").rc().x + drc["poly_to_field_poly"] + 0.5*contact.poly.width, self.cross_couple_lower_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_storage_contact,
rotate=90)
# connect gate of inverters to contacts (poly path)
gate_offsetL = vector(self.inverter_nmos_left.get_pin("G").lc().x, self.cross_couple_lower_ypos)
self.add_path("poly", [left_storage_contact, gate_offsetL])
gate_offsetR = vector(self.inverter_nmos_right.get_pin("G").rc().x, self.cross_couple_lower_ypos)
self.add_path("poly", [right_storage_contact, gate_offsetR])
# connect contacts to drains of write transistors (metal1 path)
midL0 = vector(left_storage_contact.x - 0.5*contact.poly.height - 1.5*drc["minwidth_metal1"], left_storage_contact.y)
midL1 = vector(left_storage_contact.x - 0.5*contact.poly.height - 1.5*drc["minwidth_metal1"], self.write_nmos_left[k].get_pin("D").lc().y)
self.add_path("metal1", [left_storage_contact, midL0, midL1, self.write_nmos_left[k].get_pin("D").lc()])
midR0 = vector(right_storage_contact.x + 0.5*contact.poly.height + 1.5*drc["minwidth_metal1"], right_storage_contact.y)
midR1 = vector(right_storage_contact.x + 0.5*contact.poly.height + 1.5*drc["minwidth_metal1"], self.write_nmos_right[k].get_pin("D").rc().y)
self.add_path("metal1", [right_storage_contact, midR0, midR1, self.write_nmos_right[k].get_pin("D").rc()])
def add_read_ports(self):
"""
Adds read ports to the bit cell. Two transistors function as a read port.
The two transistors in the port are denoted as the "read transistor" and the "read-access transistor".
The read transistor is connected to RROW (gate), RBL (drain), and the read-access transistor (source).
The read-access transistor is connected to Q_bar (gate), gnd (source), and the read transistor (drain).
A read is enabled by setting a Read-Rowline (RROW) high, subsequently turning on the read transistor.
The Read-Bitline (RBL) is precharged to high, and when the value of Q_bar is also high, the read-access transistor
is turned on, creating a connection between RBL and gnd. RBL subsequently discharges allowing for a differential read
using sense amps. This is a differential design, so each read port has a mirrored port that connects RBL_bar to Q.
"""
""" Define variables relevant to read transistors """
# define offset correction due to rotation of the ptx cell
read_rotation_correct = self.read_nmos.active_height
# calculate offset to overlap the drain of the read-access transistor with the source of the read transistor
overlap_offset = self.read_nmos.get_pin("D").ll() - self.read_nmos.get_pin("S").ll()
# define read transistor variables as empty arrays based on the number of read ports
self.read_nmos_left = [None] * self.num_read
self.read_nmos_right = [None] * self.num_read
self.read_access_nmos_left = [None] * self.num_read
self.read_access_nmos_right = [None] * self.num_read
self.rrow_positions = [None] * self.num_read
self.rbl_positions = [None] * self.num_read
self.rbl_bar_positions = [None] * self.num_read
# iterate over the number of read ports
for k in range(0,self.num_read):
""" Add transistors """
# calculate transistor offsets
left_read_transistor_xpos = -self.inverter_tile_width \
- self.num_write*self.write_tile_width \
- self.write_to_read_spacing - self.read_nmos.active_height - k*self.read_tile_width + read_rotation_correct
right_read_transistor_xpos = self.inverter_tile_width \
+ self.num_write*self.write_tile_width \
+ self.write_to_read_spacing + k*self.read_tile_width + read_rotation_correct
# add read-access transistors
self.read_access_nmos_left[k] = self.add_inst(name="read_access_nmos_left",
mod=self.read_nmos,
offset=[left_read_transistor_xpos,0],
rotate=90)
self.connect_inst(["RA_to_R_left{}".format(k), " Q_bar", "gnd", "gnd"])
self.read_access_nmos_right[k] = self.add_inst(name="read_access_nmos_right",
mod=self.read_nmos,
offset=[right_read_transistor_xpos,0],
rotate=90)
self.connect_inst(["RA_to_R_right{}".format(k), "Q", "gnd", "gnd"])
# add read transistors
self.read_nmos_left[k] = self.add_inst(name="read_nmos_left",
mod=self.read_nmos,
offset=[left_read_transistor_xpos,overlap_offset.x],
rotate=90)
self.connect_inst(["rbl{}".format(k), "rrow{}".format(k), "RA_to_R_left{}".format(k), "gnd"])
self.read_nmos_right[k] = self.add_inst(name="read_nmos_right",
mod=self.read_nmos,
offset=[right_read_transistor_xpos,overlap_offset.x],
rotate=90)
self.connect_inst(["rbl_bar{}".format(k), "rrow{}".format(k), "RA_to_R_right{}".format(k), "gnd"])
""" Add RROW lines """
# calculate RROW position
rrow_ypos = self.gnd_position.y \
- self.num_write*self.rowline_tile_height \
- (k+1)*self.rowline_tile_height
self.rrow_positions[k] = vector(self.leftmost_xpos, rrow_ypos)
# add pin for RROW
self.add_layout_pin(text="rrow{}".format(k),
layer="metal1",
offset=self.rrow_positions[k],
width=self.cell_width,
height=contact.m1m2.width)
""" Source of read-access transistor / GND connection """
# connect source of read-access transistor to GND (metal1 path)
offset = vector(self.read_access_nmos_left[k].get_pin("S").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.read_access_nmos_left[k].get_pin("S").bc(), offset])
offset = vector(self.read_access_nmos_right[k].get_pin("S").bc().x, self.gnd_position.y)
self.add_path("metal1", [self.read_access_nmos_right[k].get_pin("S").bc(), offset])
""" Drain of read transistor / RBL & RBL_bar connection """
# add metal1-to-metal2 contacts on top of read transistor drain pins for connection to RBL and RBL_bar
offsetL = self.read_nmos_left[k].get_pin("D").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offsetL,
rotate=90)
offsetR = self.read_nmos_right[k].get_pin("D").center()
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=offsetR,
rotate=90)
# add pins for RBL and RBL_bar, overlaid on drain contacts
self.rbl_positions[k] = vector(self.read_nmos_left[k].get_pin("D").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="rbl{}".format(k),
layer="metal2",
offset=self.rbl_positions[k],
width=drc["minwidth_metal2"],
height=self.cell_height)
self.rbl_bar_positions[k] = vector(self.read_nmos_right[k].get_pin("D").center().x - 0.5*drc["minwidth_metal2"], self.botmost_ypos)
self.add_layout_pin(text="rbl_bar{}".format(k),
layer="metal2",
offset=self.rbl_bar_positions[k],
width=drc["minwidth_metal2"],
height=self.cell_height)
""" Gate of read transistor / RROW connection """
# add poly-to-meltal2 contacts to connect gate of read transistors to RROW (contact next to gate)
contact_xpos = left_read_transistor_xpos - read_rotation_correct - drc["minwidth_poly"] - 0.5*contact.poly.width
contact_ypos = self.read_nmos_left[k].get_pin("G").lc().y
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_gate_contact)
contact_xpos = right_read_transistor_xpos + drc["minwidth_poly"] + 0.5*contact.poly.width
contact_ypos = self.read_nmos_right[k].get_pin("G").rc().y
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_gate_contact)
# connect gate of read transistor to contact (poly path)
self.add_path("poly", [self.read_nmos_left[k].get_pin("G").lc(), left_gate_contact])
self.add_path("poly", [self.read_nmos_right[k].get_pin("G").rc(), right_gate_contact])
# add metal1-to-metal2 contacts to RROW lines
left_rrow_contact = vector(left_gate_contact.x, self.rrow_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=left_rrow_contact,
rotate=90)
right_rrow_contact = vector(right_gate_contact.x, self.rrow_positions[k].y + 0.5*contact.m1m2.width)
self.add_contact_center(layers=("metal1", "via1", "metal2"),
offset=right_rrow_contact,
rotate=90)
# connect read transistor gate contacts to RROW contacts (metal2 path)
self.add_path("metal2", [left_gate_contact, left_rrow_contact])
self.add_path("metal2", [right_gate_contact, right_rrow_contact])
""" Gate of read-access transistor / storage connection """
# add poly-to-metal1 contacts to connect gate of read-access transistors to output of inverters (contact next to gate)
contact_xpos = left_read_transistor_xpos + drc["minwidth_poly"] + 0.5*contact.poly.width
contact_ypos = self.read_access_nmos_left[k].get_pin("G").rc().y
left_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=left_gate_contact)
contact_xpos = right_read_transistor_xpos - read_rotation_correct - drc["minwidth_poly"] - 0.5*contact.poly.width
contact_ypos = self.read_access_nmos_right[k].get_pin("G").lc().y
right_gate_contact = vector(contact_xpos, contact_ypos)
self.add_contact_center(layers=("poly", "contact", "metal1"),
offset=right_gate_contact)
# connect gate of read-access transistor to contact (poly path)
self.add_path("poly", [self.read_access_nmos_left[k].get_pin("G").rc(), left_gate_contact])
self.add_path("poly", [self.read_access_nmos_right[k].get_pin("G").lc(), right_gate_contact])
# connect contact to output of inverters (metal1 path)
# metal1 path must route over the read transistors (above drain of read transistor)
midL0 = vector(left_gate_contact.x, self.read_nmos_left[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
## continue metal1 path until inverter
midL1 = vector(self.inverter_nmos_left.get_pin("S").lc().x - 1.5*drc["minwidth_metal1"], self.read_nmos_left[0].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
## route down to be level with inverter output
midL2 = vector(self.inverter_nmos_left.get_pin("S").lc().x - 1.5*drc["minwidth_metal1"], self.cross_couple_upper_ypos)
## endpoint at drain of inverter
left_inverter_offset = vector(self.inverter_nmos_left.get_pin("D").center().x, self.cross_couple_upper_ypos)
self.add_path("metal1", [left_gate_contact, midL0, midL1, midL2, left_inverter_offset])
midR0 = vector(right_gate_contact.x, self.read_nmos_right[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midR1 = vector(self.inverter_nmos_right.get_pin("D").rc().x + 1.5*drc["minwidth_metal1"], self.read_nmos_right[k].get_pin("D").uc().y + 1.5*drc["minwidth_metal1"])
midR2 = vector(self.inverter_nmos_right.get_pin("D").rc().x + 1.5*drc["minwidth_metal1"], self.cross_couple_upper_ypos)
right_inverter_offset = vector(self.inverter_nmos_right.get_pin("S").center().x, self.cross_couple_upper_ypos)
self.add_path("metal1", [right_gate_contact, midR0, midR1, midR2, right_inverter_offset])
def extend_well(self):
""" extend pwell to encompass entire nmos region of the cell up to the height of the inverter nmos well """
offset = vector(self.leftmost_xpos, self.botmost_ypos)
well_height = -self.botmost_ypos + self.inverter_nmos.cell_well_height - drc["well_enclosure_active"]
self.add_rect(layer="pwell",
offset=offset,
width=self.cell_width,
height=well_height)
""" extend pwell over write transistors to the height of the write transistor well """
left_write_well_xpos = -(self.inverter_tile_width + self.write_to_write_spacing - drc["well_enclosure_active"])
right_write_well_xpos = self.inverter_tile_width + self.write_to_write_spacing - drc["well_enclosure_active"]
write_well_width = -(self.leftmost_xpos - left_write_well_xpos)
write_well_height = self.write_nmos.cell_well_width - drc["well_enclosure_active"]
offset = vector(left_write_well_xpos - write_well_width, 0)
self.add_rect(layer="pwell",
offset=offset,
width=write_well_width,
height=write_well_height)
offset = vector(right_write_well_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=write_well_width,
height=write_well_height)
""" extend pwell over the read transistors to the height of the read transistor well """
if(self.num_read > 0):
left_read_well_xpos = -(self.inverter_tile_width + self.num_write*self.write_tile_width + self.write_to_read_spacing - drc["well_enclosure_active"])
right_read_well_xpos = self.inverter_tile_width + self.num_write*self.write_tile_width + self.write_to_read_spacing - drc["well_enclosure_active"]
read_well_width = -(self.leftmost_xpos - left_read_well_xpos)
read_well_height = self.topmost_ypos
offset = vector(self.leftmost_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=read_well_width,
height=read_well_height)
offset = vector(right_read_well_xpos, 0)
self.add_rect(layer="pwell",
offset=offset,
width=read_well_width,
height=read_well_height)
""" extend nwell to encompass inverter_pmos """
inverter_well_xpos = -self.inverter_tile_width - drc["well_enclosure_active"]
inverter_well_ypos = self.inverter_nmos.active_height + self.inverter_gap - drc["well_enclosure_active"]
well_width = 2*self.inverter_pmos.active_width + 3*parameter["min_tx_size"] + 2*drc["well_enclosure_active"]
well_height = self.vdd_position.y - inverter_well_ypos + drc["well_enclosure_active"] + drc["minwidth_tx"]
offset = [inverter_well_xpos,inverter_well_ypos]
self.add_rect(layer="nwell",
offset=offset,
width=well_width,
height=well_height)
""" add well contacts """
# connect pimplants to gnd
offset = vector(0, self.gnd_position.y + 0.5*contact.well.second_layer_width)
self.add_contact_center(layers=("active", "contact", "metal1"),
offset=offset,
rotate=90)
self.add_rect_center(layer="pimplant",
offset=offset,
width=drc["minwidth_tx"],
height=drc["minwidth_tx"])
# connect nimplants to vdd
offset = vector(0, self.vdd_position.y + 0.5*drc["minwidth_metal1"])
self.add_contact_center(layers=("active", "contact", "metal1"),
offset=offset,
rotate=90)
self.add_rect_center(layer="nimplant",
offset=offset,
width=drc["minwidth_tx"],
height=drc["minwidth_tx"])
def add_fail(self):
# for failing drc when I want to observe the gds layout
frail_width = self.well_width = 2*drc["minwidth_metal1"]
frail_height = self.rail_height = drc["minwidth_metal1"]
fail_position = vector(-25*drc["minwidth_tx"], - 1.5 * drc["minwidth_metal1"] - 0.5 * frail_height) # for tiling purposes
self.add_layout_pin(text="gnd",
layer="metal1",
offset=fail_position,
width=frail_width,
height=frail_height)
fail_position2 = vector(-25*drc["minwidth_tx"], - 0.5 * drc["minwidth_metal1"])
self.add_layout_pin(text="gnd2",
layer="metal1",
offset=fail_position2,
width=frail_width,
height=frail_height)