OpenRAM/compiler/characterizer/functional.py

279 lines
13 KiB
Python
Raw Normal View History

import sys,re,shutil
from design import design
import debug
import math
import tech
import random
from .stimuli import *
from .charutils import *
import utils
from globals import OPTS
from .simulation import simulation
class functional(simulation):
"""
Functions to write random data values to a random address then read them back and check
for successful SRAM operation.
"""
def __init__(self, sram, spfile, corner):
simulation.__init__(self, sram, spfile, corner)
self.set_corner(corner)
self.set_spice_constants()
self.set_stimulus_variables()
self.create_signal_names()
# Number of checks can be changed
self.num_cycles = 2
self.stored_words = {}
self.write_check = []
self.read_check = []
def run(self):
# Generate a random sequence of reads and writes
self.write_random_memory_sequence()
2018-10-01 06:20:01 +02:00
# Run SPICE simulation
self.write_functional_stimulus()
self.stim.run_sim()
# read DOUT values from SPICE simulation. If the values do not fall within the noise margins, return the error.
(success, error) = self.read_stim_results()
if not success:
return (0, error)
# Check read values with written values. If the values do not match, return an error.
return self.check_stim_results()
def write_random_memory_sequence(self):
rw_ops = ["noop", "write", "read"]
w_ops = ["noop", "write"]
r_ops = ["noop", "read"]
rw_read_din_data = "0"*self.word_size
check = 0
# First cycle idle
comment = self.gen_cycle_comment("noop", "0"*self.word_size, "0"*self.addr_size, 0, self.t_current)
self.add_noop_all_ports(comment, "0"*self.addr_size, "0"*self.word_size)
# Write at least once
addr = self.gen_addr()
word = self.gen_data()
comment = self.gen_cycle_comment("write", word, addr, 0, self.t_current)
self.add_write(comment, addr, word, 0)
self.stored_words[addr] = word
# Read at least once. For multiport, it is important that one read cycle uses all RW and R port to read from the same address simultaniously.
# This will test the viablilty of the transistor sizing in the bitcell.
for port in range(self.total_ports):
if self.port_id[port] == "w":
self.add_noop_one_port("0"*self.addr_size, "0"*self.word_size, port)
else:
comment = self.gen_cycle_comment("read", word, addr, port, self.t_current)
self.add_read_one_port(comment, addr, rw_read_din_data, port)
self.write_check.append([word, "{0}{1}".format(self.dout_name,port), self.t_current+self.period, check])
check += 1
self.cycle_times.append(self.t_current)
self.t_current += self.period
2018-10-01 06:20:01 +02:00
# Perform a random sequence of writes and reads on random ports, using random addresses and random words
for i in range(self.num_cycles):
w_addrs = []
for port in range(self.total_ports):
if self.port_id[port] == "rw":
op = random.choice(rw_ops)
elif self.port_id[port] == "w":
op = random.choice(w_ops)
2018-10-01 06:20:01 +02:00
else:
op = random.choice(r_ops)
if op == "noop":
addr = "0"*self.addr_size
word = "0"*self.word_size
self.add_noop_one_port(addr, word, port)
elif op == "write":
addr = self.gen_addr()
word = self.gen_data()
# two ports cannot write to the same address
if addr in w_addrs:
self.add_noop_one_port("0"*self.addr_size, "0"*self.word_size, port)
else:
comment = self.gen_cycle_comment("write", word, addr, port, self.t_current)
self.add_write_one_port(comment, addr, word, port)
self.stored_words[addr] = word
w_addrs.append(addr)
else:
(addr,word) = random.choice(list(self.stored_words.items()))
# cannot read from an address that is currently being written to
if addr in w_addrs:
self.add_noop_one_port("0"*self.addr_size, "0"*self.word_size, port)
else:
comment = self.gen_cycle_comment("read", word, addr, port, self.t_current)
self.add_read_one_port(comment, addr, rw_read_din_data, port)
self.write_check.append([word, "{0}{1}".format(self.dout_name,port), self.t_current+self.period, check])
check += 1
2018-10-01 06:20:01 +02:00
self.cycle_times.append(self.t_current)
self.t_current += self.period
# Last cycle idle needed to correctly measure the value on the second to last clock edge
comment = self.gen_cycle_comment("noop", "0"*self.word_size, "0"*self.addr_size, 0, self.t_current)
self.add_noop_all_ports(comment, "0"*self.addr_size, "0"*self.word_size)
2018-10-01 06:20:01 +02:00
def read_stim_results(self):
# Extrat DOUT values from spice timing.lis
for (word, dout_port, eo_period, check) in self.write_check:
sp_read_value = ""
2018-10-01 06:20:01 +02:00
for bit in range(self.word_size):
value = parse_spice_list("timing", "v{0}.{1}ck{2}".format(dout_port.lower(),bit,check))
if value > 0.88 * self.vdd_voltage:
sp_read_value = "1" + sp_read_value
elif value < 0.12 * self.vdd_voltage:
sp_read_value = "0" + sp_read_value
else:
error ="FAILED: {0}_{1} value {2} at time {3}n does not fall within noise margins <{4} or >{5}.".format(dout_port,
bit,
value,
eo_period,
0.12*self.vdd_voltage,
0.88*self.vdd_voltage)
return (0, error)
self.read_check.append([sp_read_value, dout_port, eo_period, check])
return (1, "SUCCESS")
def check_stim_results(self):
for i in range(len(self.write_check)):
if self.write_check[i][0] != self.read_check[i][0]:
error = "FAILED: {0} value {1} does not match written value {2} read during cycle {3} at time {4}n".format(self.read_check[i][1],
self.read_check[i][0],
self.write_check[i][0],
int((self.read_check[i][2]-self.period)/self.period),
self.read_check[i][2])
return(0, error)
return(1, "SUCCESS")
def gen_data(self):
2018-10-01 06:20:01 +02:00
""" Generates a random word to write. """
rand = random.randint(0,(2**self.word_size)-1)
data_bits = self.convert_to_bin(rand,False)
return data_bits
def gen_addr(self):
2018-10-01 06:20:01 +02:00
""" Generates a random address value to write to. """
rand = random.randint(0,(2**self.addr_size)-1)
addr_bits = self.convert_to_bin(rand,True)
return addr_bits
def get_data(self):
2018-10-01 06:20:01 +02:00
""" Gets an available address and corresponding word. """
# Currently unused but may need later depending on how the functional test develops
addr = random.choice(self.stored_words.keys())
word = self.stored_words[addr]
return (addr,word)
def convert_to_bin(self,value,is_addr):
2018-10-01 06:20:01 +02:00
""" Converts addr & word to usable binary values. """
new_value = str.replace(bin(value),"0b","")
if(is_addr):
expected_value = self.addr_size
else:
expected_value = self.word_size
for i in range (expected_value - len(new_value)):
new_value = "0" + new_value
2018-10-01 06:20:01 +02:00
#print("Binary Conversion: {} to {}".format(value, new_value))
return new_value
def create_signal_names(self):
self.addr_name = "A"
self.din_name = "DIN"
self.dout_name = "DOUT"
def write_functional_stimulus(self):
2018-10-01 06:20:01 +02:00
""" Writes SPICE stimulus. """
temp_stim = "{0}/stim.sp".format(OPTS.openram_temp)
self.sf = open(temp_stim,"w")
self.sf.write("* Functional test stimulus file for {}ns period\n\n".format(self.period))
self.stim = stimuli(self.sf,self.corner)
#Write include statements
self.sram_sp_file = "{}sram.sp".format(OPTS.openram_temp)
shutil.copy(self.sp_file, self.sram_sp_file)
self.stim.write_include(self.sram_sp_file)
#Write Vdd/Gnd statements
self.sf.write("\n* Global Power Supplies\n")
self.stim.write_supply()
#Instantiate the SRAM
self.sf.write("\n* Instantiation of the SRAM\n")
self.stim.inst_sram(sram=self.sram,
port_signal_names=(self.addr_name,self.din_name,self.dout_name),
port_info=(self.total_ports, self.write_index, self.read_index),
abits=self.addr_size,
dbits=self.word_size,
sram_name=self.name)
# Add load capacitance to each of the read ports
self.sf.write("\n* SRAM output loads\n")
for port in range(self.total_read):
for bit in range(self.word_size):
sig_name="{0}{1}_{2} ".format(self.dout_name, self.read_index[port], bit)
self.sf.write("CD{0}{1} {2} 0 {3}f\n".format(self.read_index[port], bit, sig_name, self.load))
# Write debug comments to stim file
self.sf.write("\n\n * Sequence of operations\n")
for comment in self.fn_cycle_comments:
self.sf.write("*{}\n".format(comment))
# Generate data input bits
self.sf.write("\n* Generation of data and address signals\n")
for port in range(self.total_write):
for bit in range(self.word_size):
sig_name="{0}{1}_{2} ".format(self.din_name, port, bit)
self.stim.gen_pwl(sig_name, self.cycle_times, self.data_values[port][bit], self.period, self.slew, 0.05)
# Generate address bits
2018-10-01 06:20:01 +02:00
for port in range(self.total_ports):
for bit in range(self.addr_size):
sig_name="{0}{1}_{2} ".format(self.addr_name, port, bit)
self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[port][bit], self.period, self.slew, 0.05)
# Generate control signals
self.sf.write("\n * Generation of control signals\n")
for port in range(self.total_ports):
self.stim.gen_pwl("CSB{}".format(port), self.cycle_times , self.csb_values[port], self.period, self.slew, 0.05)
for port in range(self.num_rw_ports):
self.stim.gen_pwl("WEB{}".format(port), self.cycle_times , self.web_values[port], self.period, self.slew, 0.05)
# Generate CLK signals
for port in range(self.total_ports):
self.stim.gen_pulse(sig_name="{0}{1}".format(tech.spice["clk"], port),
v1=self.gnd_voltage,
v2=self.vdd_voltage,
offset=self.period,
period=self.period,
t_rise=self.slew,
t_fall=self.slew)
# Generate DOUT value measurements
self.sf.write("\n * Generation of dout measurements\n")
for (word, dout_port, eo_period, check) in self.write_check:
t_intital = eo_period - 0.01*self.period
t_final = eo_period + 0.01*self.period
for bit in range(self.word_size):
self.stim.gen_meas_value(meas_name="V{0}_{1}ck{2}".format(dout_port,bit,check),
dout="{0}_{1}".format(dout_port,bit),
t_intital=t_intital,
t_final=t_final)
self.stim.write_control(self.cycle_times[-1] + self.period)
self.sf.close()