ac analysis in graphs (mag + phase, log axis)

This commit is contained in:
Stefan Frederik 2022-02-02 18:33:16 +01:00
parent 5f82f63580
commit 008b289e4f
10 changed files with 938 additions and 44 deletions

View File

@ -320,7 +320,7 @@ static int waves_callback(int event, int mx, int my, KeySym key, int button, int
if(xctx->graph_flags & 64) {
if( POINTINSIDE(xctx->mousex, xctx->mousey, gr->x1, gr->y1, gr->x2, gr->y2)) {
char sx[100], sy[100];
double yval;
double xval, yval;
if(gr->digital) {
double deltag = gr->gy2 - gr->gy1;
double s1 = DIG_NWAVES; /* 1/DIG_NWAVES waveforms fit in graph if unscaled vertically */
@ -333,8 +333,18 @@ static int waves_callback(int event, int mx, int my, KeySym key, int button, int
} else {
yval = G_Y(xctx->mousey);
}
my_snprintf(sx, S(sx), "%.4g", G_X(xctx->mousex));
my_snprintf(sy, S(sy), "%.4g", yval);
xval = G_X(xctx->mousex);
if(xctx->graph_sim_type == 3) xval = pow(10, xval);
if(gr->unitx != 0)
my_snprintf(sx, S(sx), "%.4g%c", gr->unitx * xval, gr->unitx_suffix);
else
my_snprintf(sx, S(sx), "%.4g", xval);
if(gr->unitx != 0)
my_snprintf(sy, S(sy), "%.4g%c", gr->unity * yval, gr->unity_suffix);
else
my_snprintf(sy, S(sy), "%.4g", yval);
tclvareval("set measure_text \"y=", sy, "\nx=", sx, "\"", NULL);
tcleval("graph_show_measure");

View File

@ -1528,7 +1528,7 @@ void drawtemprect(GC gc, int what, double rectx1,double recty1,double rectx2,dou
* 112 --> 100
* 6300 --> 10000
*/
static double axis_increment(double a, double b, int div)
static double axis_increment(double a, double b, int div, int freq)
{
double scale;
double sign;
@ -1545,10 +1545,16 @@ static double axis_increment(double a, double b, int div)
delta = fabs(delta);
scale = pow(10.0, floor(log10(delta)));
scaled_delta = delta / scale; /* 1 <= scaled_delta < 10 */
if(scaled_delta > 5.5) scaled_delta = 10.0;
dbg(1, "a=%g, b=%g, scale=%g, scaled_delta=%g --> ", a, b, scale, scaled_delta);
if(freq && scaled_delta > 2.5) scaled_delta = 10.0;
else if(freq && scaled_delta > 1.9) scaled_delta = 5.0;
else if(freq && scaled_delta > 1.4) scaled_delta = 2.0;
else if(freq) scaled_delta = 1.0;
else if(scaled_delta > 5.5) scaled_delta = 10.0;
else if(scaled_delta > 2.2) scaled_delta = 5.0;
else if(scaled_delta > 1.1) scaled_delta = 2.0;
else scaled_delta = 1.0;
dbg(1, "scaled_delta = %g, scaled_delta * scale * sign=%g\n", scaled_delta, scaled_delta * scale * sign);
return scaled_delta * scale * sign;
}
@ -1810,12 +1816,16 @@ static void draw_graph_grid(Graph_ctx *gr)
bbox(ADD, gr->rx1, gr->ry1, gr->rx2, gr->ry2);
bbox(SET_INSIDE, 0.0, 0.0, 0.0, 0.0);
/* vertical grid lines */
deltax = axis_increment(gr->gx1, gr->gx2, gr->divx);
deltax = axis_increment(gr->gx1, gr->gx2, gr->divx, (xctx->graph_sim_type == 3));
startx = axis_start(gr->gx1, deltax, gr->divx);
for(j = -1;; j++) { /* start one interval before to allow sub grids at beginning */
wx = startx + j * deltax;
if(gr->subdivx > 0) for(k = 1; k <=gr->subdivx; k++) {
double subwx = wx + k * deltax / (gr->subdivx + 1);
double subwx;
if(xctx->graph_sim_type == 3) {
subwx = wx + deltax * log10(1.0 + (double)k * 9.0 / ((double)gr->subdivx + 1.0));
} else
subwx = wx + deltax * (double)k / ((double)gr->subdivx + 1.0);
if(!axis_within_range(subwx, gr->gx1, gr->gx2)) continue;
if(axis_end(subwx, deltax, gr->gx2)) break;
drawline(GRIDLAYER, ADD, W_X(subwx), W_Y(gr->gy2), W_X(subwx), W_Y(gr->gy1), dash_sizey);
@ -1826,7 +1836,11 @@ static void draw_graph_grid(Graph_ctx *gr)
drawline(GRIDLAYER, ADD, W_X(wx), W_Y(gr->gy2), W_X(wx), W_Y(gr->gy1), dash_sizey);
drawline(GRIDLAYER, ADD, W_X(wx), W_Y(gr->gy1), W_X(wx), W_Y(gr->gy1) + mark_size, 0); /* axis marks */
/* X-axis labels */
draw_string(3, NOW, dtoa(wx * gr->unitx), 0, 0, 1, 0, W_X(wx), gr->y2 + mark_size + 5 * gr->txtsizex,
if(xctx->graph_sim_type == 3)
draw_string(3, NOW, dtoa(pow(10, wx ) * gr->unitx), 0, 0, 1, 0, W_X(wx), gr->y2 + mark_size + 5 * gr->txtsizex,
gr->txtsizex, gr->txtsizex);
else
draw_string(3, NOW, dtoa(wx * gr->unitx), 0, 0, 1, 0, W_X(wx), gr->y2 + mark_size + 5 * gr->txtsizex,
gr->txtsizex, gr->txtsizex);
}
/* first and last vertical box delimiters */
@ -1834,7 +1848,7 @@ static void draw_graph_grid(Graph_ctx *gr)
drawline(GRIDLAYER, ADD, W_X(gr->gx2), W_Y(gr->gy2), W_X(gr->gx2), W_Y(gr->gy1), 0);
/* horizontal grid lines */
if(!gr->digital) {
deltay = axis_increment(gr->gy1, gr->gy2, gr->divy);
deltay = axis_increment(gr->gy1, gr->gy2, gr->divy, 0);
starty = axis_start(gr->gy1, deltay, gr->divy);
for(j = -1;; j++) { /* start one interval before to allow sub grids at beginning */
wy = starty + j * deltay;
@ -1922,8 +1936,13 @@ void setup_graph_data(int i, const int flags, int skip, Graph_ctx *gr)
gr->unitx_suffix = val[0];
gr->unitx = get_unit(val);
val = get_tok_value(r->prop_ptr,"unity",0);
gr->unity_suffix = val[0];
gr->unity = get_unit(val);
if(xctx->graph_sim_type == 3) { /* AC */
gr->unity_suffix = '1';
gr->unity = 1.0;
} else {
gr->unity_suffix = val[0];
gr->unity = get_unit(val);
}
val = get_tok_value(r->prop_ptr,"subdivx",0);
if(val[0]) gr->subdivx = atoi(val);
val = get_tok_value(r->prop_ptr,"subdivy",0);
@ -2020,6 +2039,7 @@ static void draw_cursor(double active_cursorx, double other_cursorx, int cursor_
if(xx >= gr->x1 && xx <= gr->x2) {
drawline(cursor_color, NOW, xx, gr->ry1, xx, gr->ry2, 1);
if(xctx->graph_sim_type == 3) active_cursorx = pow(10, active_cursorx);
if(gr->unitx != 1.0)
my_snprintf(tmpstr, S(tmpstr), "%.4g%c", gr->unitx * active_cursorx , gr->unitx_suffix);
else
@ -2046,6 +2066,7 @@ static void draw_cursor_difference(Graph_ctx *gr)
double yy = gr->ry2 - 1;
double tmpd;
double yline;
if(xctx->graph_sim_type == 3) return;
if(gr->unitx != 1.0)
my_snprintf(tmpstr, S(tmpstr), "%.4g%c", gr->unitx * diffw , gr->unitx_suffix);
else
@ -2085,7 +2106,13 @@ static void draw_graph_variables(int wcnt, int wave_color, int n_nodes, int swee
if(gr->unity != 1.0) my_snprintf(tmpstr, S(tmpstr), "%s[%c]", find_nth(ntok, ',', 1), gr->unity_suffix);
else my_snprintf(tmpstr, S(tmpstr), "%s",find_nth(ntok, ',', 1));
} else {
if(gr->unity != 1.0) my_snprintf(tmpstr, S(tmpstr), "%s[%c]", ntok, gr->unity_suffix);
if(xctx->graph_sim_type == 3) {
if(strstr(ntok, "ph(") == ntok)
my_snprintf(tmpstr, S(tmpstr), "%s[Phase]", ntok);
else
my_snprintf(tmpstr, S(tmpstr), "%s[dB]", ntok);
}
else if(gr->unity != 1.0) my_snprintf(tmpstr, S(tmpstr), "%s[%c]", ntok, gr->unity_suffix);
else my_snprintf(tmpstr, S(tmpstr), "%s", ntok);
}
if(gr->digital) {

View File

@ -222,16 +222,15 @@ unsigned char *base64_decode(const char *data, const size_t input_length, size_t
* data layout in memory arranged to maximize cache locality
* when looking up data
*/
static void read_binary_block(FILE *fd, int sim_type)
static void read_binary_block(FILE *fd)
{
int p, v;
double *tmp;
size_t size = 0;
int offset = 0;
int m = 0;
double val;
int ac = 0;
if(sim_type == 3) m = 1; /* AC analysis, complex numbers twice the size */
if(xctx->graph_sim_type == 3) ac = 1; /* AC analysis, complex numbers twice the size */
for(p = 0 ; p < xctx->graph_datasets; p++) {
size += xctx->graph_nvars * xctx->graph_npoints[p];
@ -239,7 +238,7 @@ static void read_binary_block(FILE *fd, int sim_type)
}
/* read buffer */
tmp = my_calloc(1405, xctx->graph_nvars, (sizeof(double *) << m));
tmp = my_calloc(1405, xctx->graph_nvars, (sizeof(double *) ));
/* allocate storage for binary block */
if(!xctx->graph_values) xctx->graph_values = my_calloc(118, xctx->graph_nvars, sizeof(SPICE_DATA *));
for(p = 0 ; p < xctx->graph_nvars; p++) {
@ -248,13 +247,19 @@ static void read_binary_block(FILE *fd, int sim_type)
}
/* read binary block */
for(p = 0; p < xctx->graph_npoints[xctx->graph_datasets]; p++) {
if(fread(tmp, (sizeof(double) << m), xctx->graph_nvars, fd) != xctx->graph_nvars) {
if(fread(tmp, sizeof(double) , xctx->graph_nvars, fd) != xctx->graph_nvars) {
dbg(0, "Warning: binary block is not of correct size\n");
}
/* assign to xschem struct, memory aligned per variable, for cache locality */
if(m) for(v = 0; v < xctx->graph_nvars; v++) { /*AC analysis: calculate magnitude */
xctx->graph_values[v][offset + p] =
sqrt( tmp[v << m] * tmp[v << m] + tmp[(v << m) + 1] * tmp[(v << m) + 1]);
if(ac) {
for(v = 0; v < xctx->graph_nvars; v += 2) { /*AC analysis: calculate magnitude */
if( v == 0 )
xctx->graph_values[v][offset + p] = log10(sqrt( tmp[v] * tmp[v] + tmp[v + 1] * tmp[v + 1]));
else
xctx->graph_values[v][offset + p] = 20 * log10(sqrt(tmp[v] * tmp[v] + tmp[v + 1] * tmp[v + 1]));
xctx->graph_values[v + 1] [offset + p] = atan2(tmp[v + 1], tmp[v]) * 180.0 / XSCH_PI;
}
}
else for(v = 0; v < xctx->graph_nvars; v++) {
xctx->graph_values[v][offset + p] = tmp[v];
@ -291,16 +296,17 @@ static int read_dataset(FILE *fd)
int variables = 0, i, done_points = 0;
char line[PATH_MAX], varname[PATH_MAX];
char *ptr;
int sim_type = 0; /* 1: transient, 2: dc, 4: ... */
int done_header = 0;
int exit_status = 0;
xctx->graph_sim_type = 0;
while((ptr = fgets(line, sizeof(line), fd)) ) {
/* after this line comes the binary blob made of nvars * npoints * sizeof(double) bytes */
if(!strcmp(line, "Binary:\n")) {
int npoints = xctx->graph_npoints[xctx->graph_datasets];
if(sim_type) {
if(xctx->graph_sim_type) {
done_header = 1;
read_binary_block(fd, sim_type);
read_binary_block(fd);
dbg(1, "read_dataset(): read binary block, nvars=%d npoints=%d\n", xctx->graph_nvars, npoints);
xctx->graph_datasets++;
exit_status = 1;
@ -311,19 +317,19 @@ static int read_dataset(FILE *fd)
done_points = 0;
}
else if(!strncmp(line, "Plotname: Transient Analysis", 28)) {
if(sim_type && sim_type != 1) sim_type = 0;
else sim_type = 1;
if(xctx->graph_sim_type && xctx->graph_sim_type != 1) xctx->graph_sim_type = 0;
else xctx->graph_sim_type = 1;
}
else if(!strncmp(line, "Plotname: DC transfer characteristic", 36)) {
if(sim_type && sim_type != 2) sim_type = 0;
else sim_type = 2;
if(xctx->graph_sim_type && xctx->graph_sim_type != 2) xctx->graph_sim_type = 0;
else xctx->graph_sim_type = 2;
}
else if(!strncmp(line, "Plotname: AC Analysis", 21)) {
if(sim_type && sim_type != 3) sim_type = 0;
else sim_type = 3;
if(xctx->graph_sim_type && xctx->graph_sim_type != 3) xctx->graph_sim_type = 0;
else xctx->graph_sim_type = 3;
}
else if(!strncmp(line, "Plotname:", 9)) {
sim_type = 0;
xctx->graph_sim_type = 0;
}
/* points and vars are needed for all sections (also ones we are not interested in)
* to skip binary blobs */
@ -335,6 +341,7 @@ static int read_dataset(FILE *fd)
}
else if(!strncmp(line, "No. Variables:", 14)) {
sscanf(line, "No. Variables: %d", &xctx->graph_nvars);
if(xctx->graph_sim_type == 3) xctx->graph_nvars <<= 1; /* mag and phase */
}
else if(!done_points && !strncmp(line, "No. Points:", 11)) {
my_realloc(1415, &xctx->graph_npoints, (xctx->graph_datasets+1) * sizeof(int));
@ -344,14 +351,24 @@ static int read_dataset(FILE *fd)
/* get the list of lines with index and node name */
if(!xctx->graph_names) xctx->graph_names = my_calloc(426, xctx->graph_nvars, sizeof(char *));
sscanf(line, "%d %s", &i, varname); /* read index and name of saved waveform */
xctx->graph_names[i] = my_malloc(415, strlen(varname) + 1);
strcpy(xctx->graph_names[i], varname);
if(xctx->graph_sim_type == 3) { /* AC */
my_strcat(414, &xctx->graph_names[i << 1], varname);
int_hash_lookup(xctx->raw_table, xctx->graph_names[i << 1], (i << 1), XINSERT_NOREPLACE);
if(strstr(varname, "v(") == varname || strstr(varname, "i(") == varname ||
strstr(varname, "V(") == varname || strstr(varname, "I(") == varname)
my_mstrcat(540, &xctx->graph_names[(i << 1) + 1], "ph(", varname + 2, NULL);
else
my_mstrcat(540, &xctx->graph_names[(i << 1) + 1], varname, "_ph", NULL);
int_hash_lookup(xctx->raw_table, xctx->graph_names[(i << 1) + 1], (i << 1) + 1, XINSERT_NOREPLACE);
} else {
my_strcat(541, &xctx->graph_names[i], varname);
int_hash_lookup(xctx->raw_table, xctx->graph_names[i], i, XINSERT_NOREPLACE);
}
/* use hash table to store index number of variables */
int_hash_lookup(xctx->raw_table, xctx->graph_names[i], i, XINSERT_NOREPLACE);
dbg(1, "read_dataset(): get node list -> names[%d] = %s\n", i, xctx->graph_names[i]);
}
/* after this line comes the list of indexes and associated nodes */
if(sim_type && !strncmp(line, "Variables:", 10)) {
if(xctx->graph_sim_type && !strncmp(line, "Variables:", 10)) {
variables = 1 ;
}
}

View File

@ -447,6 +447,7 @@ static void alloc_xschem_data(const char *top_path, const char *win_path)
xctx->graph_bottom = 0;
xctx->graph_left = 0;
xctx->graph_lastsel = -1;
xctx->graph_sim_type = 0; /* type of sim, 1: Tran, 2: Dc, 3: Ac */
xctx->graph_struct.hilight_wave[0] = -1; /* graph index of hilight wave */
xctx->graph_struct.hilight_wave[1] = -1; /* index of wave */
xctx->raw_schname = NULL;

View File

@ -900,6 +900,7 @@ typedef struct {
int graph_bottom;
int graph_left;
int graph_lastsel; /* last graph that was clicked (selected) */
int graph_sim_type; /* type of sim, 1: Tran, 2: Dc, 3: Ac */
Int_hashentry **raw_table;
char *raw_schname;
/* */

View File

@ -1449,6 +1449,7 @@ proc graph_get_signal_list {siglist pattern } {
if {$graph_sort} {set direction {-increasing}}
set result {}
set siglist [join [lsort $direction -dictionary $siglist] \n]
# just check if pattern is a valid regexp
set err [catch {regexp $pattern {12345}} res]
if {$err} {set pattern {}}
foreach i $siglist {

View File

@ -1457,3 +1457,4 @@ xwtAgA9ve8fHC0Dod8blIpQLQJBdgRgxavQ/AAAAgEslwD6d7SiMdxwqP41maeirFRxABH/Rb+tVM0DO
cwtAyKwqggMC8z8AAABAXz/APixDHOviNio/cIyWTt0GHEAHmaX3NW0zQHJvU5F/bTNA3V5CW3kqoL85tJeeXUIJQIB/waNeQglAcFfF8JIdC0DY7tjwBPjxPwAAALCc
UsA+"
}
C {test_ac.sym} 160 -90 0 0 {name=x15}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,827 @@
v {xschem version=3.0.0 file_version=1.2 }
G {}
K {}
V {}
S {}
E {}
B 2 1030 -330 1570 -130 {flags=graph
y1=-5.7
y2=44
ypos1=0
ypos2=2
divy=10
subdivy=1
unity=1
x1=3
x2=10
subdivx=8
node=diffout
color=4
unitx=M
divx=10
dataset=1}
B 2 1030 -550 1570 -350 {flags=graph
y1=-180
y2=180
ypos1=0
ypos2=2
divy=10
subdivy=1
unity=1
x1=3
x2=10
subdivx=8
node=ph(diffout)
color=7
unitx=M
divx=10
dataset=1}
T {CMOS DIFFERENTIAL AMPLIFIER
EXAMPLE} 40 -680 0 0 0.4 0.4 {}
T {Feedback
network
loading} 870 -490 0 0 0.4 0.4 {}
T {gain AC plot at 1uA, 10uA, 100uA bias current} 1030 -120 0 0 0.4 0.4 {layer=5}
N 30 -240 30 -210 {lab=VCC}
N 30 -240 60 -240 {lab=VCC}
N 190 -230 190 -180 {lab=GN}
N 190 -180 230 -180 {lab=GN}
N 230 -180 230 -150 {lab=GN}
N 230 -150 410 -150 {lab=GN}
N 450 -220 450 -180 {lab=D}
N 380 -250 400 -250 {lab=0}
N 500 -250 520 -250 {lab=0}
N 380 -220 520 -220 {lab=D}
N 320 -250 340 -250 {lab=PLUS}
N 560 -250 580 -250 {lab=MINUS}
N 520 -400 570 -400 {lab=VCC}
N 330 -400 380 -400 {lab=VCC}
N 420 -400 480 -400 {lab=#net1}
N 420 -400 420 -370 {lab=#net1}
N 380 -370 420 -370 {lab=#net1}
N 380 -370 380 -280 {lab=#net1}
N 520 -370 520 -280 {lab=DIFFOUT}
N 520 -470 520 -430 {lab=VCC}
N 380 -470 520 -470 {lab=VCC}
N 380 -470 380 -430 {lab=VCC}
N 450 -490 450 -470 {lab=VCC}
N 520 -330 900 -330 {lab=DIFFOUT}
N 30 -370 30 -340 {lab=PLUS}
N 30 -370 60 -370 {lab=PLUS}
N 450 -120 450 -90 {lab=0}
N 450 -120 470 -120 {lab=0}
N 470 -150 470 -120 {lab=0}
N 450 -150 470 -150 {lab=0}
N 190 -120 190 -90 {lab=0}
N 170 -120 190 -120 {lab=0}
N 170 -150 170 -120 {lab=0}
N 170 -150 190 -150 {lab=0}
N 830 -600 830 -580 {lab=DIFFOUT_L}
N 830 -520 830 -500 {lab=0}
N 750 -250 750 -220 { lab=#net2}
N 750 -160 750 -140 { lab=0}
N 580 -250 580 -230 { lab=MINUS}
N 720 -230 750 -230 { lab=#net2}
N 650 -600 650 -580 {lab=D_L}
N 650 -520 650 -500 {lab=0}
N 790 -470 790 -450 { lab=DIFFOUT_L}
N 790 -390 790 -370 { lab=D_L}
N 830 -420 850 -420 { lab=DIFFOUT}
N 850 -420 850 -330 { lab=DIFFOUT}
N 580 -230 660 -230 { lab=MINUS}
N 890 -330 890 -250 { lab=DIFFOUT}
N 850 -250 890 -250 { lab=DIFFOUT}
N 750 -250 790 -250 { lab=#net2}
C {lab_pin.sym} 30 -150 0 0 {name=p17 lab=0 net_name=true}
C {title.sym} 160 -30 0 0 {name=l1 author="Stefan Schippers" net_name=true}
C {nmos4.sym} 430 -150 0 0 {name=m1 model=cmosn w=5u l=2u m=1 net_name=true}
C {pmos4.sym} 500 -400 0 0 {name=mtop_2nd model=cmosp w=5u l=2u m=1 net_name=true}
C {vsource.sym} 30 -180 0 0 {name=VVCC value=5 net_name=true}
C {lab_pin.sym} 450 -90 0 0 {name=p1 lab=0 net_name=true}
C {lab_pin.sym} 60 -240 0 1 {name=p2 lab=VCC net_name=true}
C {nmos4.sym} 210 -150 0 1 {name=m3 model=cmosn w=5u l=2u m=1 net_name=true}
C {lab_pin.sym} 190 -90 0 0 {name=p3 lab=0 net_name=true}
C {isource.sym} 190 -260 0 0 {name=IBIAS value=IBIAS net_name=true}
C {lab_pin.sym} 190 -290 0 0 {name=p4 lab=0 net_name=true}
C {nmos4.sym} 360 -250 0 0 {name=m4 model=cmosn w=10u l=1u m=1 net_name=true}
C {lab_pin.sym} 400 -250 0 1 {name=p5 lab=0 net_name=true}
C {nmos4.sym} 540 -250 0 1 {name=m5 model=cmosn w=10u l=1u m=1 net_name=true}
C {lab_pin.sym} 500 -250 0 0 {name=p0 lab=0 net_name=true}
C {lab_pin.sym} 570 -400 0 1 {name=p6 lab=VCC net_name=true}
C {pmos4.sym} 400 -400 0 1 {name=mtop_1st model=cmosp w=5u l=2u m=1 net_name=true}
C {lab_pin.sym} 330 -400 0 0 {name=p7 lab=VCC net_name=true}
C {lab_pin.sym} 450 -490 0 0 {name=p8 lab=VCC net_name=true}
C {lab_pin.sym} 320 -250 0 0 {name=p9 lab=PLUS net_name=true}
C {lab_pin.sym} 580 -250 0 1 {name=p10 lab=MINUS net_name=true}
C {lab_pin.sym} 900 -330 0 1 {name=p11 lab=DIFFOUT net_name=true}
C {lab_pin.sym} 190 -200 0 0 {name=p13 lab=GN net_name=true}
C {lab_pin.sym} 30 -280 0 0 {name=p14 lab=0 net_name=true}
C {vsource.sym} 30 -310 0 0 {name=VPLUS value="dc 2.5"
}
C {lab_pin.sym} 60 -370 0 1 {name=p15 lab=PLUS net_name=true}
C {code.sym} 10 -550 0 0 {name=STIMULI
only_toplevel=true
value="
** ngspice
.temp 30
** models are generally not free: you must download
** SPICE models for active devices and put them into the below
** referenced file in netlist/simulation directory.
** http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s00/ASSIGNMENTS/TSMC035-n96g-params.txt
.include \\"models_cmos_example.txt\\"
.param IBIAS=1u
.control
let C=180/PI
ac dec 10 1000 10G
write test_ac.raw
set appendwrite
alter IBIAS=10u
ac dec 10 1000 10G
write test_ac.raw
alter IBIAS=100u
ac dec 10 1000 10G
write test_ac.raw
* plot vdb(ac1.diffout)
* plot C*phase(ac1.diffout)
plot vdb(ac2.diffout)
plot C*phase(ac2.diffout)
* plot vdb(ac3.diffout)
* plot C*phase(ac3.diffout)
.endc
** ngspice
* .save all
** xyce, not needed if -r given om cmdline
* .print tran format=raw v(diffout) v(plus) v(minus)
" net_name=true}
C {lab_pin.sym} 790 -570 0 0 {name=l18 lab=DIFFOUT}
C {lab_pin.sym} 790 -530 0 0 {name=l19 lab=0}
C {lab_pin.sym} 830 -500 0 0 {name=l20 lab=0}
C {lab_pin.sym} 830 -600 0 1 {name=l21 lab=DIFFOUT_L}
C {vcvs.sym} 830 -550 0 0 {name=e1 value=1}
C {lab_pin.sym} 750 -140 0 0 {name=p12 lab=0 net_name=true}
C {lab_pin.sym} 450 -200 0 0 {name=p16 lab=D}
C {lab_pin.sym} 610 -570 0 0 {name=l2 lab=D}
C {lab_pin.sym} 610 -530 0 0 {name=l3 lab=0}
C {lab_pin.sym} 650 -500 0 0 {name=l4 lab=0}
C {lab_pin.sym} 650 -600 0 1 {name=l5 lab=D_L}
C {vcvs.sym} 650 -550 0 0 {name=e2 value=1}
C {nmos4.sym} 810 -420 0 1 {name=m7 model=cmosn w=10u l=1u m=1 net_name=true}
C {lab_pin.sym} 790 -470 0 0 {name=l6 lab=DIFFOUT_L}
C {lab_pin.sym} 790 -370 0 0 {name=l7 lab=D_L}
C {lab_pin.sym} 790 -420 0 0 {name=p18 lab=0 net_name=true}
C {vsource.sym} 690 -230 3 0 {name=VLOOP value="dc 0 ac 1 0"}
C {res_ac.sym} 750 -190 0 0 {name=R2
value=10G
ac=0.1
m=1}
C {ind.sym} 820 -250 1 0 {name=L1
m=1
value=100k
footprint=1206
device=inductor}
C {launcher.sym} 1040 -650 0 0 {name=h1
descr="Select arrow and
Ctrl key + Left Button-Click to load/unload waveforms
from .raw file"
tclcommand="
xschem raw_read $netlist_dir/[file tail [file rootname [xschem get current_name]]].raw
"
}
C {launcher.sym} 1040 -580 0 0 {name=h2
descr="View raw file"
tclcommand="textwindow $netlist_dir/[file tail [file rootname [xschem get current_name]]].raw"
}
C {launcher.sym} 1040 -720 0 0 {name=h5
descr=" Ctrl-Left-Click to load/unload
embedded waveforms"
tclcommand="xschem raw_read_from_attr"
spice_data="
VGl0bGU6ICoqIHNjaF9wYXRoOiAvaG9tZS9zY2hpcHBlcy94c2NoZW0tcmVwby90cnVuay94c2NoZW1fbGlicmFyeS9leGFtcGxlcy90ZXN0X2FjLnNjaApEYXRlOiBX
ZWQgRmViICAyIDE4OjE3OjI0ICAyMDIyClBsb3RuYW1lOiBBQyBBbmFseXNpcwpGbGFnczogY29tcGxleApOby4gVmFyaWFibGVzOiAxNwpOby4gUG9pbnRzOiA3MQpW
YXJpYWJsZXM6CgkwCWZyZXF1ZW5jeQlmcmVxdWVuY3kgZ3JpZD0zCgkxCXYoZCkJdm9sdGFnZQoJMgl2KGRfbCkJdm9sdGFnZQoJMwl2KGRpZmZvdXQpCXZvbHRhZ2UK
CTQJdihkaWZmb3V0X2wpCXZvbHRhZ2UKCTUJaShlMSkJY3VycmVudAoJNglpKGUyKQljdXJyZW50Cgk3CXYoZ24pCXZvbHRhZ2UKCTgJaShsMSkJY3VycmVudAoJOQl2
KG1pbnVzKQl2b2x0YWdlCgkxMAl2KG5ldDEpCXZvbHRhZ2UKCTExCXYobmV0MikJdm9sdGFnZQoJMTIJdihwbHVzKQl2b2x0YWdlCgkxMwl2KHZjYykJdm9sdGFnZQoJ
MTQJaSh2bG9vcCkJY3VycmVudAoJMTUJaSh2cGx1cykJY3VycmVudAoJMTYJaSh2dmNjKQljdXJyZW50CkJpbmFyeToKAAAAAABAj0AAAAAAAAAAANOteLBbOrM/I9ZT
q5Urfb/TrXiwWzqzPyPWU6uVK32/fHMMF0dEX8DvuQnAzgkEwHxzDBdHRF/A77kJwM4JBMBRVjT3MCJTPy8n0nnLbPg+AgZhvzAiU79trppD2W34vim/ve0yYzE+r1FV
89XqZj4FX++uMh8xvveL989Ot4o+29HJ////7z+zOEjwVCBVPojF27nB3bg/4nsjnmEug78NwjFUEhf7vbM4SPBUIFU+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAABj3iIonWPIPddFUecouSO+ptWZlBm2YD3cnsBEaeeVPQCwDaWN1Q2+7F+cm5fuiL4gPSafs6uTQAAAAAAAAAAAbzn2fFg2sz/IicPbHAp2v2859nxYNrM/yInD
2xwKdr9W/uLdp0VfwNWbA1RFSP6/Vv7i3adFX8DVmwNURUj+v8Mh5/YHI1M/WrhXobt08j6SLR7AByNTv/VuH2sPdvK+wDSyg3+KMD5Qpx1849NsPjbr7Q+djSS+ImEI
NJc5hT7msd/////vP8asZyJnq1A+3mKrJY/YuD8vAI6qek59vwa8DMMMJ/C9xqxnImerUD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF0LgAdHM8c9MUqy
QZLVKL5ovG37yulfPW+eCAaOjZs9ALj94iUCJb73xnQ4UAKDvhFmC6GSw5hAAAAAAAAAAADSSoNi2TOzP/Zp8E9CFHC/0kqDYtkzsz/2afBPQhRwvwNg/1yDRl/ApoCD
PJoY9r8DYP9cg0ZfwKaAgzyaGPa/gEGJvI0jUz/ruXRcJe/qPuXmaIeNI1O/tNVPIH3y6r7VdlFEgWQuPq4Em+YBI3I+NsPUOz3TF763JiBHhNyAPgF57f///+8/3Bdb
OFAySj6nirYoUdW4P5LbFh2jznW/oQPI9P6G4r3cF1s4UDJKPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkNVXO9FPxT0r8835iEQvvvt384jag109oWCJ
WLFVoT0AxqoZJXUtvrSYiSnxMHy+XJJLnAwtn0AAAAAAAAAAAF/mBaZUMrM/tdeXLWHyZb9f5gWmVDKzP7XXly1h8mW/u1Ht4QhHX8DWKW8cLivuv7tR7eEIR1/A1ilv
HC4r7r9ZNUIc3yNTPwjiN+tPY+I+jlfE6d4jU79Pa0xxhWfivnHHsWRRICo+LCrSV2XTdj7DYqmpytYJvo72B67oyXo+Th/2////7z/8sIsrYnJEPv00iuRU07g/SwCB
PRfvbr87qKGkY8HTvfywiytickQ+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAB/W94VDCPTiVlXnfrjO+6CVoEN61WT33fQzv/dClPQA3GMBCUDG+8nro
6t/cc76Vz1naxZ+jQAAAAAAAAAAAr/QpdXYxsz+BxZ6/Dc5Zv6/0KXV2MbM/gcWevw3OWb/m3Pc2VUdfwNe4OO7fv+G/5tz3NlVHX8DXuDju37/hv/jL7aENJFM/9UYO
pqCj1T7L4p1zDSRTv/CYoPc5rtW+pbipD7NcIz6vecRnGrt8PjxW+I+sJvi9rpISL6JHdT5Kgvv////vPxG7P5fVkT8+qqpvwCzSuD8KOsIaF+Zjv2Nr83fY9sG9Ebs/
l9WRPz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQAgaDfIbs9JNyrCMvHOL6nLqRWnK1TPTz4N13Vdas9AJpAOdHQMr7kKzyafS5pvi89eSmOtKhAAAAA
AAAAAAAyN+riDjGzP2+Q7hmILUK/Mjfq4g4xsz9vkO4ZiC1Cv+L8D9N4R1/ACAPD2iUZyb/i/A/TeEdfwAgDw9olGcm/6PFsViMkUz+2KSp5Rp2+PjVjvS4jJFO/q8PP
uabSvr4WkJhQ00cRPuWn6H1iFYI++15N4l8g270EqarHSOdwPmvL/v///+8/pl11WAHtNz4OU6vbmNG4P3iShoU82FO/eq8kRUhJo72mXXVYAe03PgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAFh38XiwmqD275xQGfzI/vr7lfeKRO0Q9zPvX/6NIsT0AUzfnMI8zvhrTVDtp9Fe+TX+WtiQar0AAAAAAAAAAAN2NPZcHMbM/RpAP
hu2SPD/djT2XBzGzP0aQD4btkjw/nKLdZHtHX8AtnDz9XXfDP5yi3WR7R1/ALZw8/V13wz8EC3roJCRTP9W1EoD+sre++VdLyyQkU78Zr6bDy2+3PnSn6D7XtBC+s3ub
mwXEhj5TO73sULbQPdMl1qmT2mo+GFgAAAAA8D+LQ39NOI4xPm02EE550bg/gHexYxBVDr9K4P4h5AWWPYtDf004jjE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAoee+7EpWnvZRF3CM1o0O+7WZBF5gnNL0QoqX3O8K1PQDgtRh0tDO+t/Cr6vfcEj52Em5R35OzQAAAAAAAAAAAFsM3/14xsz/842ukiMFXPxbDN/9eMbM//ONr
pIjBVz+tWEp6XUdfwPPOJ3lCROA/rVhKel1HX8Dzzid5QkTgPwvT0a4SJFM/2fD7+oTR076Uv0iiEiRTv7rXKbtevNM+WMjNqY2kMb4aqhvlkKmMPrTXjb2ZL+Y9Tl6s
PJdUZT6ZzAAAAADwP7t7QdttPSg+icSdSMfRuD8UQbUZ7+VRP5ByHGYRk6k9u3tB2209KD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGtA8Ha7zsi958ON
Tsq4SL6x40pPrg5dvfb0a+rxZLs9ALJzK6VIM77QYVCrA2BaPl1OR82SpbhAAAAAAAAAAACINkP2JzKzP/C4o+/v0GQ/iDZD9icysz/wuKPv79BkP9WQEZ8YR1/ACCTf
hTeI7D/VkBGfGEdfwAgk34U3iOw/XJ/huugjUz9H6BTqGWLhvvd6usjoI1O/eEbh7MlU4T6TvM4B9X1Dvo6ptil5C5I+TRpxPjrp7j08bgQRW/FgPl7cAAAAAPA/Csbr
1cNRHT6tWMadk9K4P6BVfj8Z2WI/3FKOwsKLqz0KxuvVw1EdPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACE2wCcFj271mAat4Nx9PvrZ6Hk3Tx3C9SVBF
fAo/wT0Ab9o7gjQyvrwONjOrfGo+A67oR0gHv0AAAAAAAAAAAEAf5tWNM7M/jKBQXIfcbj9AH+bVjTOzP4ygUFyH3G4/Jp/f+J1GX8DRb2lTUyj1Pyaf3/idRl/A0W9p
U1Mo9T95lPn/nSNTP6JnkGMfyOm+mLKhN54jU7+ClE82XbfpPpkk1pF4M1K+AiLOwD+5lj6pBWiCDzXyPRJlGuwn6lo+0ooAAAAA8D/IDRoHN3EHPrX6uWAK1Lg/BhrZ
tcy/bT+zymXkQlqhPcgNGgc3cQc+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChbBA2tZHpvcNA4rnGllO+UtWYLHzcf738LR90r7fFPQAfpQt7PDC+OSjH
XvSYdD4BAAAAAIjDQAAAAAAAAAAAG9x7yt01sz/V6mCDDUZ1Pxvce8rdNbM/1epggw1GdT+lGeAU00VfwARG80N4LP0/pRngFNNFX8AERvNDeCz9P4YJo2AiI1M/dyFE
HIDG8b4u+YvaIiNTvzZRydvzu/E+rcjlnWWZX76klOnk+J6cPteomMUv8fM9IT+a74BgVT7EjP/////vP3lkIRXJAPW9GznQYXzWuD+Q6X9fox11P0kFKbUfz4y9eWQh
FckA9b0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHdvz9eMfa903bnWqCoWL5/6CYqHOGLvRQ7PPFQWss9AIoUT77nKb4VpAPA2At9PmnM74aglshAAAAA
AAAAAACRNmtqlzmzP962uhodP3w/kTZrapc5sz/etroaHT98P0YTJziMRF/A3+aBnadeA0BGEyc4jERfwN/mgZ2nXgNAO8m8N1siUz8ziuvepJr3vkTmnxpcIlO/5AEM
/F2N9z5L3vEBBWpqvknh7/mXB6I+n3N8ZNoI9T3ct15ZRfpQPnLJ/P///+8/e4c2T2l/Fr6gY9GNcNq4P8PG2dtyenw/JVmK/W20ub17hzZPaX8WvgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAqnV5kc+MAr6JzOAq5wlfvsSqGrjpZ5e986tVp9Q60T0AwPQdApYeviZ4DdHThIM+lz9OSXf0zkAAAAAAAAAAAOj5/BSIP7M/ihNH
TuFbgj/o+fwUiD+zP4oTR07hW4I/Hqkf/oJCX8BDQYRLHS4JQB6pH/6CQl/AQ0GESx0uCUDuCzGhHSFTP3V4gFNUr/6+ZXFjKh8hU7/2TJd0np7+Pk6BeD9ynXW+Ti6K
Ncq5pj47XlvXbLj1PT/xEZ/59ko+YzP4////7z+alzxLfHckviOSc9/A4Lg/YG6CNPSsgj/IXyzJdTLPvZqXPEt8dyS+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAD5amkJwFsOvg9byhZsiGO+rbHNZIszo73ryUpaM7fVPQCAqDFEZeo9O9VvBMOMiT57O6/hJ3zTQAAAAAAAAAAAxl7v2fZIsz+iIRbk/pCHP8Ze79n2SLM/oiEW
5P6Qhz+ruxhMRz9fwG8kKx9nKRBAq7sYTEc/X8BvJCsfZykQQPpHoU4lH1M/O/8gGOyxA78MMT3fJx9Tv1dfTmlopwM/vZOtQEp3gb5ANEZBXKqsPkYlffjMJfY9caJv
PgNpRT4XzvD////vP+yPqjrswy6+CKSH+MjquD/kBI5bshmIP50nxIPSY9697I+qOuzDLr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXiedDWhxi+kIJG
dLSUaL50ooG35BOvveQz3v0zY9s9AKaF1B2RLD4KQtgRcXeQPn1D8FC3h9hAAAAAAAAAAAASk1sB6lezP2birfdpBI4/EpNbAepXsz9m4q33aQSOP8fwI3wnOl/AsZ0K
NQqWFEDH8CN8JzpfwLGdCjUKlhRANEvtAQYcUz8qZAizMRYJv9VOljMKHFO/xChTOfcICT+7m668BgKMvkOk/iBjGbI+CkFlSpdo9j3Tm1Ql7/5APjkD5f///+8/HvGl
jYhXNb6U0eUIsPq4P9h0HVbUy44/TGappcb86r0e8aWNiFc1vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEYjWEA+rI75blGR6Ju1uvohAM7bC8Li9cQeg
mdhJ4T0AGZKMFM9BPsenzondBpU+f4zXs7Hh3kAAAAAAAAAAAIJC/D+Ub7M/tcuXdZAFkz+CQvw/lG+zP7XLl3WQBZM/Sl+v7goyX8AhRG9MQxcaQEpfr+4KMl/AIURv
TEMXGkAiFY6+FBdTP5o9/yqFyw+/SBUfhBsXU7+OuO0j4roPP1zHuSIVWJa+v1KEN1Dltj5OuyZIOI/2PWlJd0Yg+To+BU3S////7z8Sjg4RXWs8vj43xvDcE7k/wF0o
UL+Nkz/auVuGfdn2vRKODhFdazy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6f/fww2EvvmKNEC+scnO+NzRykITow715dKXL1NzlPQBn/hUUWVE+iyNo
Irewmj6TDx7yVnDjQAAAAAAAAAAApcV3xf6Usz9FEfiUWQaYP6XFd8X+lLM/RRH4lFkGmD+lcoLANyVfwOzSrdkMeiBApXKCwDclX8Ds0q3ZDHogQI5udkVED1M/FwLB
pToUFL+6mzceTw9Tv2PedQXGCRQ/9PewUovDob4DXQmzIgu9PvED3woLovY9mtgc1SBkNT4nsLT////vP/3sL8ilfEK+I+FsI6s7uT+ADWEK4bmYP953JSP20wK+/ewv
yKV8Qr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXGnFwU8zi+yLWNRxFyeL7Zem6HhqrPveGAmQDMt+s9QFt5YbmyXj52Ma89At+gPheXySXXeOhAAAAA
AAAAAADcEH7rDtCzP887mMz2Qp4/3BB+6w7Qsz/PO5jM9kKePxkNiRj5EF/AE+P8JxPBJEAZDYkY+RBfwBPj/CcTwSRAyMz7be4CUz9Rn0PuqEoZvwPCWbX/AlO/zogS
wIc9GT/kaRf5/iqsvsaJkVH2f8I+9sFRGSul9j1gI71yzPIwPuHshf///+8/akdwC2C2R75GWB8FgXq5PwpguoqkKp8/54DKyMeEDr5qR3ALYLZHvgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAox5JNibIQ758K3jVJLN+vimvL0e6HNm9r6sLzQak8T0AGiXr2OJpPmofv3JPQ6U++SGZgPfO7kAAAAAAAAAAAAg9EW8RLbQ/MQKi
r3wCoz8IPRFvES20PzECoq98AqM/3NbFrxfxXsBIrcEiKhMqQNzWxa8X8V7ASK3BIioTKkDbXPOage9SPxvhmjSLxh+/EgVBA53vUr/UIweRFLYfP0eV835cRra++6N6
peO4xz4RxR2EYZn2PflT6cY60So+QUY8////7z/XvZmtBiFOvj8UFlZ03bk/NQa9GtKVoz8TiwXWN3cYvte9ma0GIU6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAD+26fX0ElPvva7mxfpP4O+AvVvg5Pc470zvZLXcpf2PbD01MddPXU+bJFltvS4qj7FbPEsjWTzQAAAAAAAAAAA3S2aKP2+tD+rUMx11s+nP90tmij9vrQ/q1DM
ddbPpz9squRzE79ewEkKaSG6VDBAbKrkcxO/XsBJCmkhulQwQP9ZFt0H0VI/Hke348DmI7+hzFMpM9FSvxOV/o503CM/qnXFa76Pwb4QsbXv47fOPjad1DVpfPY9JDUc
4M8qJT4GuMj+///vPzuj368jAVO+kKVTxbF4uj8QMNEXCYmoP38B9Z1/dCO+O6PfryMBU74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSUSSqRq1i+3vxX
2xcWiL46L2fKXFLvvU7Jk+6zMv09SHnXxMcggT4s26cSK72wPgUAAAAAavhAAAAAAAAAAABQm38rlqK1P2YV6zYyta0/UJt/K5aitT9mFes2MrWtP/XyqT4QcV7Aah+F
mOxfNED18qk+EHFewGofhZjsXzRAmsdmN3+hUj+OI9KdRtQov17XekzDoVK/9C5NUnDHKD+O3EKBH5TLvlypUhyfLNQ+ybu68a1I9j0zVCdwp6UgPsB6FP7//+8/EA7c
UIHRV77TymoY02q7P0gnVLI7m64/p604AFS4Lr4QDtxQgdFXvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeIG3MVfY77mrtNCeAiOvgbQ1Pi+mPi9MoAk
bkofAz5oaVR9b0eLPu8OayU14rQ+iL+rqEi8/kAAAAAAAAAAAP8kTJldArc/bgiUxKNssj//JEyZXQK3P24IlMSjbLI/PrXvYnz4XcB2/DPavUU5QD6172J8+F3Advwz
2r1FOUDN5OIiB1hSP9v8AT43zC6/rWmNhnFYUr+GDjaSTbwuP3Q2OSz6htW+TAk4bm8H2z78zPOfp/T1PX4LZyCNCRo+9OX9/P//7z8zkLqtO6JdvgFU0rgO4bw//DEp
UGn5sj/PjV1d0BA4vjOQuq07ol2+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADc2PTD7UBuvikBtdlun5K+ue3cDr0zA75QibzZ+4QJPrxelFL2e5U+DO4v
2VvmuT7B59CNylgDQQAAAAAAAAAA61WyqIMauT/ZnCc/5Ke2P+tVsqiDGrk/2ZwnP+Sntj9wv5F3tkBdwJ9RhNi2Ez9AcL+Rd7ZAXcCfUYTYthM/QJkN+JsN6FE/ovSD
tIjvMr/jI7BhsuhRv1w52W3B5TI/RkKWTACo4L6yWHRhHpTiPrqLVwcWcvU9hLdPONEvFD7FUFX7///vP+/3XpiKQmK+8Luqt2gbvz95EDHbm1C3P4Gnj+q8qkK+7/de
mIpCYr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO7oOjveane+ogWvD13nlr7EQWNSNbgNvq9LSCZncxE+OC9sn1i4oD5AO3z3kda/Pl0KG9oxWwhBAAAA
AAAAAADClBeEdDq8P4PVS4digLs/wpQXhHQ6vD+D1UuHYoC7PyA96UuFLlzAGTgjqrzcQkAgPelLhS5cwBk4I6q83EJATsi/PfxAUT8aq2qGcfw2v1yWoh74QVG/DIpm
kZTwNj+4Pj7kLXDpvtyWQ6YIVOo+5YKSSsCt9D0oRX4HSuUOPs/Y2/j//+8/UVQ3ncg0Zr6QS8jIKjfBP7S9bps4RLw/nnlYw5yQTL5RVDedyDRmvgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAQ5U82rjkgb6J6IhpbdGbvtQw7ehFsxa+Im5JuCyTGD5q1MrAnKOpPiB61mgsUMM+YFQsJaWpDkEAAAAAAAAAAFp3DK5uX8A/cWz3
nCxhwD9adwyubl/AP3Fs95wsYcA/1x7MoCSiWsDKX4nXC3hGQNcezKAkolrAyl+J1wt4RkB+9eL5d09QP3v/0p+eYTu/NWCYxfFQUL9ODCirf1M7P2Ukxc4SDvO+M32s
uEU/8z6GoifeA5HzPY5MlptlMQc+/SBI9f//7z99sohgS4BqvqGArxErnsM/g8n1FybNwD/3YwUFvm9Vvn2yiGBLgGq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAADF0DUIdtWKviNVvHX7laC+3O9MtrwCIb64qPU3CNchPsaJq0YaRLM+MAoaqP/7xj7St2YQD00TQQAAAAAAAAAA5qi0aTx+wz+9Zlqfjf/CP+aotGk8fsM/vWZa
n43/wj/ivAp+iX5YwMXFKV/yD0pA4rwKfol+WMDFxSlf8g9KQOxh1TqdA04/uJsnN6XCP7+/4ri27AdOv+hG1Z5Isj8/3kgVp+TH+74d4Xc11OH8Pl+rVnwdB/I9kO+q
yXPxAD6OIFfw///vP1jhmQ4qz26++JQnm63vxj98l4Tft2zDP1U9FuO+UV++WOGZDirPbr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8TBWZl5O+lZcS
prZFo76rwkNLxdAovoIahSIslSo+u0BZb90rvD73+NzjoZ7KPnuTpa5sTBhBAAAAAAAAAAASi+kyVIvHP/deqlKXQ8U/EovpMlSLxz/3XqpSl0PFP/wqn/CSt1XAswHp
yi8sTUD8Kp/wkrdVwLMB6covLE1A99UsjzihSj+3mmqBfcZBv4C/16lLp0q/f/VdFFm9QT9HrPgMPIYDv1Rqhik1+wU/7jUngWkH8D3fjn7qcN33PYX07On//+8/mz79
NUZMcb6RjsjdUD7LP4b8W0wpocU/8mb3egsTZr6bPv01RkxxvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfIoVNNCbm74U3plxU6KlvmGtH2QGdTG+2FuC
szkaND7JD8osq93DPrtzs7Vluc0+4fw77wyXHkEAAAAAAAAAACqfYD1aZsw/3/RjedzDxj8qn2A9WmbMP9/0Y3ncw8Y/UnOeGG9jUsC4SlPkRTxPQFJznhhvY1LAuEpT
5EU8T0AXVfJmyZJGP610Y6tFCEO/Mjl4sfmaRr8/gTEYgv5CP0BFh+88Ngq/YeiE7Sm0ED+a5Zq830PrPe6RFYcTDfA9DRw94v//7z8w6MYxDJxyvqTJ63+kM9A/q37f
h2n3xj8ZI4ry48JtvjDoxjEMnHK+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdH5K1gpuivu2EqeAQRae+rJCSZvV4N74iFBv2JWQ+Pug67gzYyso+cnmQ
z/+zzz4+tV+wWkEjQQAAAAAAAAAAYs++uIjY0D+8nP4NASrHP2LPvriI2NA/vJz+DQEqxz/NWrmfboVNwKdWIEHeyU9AzVq5n26FTcCnViBB3slPQMXr2ngIJ0I/QtlY
nZBeQ7+8NEJbhjFCvzedue+qVEM/dt5U/RuvEL+gLpV0S/YYP29yctd8CuY9f3uSEAl45D3SQ93Z///vP9GLgHQqFHO+wyt7FtoC0z+LONx8/Q/HP4pLxBZeEXO+0YuA
dCoUc74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTVQkQW16e+7bcxknzap75ragt8OfQ9vsfRqDvlnUY+s+IPfkgr0T6IeINgdQjQPvnHLXiwPShBAAAA
AAAAAADVs4WEXXLTPxBrk0VMXMY/1bOFhF1y0z8Qa5NFTFzGP5OFMxGSY0bAtdNo0cmxTkCThTMRkmNGwLXTaNHJsU5Arfc8EQmdOz8j+FV97rNCvxCv7xmLtju/amU4
gW+qQj/ShWR35hIUv0ammcU3JSI/SahNOrvn4D3aRmKEZ6nYPRd8o9H//+8/4r3CElyicr6mT/9Xn8TVP0lpGZ4Wy8U/0RRk9EEud77ivcISXKJyvgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA3r4w7eD6rL5tkK9iuEunvkGdt0xMF0K+cfWXTYdkUD5Rq1en9N/UPgrwQpmlqM4+CgAAAICELkEAAAAAAAAAABQOWxWowdU/t7n1
T6+LxD8UDlsVqMHVP7e59U+vi8Q/tHMMig0OQMAiZbMAPTdMQLRzDIoNDkDAImWzAD03TEAmhIVqBeUzP7ItImhSMUG/vw7seooCNL/SCj9CrihBP0Scwyi62Ra/zF2P
/ZqPKT/2WJv7EbDYPbtugv1KGMw97VhYyv//7z/eD/TJD3Bxvpn+ackuNdg/eBmnx01Xwz9dK1qJ09N6vt4P9MkPcHG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAACISSD2xsSwvuAJnR2EzKW+y0uHXaa5RL7ZwGWGmgtXPn7HUXsLKdg+T6aiyJm9yz63V2tprTUzQQAAAAAAAAAA9v92GDKh1z9Cq5uhiRnCP/b/dhgyodc/Qqub
oYkZwj/UOVHMxtU1wPEglmTZ30hA1DlRzMbVNcDxIJZk2d9IQMQ/SKaqRCs/l92U61FQPr8HskEfMYYrv8wQu2FUQT4/oZLg2P6wGL8BVmYlYXkxP8bRcC+1SdE9QXTp
s+FZvj3zL3PE///vP9f7R0CSm2++o9fELdcr2j/5VXxjeRXAP12NWAZoxn2+1/tHQJKbb74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8WzCpGnLK+OmXw
G3jBo76OU6btjKFGvlK/NPknd18+z+Pki7/Q2j518lY+gdbHPrQhRTH9LjhBAAAAAAAAAAB7o6BxOgrZP7WoeOiR2L4/e6OgcToK2T+1qHjokdi+P6ixVFEzMizAuhT7
Dzc4RUCosVRRMzIswLoU+w83OEVAysMqXPfWIT/NdCDYOdw5v008jINWHSK/bt9s5MTPOT8CCoKss2AZvw68Py4aTjc/kQqSQN5txz33lSm10yGvPbahC8D//+8/33Nn
rfchbL7mozLgt5/bP1QuuRaB1Lg/J7AiJS/6f77fc2et9yFsvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPS/yUoz8s76WXTTuWZWhvq/SGaiqrEe+bFbR
o3/2ZD5Mvk5gXczcPo/tL1tRgMM+98yhUP5xPkEAAAAAAAAAAByh/W0DC9o/glHUUoKiuT8cof1tAwvaP4JR1FKCork/ZbHTiHQvIcDs/qx7japBQGWx04h0LyHA7P6s
e42qQUAdQMYg7EIWP46v4cTNhzW/x06gWnDWFr8ufk863n01P1WaENAXtBi/Yea2BkN/Pj+be0Tr7fy+PRXFc5UBJZ491fr3vP//7z8Ig2XI7fhovuxFaPpandw/zmnY
4JM7sT9U8bBKAcKAvgiDZcjt+Gi+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtGEuaoPK0vj15gF9HN5++ujCKWbrER74y6n1v8GlrPi2gNX2YLt4+4sWS
pxVGvj6+tDs3BypDQQAAAAAAAAAA0/In/DG62j/McfwU0um0P9PyJ/wxuto/zHH8FNLptD+MWHcw81QTwEhkML4g6DxAjFh3MPNUE8BIZDC+IOg8QMrIk3gaMgo/f6RY
EaSdMb+AqQUs/GELv4nC4roSljE/to2Z0D9YFr81N4UCe65DP9CYrLpcI7Q91LgcynTvij1s5vW6///vP3HJdfNidWa+sKuzMb843T84fhtGlE2jP+AyGGWGQoG+ccl1
82J1Zr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEP6uiE8k7W+2qANKMkSnL6mE/UCmcdGvqij10G9rnE+gM2I4jAV3z45SfOhMO21PshlgNRSIEhBAAAA
AAAAAACAWn4MEy7bP0MJb3810rA/gFp+DBMu2z9DCW9/NdKwP2lu7i6xtwLAkKy8xgVbN0Bpbu4usbcCwJCsvMYFWzdArkrJplkV/D54CObi1ncsv6RIoQyQf/6+oH3j
1AhtLD/DbLDC17cRvwDdlRr2J0k/fMOWKErZqT1BhPDKNbd0Pa0Vx7n//+8/DOpxndzGZL5Q9ZxoS4PdP1YJBzRaB4E/rZizlDqOgb4M6nGd3MZkvgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAI5OFJtbxtb5J15vymPiZvrgbgryhcES+6JZ7TTCXdj4xZuJlA5zfPhL8M1aWL6w+XPhO2odfTkEAAAAAAAAAAAWfgRTBeNs/O48R
BuG7qj8Fn4EUwXjbPzuPEQbhu6o/j7/voIoh57+lSWMXjrEyQI+/76CKIee/pUljF46xMkBNVoXzNaPoPjRtyIHiySa/NueknyCB7b6v09RwBMMmPxi2maC6ogO/EPzg
jQHtTz9P8U0zGG+gPSTz/CDEVVQ9r9U+uf//7z/SuunqSwlkvrzNoeqoht0/EHOLnkHAlb92wU+USrCBvtK66epLCWS+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAB7y+9wZRy2vpZrACugC5m+MjEgUsBDQL4Kkp1p8Kd8Pnt+vZLh1t8+SFmCVOjcmj4OfoUVaB5TQQAAAAAAAAAAoMJ7V2yn2z/Sh4x+YfykP6DCe1dsp9s/0oeM
fmH8pD96zm/ixWzTP9wOfK08sC1Aes5v4sVs0z/cDnytPLAtQOxDliM6esI+L+Q4uYoZIr/WHVHxV/jSvrOvhnhHFiI/SJv/rTcA6D4j6BNEQCVUP6uQPZtXu5Q9OyO4
shohO72rC0a5///vP/op3Ax5VWS+o7nG1bFC3T8aIvv7sGmqv0QzRRV9roG++incDHlVZL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORmbIkhGra+rcmO
49Zqmb60dEjW1vAyvhh/Hq6GEoI+RocUFbrP3z4Y3z1QnldWvpCid1yxEVhBAAAAAAAAAACpFkBNAcPbP1oAFeNEO6A/qRZATQHD2z9aABXjRDugP9K3lluV8O0/eYzj
rk9kJ0DSt5ZblfDtP3mM465PZCdAXkRrVTfczr6dL0tHDogcv6i5JRrwGrc+OwvInDCIHD9X89q/X1EXP1DV1vI+S1k/LcY9kk7ziT0ZDgfydptQvfHT2rn//+8/Osrf
zu/OZb6gRF7j16zcP+2j2Qn3T7W/sBa/A0uJgb46yt/O785lvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoq4YA6Hrtb6oTeC4qkKbviDU8XSVmgE+y8yX
2oOthj5+6DOHt4bfPixgXlXR/5y++jk5lhxNXkEAAAAAAAAAAJ0qzikn0ds/3TwVy7eZmD+dKs4pJ9HbP908Fcu3mZg/BqudTYzU9D8f8OD/YUQiQAarnU2M1PQ/H/Dg
/2FEIkDSTzk1EL7dvqCoTBHhSha/8DYFDv4/1D7hiAmCJFEWP1FudUeahys/06Eff0iUXz9RuANg4RiAPRkht9QZW1K9xegNu///7z8WC0/xO7Fovr+/JQm/sNs/Hn3+
MtfGvb/p39fOhTyBvhYLT/E7sWi+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlA6pFqYu1vpEw8ceJ3Z6+0bNxuxwBQT4+Iw4zME2MPnVzI9Bj894+cRtu
90IhrL4IAAAA0BJjQQAAAAAAAAAAxRaUqi3V2z/Bq6MAixWSP8UWlKot1ds/waujAIsVkj9bJbo4qrv3P39axKdoNxxAWyW6OKq79z9/WsSnaDccQDt4inESbuK+05P6
KUs7Eb88KH25u6DbPr/t1M38RhE/1pbdEiX+OT+VIjTzSJJjP0JMS/MswHM9ow1C5cmcUL3Dyvy8///vP+fVWm8oXm2+ElGg6Voz2j8ILat9JDPDv+YlXU/NwIC+59Va
byhebb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQ+N98B8bS+iXaywNhaor71jCO2bwlUPrZhpkMkjJE+KcAJ4lIH3j4uiAOZALq0vqgtxsMYA2hBAAAA
AAAAAAD3hPp919DbP2BuT8DeXIk/94T6fdfQ2z9gbk/A3lyJPy7CTMlEfPg/T3kCNnJ+FUAuwkzJRHz4P095AjZyfhVAxjC1nndg4777bJrPqEkKv4DfPZZ75d0+PjmP
N6BpCj++FJzkcUFGP8Zf6FtpBGg/8gdN+MrmZz214yzrZTpLvXB0xb///+8/aOg0MAw2cr5yhCrGEhvYPy4T8MW/U8e/RL3q46IOgL5o6DQwDDZyvgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAWsQbXEwStL7WiljPjsOmvmojPCQN/2E+CMVgpWCYlT7yEJ292rPcPlBaFvQE87q+JWqWfbw6bkEAAAAAAAAAAErrPMcPxds/EIuU
1bN5gD9K6zzHD8XbPxCLlNWzeYA/s4/0Wlah9z+oXwTmdBwQQLOP9FpWofc/qF8E5nQcEEDQjFWv7V/ivo8XtRswvwO/4ImPCsRi3D4m0/WZ9+MDP4oscnyg+FE/xFKY
LwMObT8G1bZES3ZcPfi8xLJm30S9+Ehxw///7z9LAsL1UVd3vioVrCeaXtU/Oee1HEfUyr+T9gmEW0d+vksCwvVRV3e+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAvZ1+kmeyyvhTotB8mLa2+QfxLWShbbD6cip/duVqaPo/tUhTx89o+O1F3KucawL4dIGXyPgdzQQAAAAAAAAAA/FcxMpSy2z/Qs39/+7FyP/xXMTKUsts/0LN/
f/uxcj+HpRz6P6D1PwIB4ekhwgdAh6Uc+j+g9T8CAeHpIcIHQEjMVVD29t++TowiPEA4/b5VeLR7jzHYPjRi6qE2gP0+tyPVfca+Wz/dCbm+5jhxPwG5K6Zsq1A9Acm5
rNRYPr2DR9zH///vP4l4xL7nl36+RzmSkrIW0j/o5t2oMivNvzvNXz7cEXy+iXjEvueXfr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCSqekpi7G+qvbh
uPAes74SRXf4uWF0PhzlrRr9558+A4m0YdHX2D71kcqiJ+3BvvChCgWJ9HdBAAAAAAAAAACE/yAKgZrbP7XpdXhzdl8/hP8gCoGa2z+16XV4c3ZfP0EsEmel8/I/f+ks
t/9JAUBBLBJnpfPyP3/pLLf/SQFAX2+SCg+Q2b4v05WvFmH1vhjeFm38btI+B4ZbSf6Y9T54dx5u+YZkPxUz+ptk23M/sTrCxXRFQz3Zjd/L5x81vdqHqcz//+8/Xtwc
ZJ5FhL5DN3mZZAzNP1LfMuDX6c2/ofHUEjyreb5e3BxknkWEvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkABQsgULsL6oKwToBVe5vubOj3wcIHs+rrKT
cHU0oz7AForOaYrWPjgCGvL9q8K+Pn+giWcofkEAAAAAAAAAAOV4HZSefts/IY5PxLoSHj/leB2Unn7bPyGOT8S6Eh4/VI8R95kZ8D9QYwJKNgX5P1SPEfeZGfA/UGMC
SjYF+T/mggVjUbzSvmyPFFAfNO++1NSgcsJ1yD6HlU4k5GPvPiyYNyNdB20/i4g5pLETdj+3ZB9XLic2PTpy1R+Kgiy9PD5X0f//7z9VSt/dvuKKvoz6rzmTFcY/hh/b
5O31zL9RrdLhYFR3vlVK392+4oq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVtZVGeSmtvu3rikO3zcC+ZqEYqXHagD6m+y1ZmxWnPv6mtmj1R9Q+neoF
jsxHwr48W3HotPuCQQAAAAAAAAAAuRMRM2hh2z8HaIGGIBtMv7kTETNoYds/B2iBhiAbTL9wFV1cYvbqPyHnxNJJLfI/cBVdXGL26j8h58TSSS3yPyhDts1O8si+ZuTk
2WT35r7gwFbxEg26PjK37CZXyOY+YhvDcyOGcz+hNVRsr3p3P2NuGYdOkSk9K2dXkXD2Ir3f0mzV///vP+jQyMwkt5G+CkPdlhfqvz/549rX+ZvKv3hlhJCWSXW+6NDI
zCS3kb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF/NNk78m6q++2g9++0kxr4FHm5r+7eDPoUIiSqJ1as+NWwbrEVI0j7eh+bF6PHAvpXd5hoC5odBAAAA
AAAAAADdKJIJ2kXbP0fW0sH2/lC/3SiSCdpF2z9H1tLB9v5Qv96H4xpnq+Y/Q0AXvZK86j/eh+MaZ6vmP0NAF72SvOo/YE7TUcFkvb4wo3Yr3jnhvqCfr5HqLp0++cwP
AmyQ4D4VeV4VM+V4P9ZwenEmw3c/zwOTfHLfHT1V3yMGJVQZvRxtotj//+8/3YaOioMfl75kl5WDvBi2P1WF4K42ace/c4TQccmuc77dho6Kgx+XvgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAzl403XuaqL72owdqZOfMvs8oC29p7IU+k7191WrksD7A5VH096vQPhxbSyZiCr6+OIuVsx0WjkEAAAAAAAAAALVoQhAEL9s/25bl
aMEDQb+1aEIQBC/bP9uW5WjBA0G/F7h/1/tw4z/J9Sl8Fv3jPxe4f9f7cOM/yfUpfBb94z9YNczqtvurviBgU4sGhtq+gHPfXkgnm76e5wNmTQvYPifd5kojGn4/0e4T
HUrgdj+rLHBmb70RPXUUQPAWQRG9viHo2v//7z/tm9KO0uOdvo9hW/oDna0/2IFBwf7tw78S+i0h74tyvu2b0o7S452+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAABIMFjy6i6nvgSQL5hjrtK+B8LuZopchz43LRDsDay0Pk+1as1M8c4+1bAvHlW/ub4/xOPdMfCSQQAAAAAAAAAAttV0BXwf2z+fUK9dHO1BP7bVdAV8H9s/n1Cv
XRztQT8VBUFy4SjhP5+IE6rPX94/FQVBcuEo4T+fiBOqz1/ePyAIauQoqoi+FtVWX/0M1b7GWI0jmLWwvssn7JOONNE+znv1xaNXgT9ijS5IRQ11P0faDR22aQU9zDoR
XrAxCL0BVVLc///vP5sokSk2KaO+b8DQNaZgoz8ltwR7B5TAv6+Fh3/V1nG+myiRKTYpo74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKLUw+SKTKa+QOUz
s4Pz175kyWhdfgKIPg9Z1XVbgLk+wK3IKDJDzT7Sbh+RfJC1vg4AAACE15dBAAAAAAAAAACp6IbN/xjbP9SV9q0mNWA/qeiGzf8Y2z/UlfatJjVgPwtl0LrEOd8/Sj+K
CPZi1z8LZdC6xDnfP0o/igj2Ytc/8JPBARqHkT6kMlvWPkrRvqKHiMJZZLe+z57/pd+lxz6mspOkPzODP+UrPQ5YrnI/m1CEZCEx+jwgjBoRU3wBvbgfAd3//+8/VzUg
Ae9pqL4xW4043+eYP7RMLnCXKru/6u8iJHB/cb5XNSAB72movgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9BxMEzfpb4SYNzAaoTevnA4QSzd3oc+8+ix
cjutvz7pGf25PibMPmcouFhi0bG+Frm39N4DnkEAAAAAAAAAAAT6WPJvHNs/n51Md4RSbT8E+ljybxzbP5+dTHeEUm0/MQLHcH4u3T87VGMDhC7SPzECx3B+Lt0/O1Rj
A4Qu0j8gYpBr5d6iPpBxyHGRjc2+2LexnbLAu76S2TD1TG+9PpFkJsmCnoQ/6TM2x7AlcD8M+i1DuCzwPHHgXs3U9fm8RmIR3f//7z/EjMgDxfeuvo72NQ1vdI8/P7pE
F4kNtr+LaSjdTndxvsSMyAPF966+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADzGniWItWlvlBsKSLbWuO+dE3FIAfxhj75edDHWcjDPsE+m+pbdMs+ZWRO
7XdQrb5aAn7OteSiQQAAAAAAAAAACgf2GN4p2z+cmuGJkhV1PwoH9hjeKds/nJrhiZIVdT+A6bHnkdnbP0QzDFePdMw/gOmx55HZ2z9EMwxXj3TMPwDu/9k8zKk+dv61
RsN5yr7gh6zSyYa+vpS36419bqs+ffOC7c+qhT9qIb8qjnBrPwkWZ9ibG+Q8six5WQ+u87yuJprc///vPwA293pflLO+WfCo0Utegz9JmZFUo86xvwdTNqnssnG+ADb3
el+Us74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIihxdSnH6a+YaeNWXd56L4W/feKgDqFPgbMPe6A0Mg+zk9X3s8Oyz7aJ7YBi0Goviho/q4OyadBAAAA
AAAAAAA/CeMIW0DbP68FMTh7hno/PwnjCFtA2z+vBTE4e4Z6P/+XTByk/No/EQEDqzBcxj//l0wcpPzaPxEBA6swXMY/QJ8lv2y0rj4u3UflKw7JvlUnYnh+H8C+QLTo
gC0ecL5v5LVxZW+GP4HO4pEFEmc//W4HMxoa2Tz/cQihukvuvEOlstv//+8/HyGimLW0uL6rrlOpTrt2PzWi+ObwrKy/BLS9Xq0mcr4fIaKYtbS4vgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA1vE1t1iwpr6rXaz+4uHuviou5JAWzII+8j6aPoo5zz6N0Vescd7KPo5qN57VdaS+cUpNRqvxrUEAAAAAAAAAABGXwV+cXds/GqPj
ee43fj8Rl8FfnF3bPxqj43nuN34/HExBFmFt2j9wcp5cA57BPxxMQRZhbdo/cHKeXAOewT8EGhNJRSqxPoYIkMIcKsm+ZAbtwtejwL7QGQ1Mc16vvpBBqgPOAIc/tstC
cZpCYz+2Ewj6eGvPPOtDhEDYkOe8uX962v//7z/xtxFoaiG/vrTF6Avx9mc/30k8gfcMp7/h+ocjwMJyvvG3EWhqIb++AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAB8p+cscHOnvopK/4DidPO+f+BwuXWpfz4Hic7vL7DTPmTs/iCP0co+3Jsx5n/lob6KTwS2QNmyQQAAAAAAAAAAiBQwWwh+2z/asAim6LJ/P4gUMFsIfts/2rAI
puiyfz+nwGvQIxDaPz3Lna2bz7s/p8Br0CMQ2j89y52tm8+7P1ioBb4AjLI+JJ/FgFPJyr7aPigom/DAvjyJj5rZLr++J+OiC5pthz8ik+KvovRfP16pPv0Ss8M8wf4B
/QN24rysRRzZ///vPynvzn6dmMO+sDXFVOKUUj/oSC3KIoGivwKR4yndcXO+Ke/Ofp2Yw74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI5Bq3RUTqi+8m95
3sR++L6GVGhYNkd5Pm4E7yrR29g+NGg36f/Zyj6cN/XJSIagvg+yjSKiurdBAAAAAAAAAABssIt5k53bP2CCcNoz/n4/bLCLeZOd2z9ggnDaM/5+P/FgCgZE09k/5mz0
Q2v7tT/xYAoGRNPZP+Zs9ENr+7U/WAamcQSbsz5kvD36mvzNvnB9v3l8G8G+gKwrC/kuyL58H4rB576HP62nMDZLU1o/Fy5TBaG8uDzZWg7Pgw/dvK+xxdf//+8/vb4M
ywKpyL4A63ewqDoavybkAi9Eqp2/3ItUKCcddL69vgzLAqnIvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyib8nAkqb6Nqsh9Q9P+vvi6u86dKHM+lu+2
RCtm3z5bfBuIjOzKPtnOPW+LTKC+/5SgoYLfvUEAAAAAAAAAAMcw5lUKuds/RMDLxTSXfD/HMOZVCrnbP0TAy8U0l3w/SM/KFoar2T8JCOwxN2WxP0jPyhaGq9k/CQjs
MTdlsT9QYQuseGa0PmgtZ2IWdNG+UkaelrMywb7oSPSFXArRvguDzwyT+oc/RVtxpx6GVT8sdvc/XBmvPCMj59Dk8da85m+a1v//7z/d721hTQfPvnBT+eldFk+///dO
qMu8l78Rl+UMyLJ0vt3vbWFNB8++AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzFj4Qet+pvrDX4VyQZAO/ZCSLLi+/az6zuO2JX9PjPvjXb2JKAcs+8lEa
hiIuob4Gdz2Q0s3CQQAAAAAAAAAAHQTJD93O2z8v2gUzCTN5Px0EyQ/dzts/L9oFMwkzeT9F9BRArJHZP9QFdsoWj6s/RfQUQKyR2T/UBXbKFo+rP7zDhKQT+rQ+fPAK
E0Pj1L5qqohTDz/BvhLfJmCL59a+BmBhlx8liD/yeEwLaXhRP1cBNYOQkaM8ygDxC3In0rw/1avV///vP+IZ5BpxhdO+SCjek0v+WL+B/6++AfaSvzEDcmAVKnW+4hnk
GnGF074AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIsVoriadKq+a9uaYc1mCL/M4DsdrGNjPgsw74G/Bek+nVoW+MATyz6Y4XfkkiijvlK1XFU+rMdBAAAA
AAAAAACTsEC4A9/bP2uCPCneeHU/k7BAuAPf2z9rgjwp3nh1P7MKm5/0gNk/w+73IxXZpT+zCpuf9IDZP8Pu9yMV2aU/DA1ycl5htT5OwTgruXbZvlbLZYOnRcG+8uXr
Gmv+3b7Rgk7gi0KIP7cAb40OL0w/qWaUnJWlmDzONeGNVsTMvGU2+tT//+8/cQMWW8qQ2L5wxJOeIVBfvw4rZItzPo6/DU+NzeSCdb5xAxZbypDYvgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAnPX8AJ7jqr4IuNnx/LQOv3hCGME2dVo+/1sBZsqP7z7KsI+bQCLLPo2r9PibR6a+FQAAAGXNzUEAAAAAAAAAABwDqBJc6ts/z8DH
ExHdcT8cA6gSXOrbP8/AxxMR3XE/u+hYNzZ22T9U1HvkulShP7voWDc2dtk/VNR75LpUoT/oiwDHbae1PoYI//jiad++6qgIGUFJwb4Z9/6njVfjvoqWtctaVog/pH+y
+4ufRj+b/+g0BRCPPPHYXF8T0Ma8gt571P//7z8BbbeLsOrevlBvxc6XvGG/0zaOsywXiL8zX/O+EMJ1vgFtt4uw6t6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAE+7fulDKrvqHtUVeuUhO/MAH1StjYUT5eY3+T1OTzPuOMDrfHLMs+muJb/qapqr6w0/JYa8LSQQAAAAAAAAAA7DCj3gry2z/kNj9CWj1tP+wwo94K8ts/5DY/
Qlo9bT+O9UYfWG/ZPwHkrZHjgZs/jvVGH1hv2T8B5K2R44GbPxSKD6XL1bU+EwumqfOF474+vE4KT0vBvoCZ1Avat+i+Sg/Am2pjiD/ylI9FchhCPz3ZCahclYM8Y9er
qAwawrycyyPU///vP6FGW+zvdOO+eHvaAaQWY78Y7ynj5SuDv1tpKzIa7nW+oUZb7O90474AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYpu76gaau+d4dx
5ytSGL9AYhCuqCRIPrK50JhrEfk+u3r69gs0yz6nK8yrHkGwvvOCHULjnddBAAAAAAAAAADroZQiHvfbP+CxRjwIq2c/66GUIh732z/gsUY8CKtnP7/bWQD5atk/KhXm
Y+nVlT+/21kA+WrZPyoV5mPp1ZU/ONONh+XztT6+WJWU02Hovg2r54GSTMG+1Dm7S0dp775rj+D25muIP0SjF0JY4Dw/Kr7tFZOzeDwnFcZT+Ly8vC6T5dP//+8/BR1c
VLp96L7UloxRV/VjvyUrXcZ/fn6/jFrqaDYNdr4FHVxUun3ovgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoQcoA4SQq75TsXLpKJ0ev4DnZmT+rUA+XDdz
4gCU/z7OMkvg5TjLPqwOBdIIDrS+NQK+WlK73UEAAAAAAAAAANxw4Hdq+ts/P0quLFQEYz/ccOB3avrbPz9KrixUBGM/gnDZvjJo2T+sFzzxA1aRP4Jw2b4yaNk/rBc8
8QNWkT/oLWa4GAe2PvT/wLR5iu6+xq7yUHRNwb6duQVxgePzvgNSp/JbcYg/iOz3W0cANz9D7ii+ZSpvPOYTuXlb0ba8YKy20///7z9TRG8UYNTuvigOyM+wg2S/U1A/
KNI9eL+k9jrQqSR2vlNEbxRg1O6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADypktE1K2rvhFdxQy8RCO/QENscR0vOD6jgAHdm+IDPzvnnEMQPMs+s/qJ
E/btuL6JTvALC7fiQQAAAAAAAAAA1WQLV4n82z8KJZzMSmdeP9VkC1eJ/Ns/CiWczEpnXj/LEb/lcGbZP7Z/O55jh4s/yxG/5XBm2T+2fzueY4eLP2i8rCgPE7Y+Q8qK
KNcp877WaNQONE7BvgAy3KSIIfm+RfDwPdh0iD/xWVF4vEwyPw6PkVBgqmM87IwolbMesrzxMY7T///vP5z3nhinZ/O+yLw9skPeZL9GjUPK8UNzvyWxbAfnOHa+nPee
GKdn874AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUYSckgx6u+RpHG3pBBKL/gR4g5dh4zPgLptcFXCgk/5AamlRc+yz6iDi72lSK/vm9jheOQj+dBAAAA
AAAAAAC77zn/4/3bP54tcWQDNlg/u+85/+P92z+eLXFkAzZYPwmQCF5UZdk/Hgfsbk7bhT8JkAheVGXZPx4H7G5O24U/1LSq4Coatj4e/GM0vxP4vvWacUcBT8G+zAQj
fC62/77Sg62pD3eIP7JRG2v8Fy0/ffGhlxPTWDy5K7gkC8isvIXpY9P//+8/O74Y16ht+L60lRuYuBdlv183vOmnnW6/umaDPQtOdr47vhjXqG34vgAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAflDI7hq74A0d4ME4kuv2BSOp4eNjE+SA6jzneHDz+vzUukXT/LPm2iOf8MgMO+lh4xq0qp7UEAAAAAAAAAAMaZ3WPA/ts/KEhZ
gjM3Uz/Gmd1jwP7bPyhIWYIzN1M/3KNYj6Bk2T/ipowi1VmBP9yjWI+gZNk/4qaMItVZgT+IKWTU3x22PpA8WK7rRf6+oNwcywpQwb6PNFoqlP0DvwMId3d3eIg/jDjH
ZVgcJz9+KiPb9VhPPN+73kED3Ka86ecu0///7z+fG+nNscD+vkAtbi0ZPGW/iOGcd+RSaL8GLWMLjGh2vp8b6c2xwP6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAACsdTwOrwKsvtelsSBvODO/YGHqkWAbMj6D/YjvN9kTPx639fkiQMs+dZPbNMN4yL4iXQSlsavyQQAAAAAAAAAAez9KHkz/2z8R1qIJ1WROP3s/Sh5M/9s/Edai
CdVkTj/fPPP+LmTZPxTKgRdzins/3zzz/i5k2T8UyoEXc4p7P9woT2ryHrY+afL+ymgKA79di1PuilHBvjA0IgyZMAm/dVZcNFt5iD+vDiBHV1giP6ySHrhDzUM8Bub6
Choooryq0ePS///vP3yDjDd9WwO/WP7u1RlTZb8k9XcjxFJjv1AdyioXjna+fIOMN31bA78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnzfPWcMay+R5tv
hVwyOL/AljseqwU2PvWu1XFM/Rg/bAzw0Y9Ayz70IOGeJr/OvsvUTDRHgfdBAAAAAAAAAAC1sV+MpP/bP1O9BwqV7Uc/tbFfjKT/2z9TvQcKle1HPx/TvkvnY9k/d0pk
SwXZdT8f075L52PZP3dKZEsF2XU/bFcag5odtj6c36cRcfUHv/SbkATVU8G+oI/haAe7D78OgRYv63mIP5x7WARpGR0/mpr2yQ8JOTz3btox69ecvFN6ctL//+8/AtAP
UodeCL+gSIZ1omFlv+syAd0rs16/lY2l1sLGdr4C0A9Sh14IvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyNPjHN4rL7KvJMmKXY+vyB3PjC7zz0+ZITu
Lg92Hz9G1FC3ukDLPpYGWANeVNO+q+Kz6k2X/UEAAAAAAAAAAA3aIXPc/9s/675GfXy2Qj8N2iFz3P/bP+u+Rn18tkI/KbFzCbpj2T/dUmaHmlFxPymxcwm6Y9k/3VJm
h5pRcT/M54CHjBm2Po4/uI8aJw6/8IO0uWdXwb4vtzRJBfsTv55WciRGeog/iyS7qhsNFz97gMvkJbAvPJiRaXoY6Za8Ym7C0f//7z+3ifbVyq0Ov9QAMxDQamW/bqo2
edliWL9aMjzPyB53vreJ9tXKrQ6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeXgsDe+asvjQTusWeLEO/cHz91HiURT6iS0xC3c0jPwLY5oqsQMs+qhMj
RK9Q2L4QAAAgX6ACQgAAAAAAAAAAw3v/wv//2z/pQXwZ6/Y8P8N7/8L//9s/6UF8Gev2PD/GgqN4nWPZP5bPNoC/bGs/xoKjeJ1j2T+WzzaAv2xrP1z909/nEbY+u/7U
JOv5Er++sDmPCF3Bvtzvqp/rKBm/+uW+k396iD/ZMQwoMDoSP0MVR+f+FiQ8XI/TKLsykrxKr63Q///vP8jAuEemTxO/zFI/YZtwZb8chAdivF5Tv3XT91ooqXe+yMC4
R6ZPE78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnctXFyk62+tO6m2Y8jSL+A/B8I0zxQPk6CQBWw7ig/iOyCFmJAyz6c+LkgfpjevlRpdGxlOiAqKiBz
Y2hfcGF0aDogL2hvbWUvc2NoaXBwZXMveHNjaGVtLXJlcG8vdHJ1bmsveHNjaGVtX2xpYnJhcnkvZXhhbXBsZXMvdGVzdF9hYy5zY2gKRGF0ZTogV2VkIEZlYiAgMiAx
ODoxNzoyNCAgMjAyMgpQbG90bmFtZTogQUMgQW5hbHlzaXMKRmxhZ3M6IGNvbXBsZXgKTm8uIFZhcmlhYmxlczogMTcKTm8uIFBvaW50czogNzEKVmFyaWFibGVzOgoJ
MAlmcmVxdWVuY3kJZnJlcXVlbmN5IGdyaWQ9MwoJMQl2KGQpCXZvbHRhZ2UKCTIJdihkX2wpCXZvbHRhZ2UKCTMJdihkaWZmb3V0KQl2b2x0YWdlCgk0CXYoZGlmZm91
dF9sKQl2b2x0YWdlCgk1CWkoZTEpCWN1cnJlbnQKCTYJaShlMikJY3VycmVudAoJNwl2KGduKQl2b2x0YWdlCgk4CWkobDEpCWN1cnJlbnQKCTkJdihtaW51cykJdm9s
dGFnZQoJMTAJdihuZXQxKQl2b2x0YWdlCgkxMQl2KG5ldDIpCXZvbHRhZ2UKCTEyCXYocGx1cykJdm9sdGFnZQoJMTMJdih2Y2MpCXZvbHRhZ2UKCTE0CWkodmxvb3Ap
CWN1cnJlbnQKCTE1CWkodnBsdXMpCWN1cnJlbnQKCTE2CWkodnZjYykJY3VycmVudApCaW5hcnk6CgAAAAAAQI9AAAAAAAAAAADmIwRQ+xW0P8DlE+vX0k6/5iMEUPsV
tD/A5RPr19JOvwMu+vBOy2LAbowM32Tp2b8DLvrwTstiwG6MDN9k6dm/jnztdB8RiD92zrdTE4gAPx2m8W0fEYi/iRqGDrqKAL+i/DpNgAXbPXuePIj5mUE+C/0RlvIj
Br6Cm2/dDQ+QPlQ+9////+8/JMGU1zZkWT4LsTnAToXKP1lgw5hqumS/7NCFl1eD0b0kwZTXNmRZPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdvFbVYzi
nz21ZVFZyzUovhDXtCWKS0o9Hx8OaH4PsT0AdoKLNsNbvtQdEH8lI4y+ID0mn7Ork0AAAAAAAAAAAOlHjO7mFbQ/JlmK1lM9Rr/pR4zu5hW0PyZZitZTPUa/V802OVPL
YsBJl6t5NLPSv1fNNjlTy2LASZereTSz0r+z1unrJBGIP6UB82Gj2/c+ZJ0Y5SQRiL+KBvtXUOL3vqQ8J3gqjdg9YOQYKpkoRj6k70OYVWL5vbVGkVMTg4k+ggP7////
7z/DjNX7UwdUPmIdxsUzhco/jSmFuYpRXr+6kdSq9/HDvcOM1ftTB1Q+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVXo6uAPicPWKwlTGWei6+aFZuMzf2
Rz3mXRmDQ3q1PQAm2n+0DFy+nJlWAyqGhL4RZguhksOYQAAAAAAAAAAA1k5dpNoVtD9OGF8O9609v9ZOXaTaFbQ/ThhfDvetPb+xKFXOVctiwGlwCRPf98i/sShVzlXL
YsBpcAkT3/fIv72IkTcoEYg/Y7C4lLfY7z7c2gMxKBGIv8Bx0oWG6e++tnfoePSi1D13s4fAT+VLPoOnzlgL7Oq9oUmJG9RDhD5GYv3////vP5q5Xgz0dk8+G9n0byOF
yj9wTdBAjstUvxELgOnQ7bS9mrleDPR2Tz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOE1053GWJg9DrTCeXIvM77KVqqhfkNEPYwVKtXWCbs9AB5AOjA5
XL4MhQVt7wF8vlySS5wMLZ9AAAAAAAAAAAC7N2LK0xW0P44XYyLgdTC/uzdiytMVtD+OF2Mi4HUwv1HpBz9Xy2LA5QPZJmq7u79R6Qc/V8tiwOUD2SZqu7u/o3D9DSoR
iD+Y2vGjTKzhPtrQ2gcqEYi/rTCXv3XB4b53Y24OFd3MPb38CHsqj1E+98R/0YvA172L1THw1xiAPpfd/v///+8/eIECJjGMSD5CBCg4GoXKP5zmUH4cwki/jDUoQ5Am
or14gQImMYxIPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeyDY2HcFkT30kwgOJyc4vuhl7MsNzjw93hEYUAQFwT0ANEixQ1JcvuC0YLJZdXC+lc9Z2sWf
o0AAAAAAAAAAAJtQBObQFbQ/KCa3Mbp4EL+bUATm0BW0PygmtzG6eBC/AgHk2lfLYsBenuWOkQScvwIB5NpXy2LAXp7ljpEEnL8FXbfUKhGIPxf2Ing7w8E+lGk+zyoR
iL+/7X97yi3CvkmHRDFDZLI9Ctrd+RAbVj4ymhIsuA+zvaIjr6Gbknk+Vcf/////7z8yyN1rFPBCPtN4BSEWhco/rkL2TEF9Mr8ASgPiblV8vTLI3WsU8EI+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnvwjtLaV1PUWWnq0haD6+3KP2Y79zJD067TugJW3FPQCYs4FYXVy+ZDzIVYkkV74vPXkpjrSoQAAAAAAAAAAAU151V9EV
tD+BSLDpvwIgP1NedVfRFbQ/gUiw6b8CID+Cu43DV8tiwLPT/uNIs6o/gruNw1fLYsCz0/7jSLOqP1RDpLYqEYg/jVuO2Uoc0b4yOjiyKhGIvx8bsLQ32dA+YTwo2bv5
xb1cK95SWNRbPmmPvnGn27w9inRFtydQdD76KAAAAADwP8scw8BIrDw+qe+HSBaFyj/MvO6ATxsnP3yNEe4QfYQ9yxzDwEisPD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAHT0REGS+om9XxRc9tEjQ76udY5MKzgzvVBMJpFk+co9AJaj/NJcXL6+W7da1VBSPk1/lrYkGq9AAAAAAAAAAADzzjE31RW0P0OEmZMQjjQ/884xN9UV
tD9DhJmTEI40Pz2R+/NWy2LA0ZUkJzY1wT89kfvzVstiwNGVJCc2NcE/Uk9GrSkRiD959cjlugHmvvp5hKopEYi/wSXpTILX5T6NCZskPdjhvQ6J1t2FhGE+oRBUteqL
zT2FjfCYoCJwPrBNAAAAAPA/KVDtiU3/ND4ljDa3GoXKP9y4/SwIG0U/lI8dZgdskz0pUO2JTf80PgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApHS81oUT
pb1g2+EVgRhIvkiKsqjJeFC9T0eYHLP60D0A4k5QllBcvlhWDvDxX24+dhJuUd+Ts0AAAAAAAAAAADevSVvdFbQ/XCGY8HsZQT83r0lb3RW0P1whmPB7GUE/XtNfP1XL
YsCP6JvHL6jMP17TXz9Vy2LAj+ibxy+ozD/vM1Z/JxGIPwhsFOCoUPK+f9o3fycRiL+VJ6lFFTbyPjMBw+ystfK969BMGbcNZj7QUl4Y4orTPeGtIIUjomk+uVkAAAAA
8D/RPP7CJuEsPiIH/GEkhco/dcpLN3rHUj/CB1eeRG6WPdE8/sIm4Sw+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADct5/V3Be2vXofBy2tVU6+VHOjgjl7
Yb3SZqUlNGDVPQAisU/+NVy+28DV28aaej5dTkfNkqW4QAAAAAAAAAAAyFWUhesVtD+7JUCdCtVIP8hVlIXrFbQ/uyVAnQrVSD8PIn1HUstiwLt3LB/p0NQ/DyJ9R1LL
YsC7dywf6dDUP5xXZrQjEYg/Cn0iWiGa+r4Vj3a4IxGIv1zJBCSsePo+8yBWYFkcAb7Ix2+cnMNrPlQkeGg5jdY9TdNTwnpcZD6uTwAAAADwPwqg/stpTSE+fhoDXzWF
yj+Gu8PWcAFcPyOTUeqC65M9CqD+y2lNIT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALpQCiwPNMS9jV6pRTEYU74O1TQbMRFwveyGEjkr6do9AGi1gU0H
XL7cS0hjIbiDPgOu6EdIB79AAAAAAAAAAABB68bEAha0P9pi5zmO8VA/QevGxAIWtD/aYuc5jvFQP1iCT2hNy2LAwxu3Cn5p3D9Ygk9oTctiwMMbtwp+adw/s/Xkeh0R
iD811te/HicCvwvmlYUdEYi/BgrOSQ8SAj/nN8zwJmcNvoIBWnMOenE+eE7VgkJz2D0scK89ZyxgPmQtAAAAAPA/Zczpt0WWCj4EIwBZUYXKP/oT62OWXGM/9bvzGxGy
hj1lzOm3RZYKPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvCMZKp1b0b160OWx2AlYvm2w1AjErXu9EK9Qw4zw4D0AnE76b7pbvgOqozyvL4s+AQAAAACI
w0AAAAAAAAAAAIQ7YB0oFrQ/NqbAxo5fVj+EO2AdKBa0PzamwMaOX1Y/E6ymlEXLYsBMjoz9r8LiPxOsppRFy2LATI6M/a/C4j8ynuF6ExGIP/7XUU2g+Ae/HqcTkBMR
iL/Ob4zlHN4HP/6UDzg5cRi+DCmiOqoAdj5QeF+Y5qXZPRVim/yisVk+6tb/////7z/UCYq3Hj39vY6Qx1l+hco/u226+WHAaT9KWEWiPIt0vdQJircePf29AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdTroRqNvcvZ7zSMkvQ16+YGo29nYKh73wcnpmi1PlPQCWdpDOPlu+PEHbDOoMkj5pzO+GoJbIQAAAAAAAAAAABM3ZnmMW
tD9QenfNhv5cPwTN2Z5jFrQ/UHp3zYb+XD+o5A4cOctiwCop46tZUOg/qOQOHDnLYsAqKeOrWVDoP0KE1IsDEYg/T+4QSeEQD7+QaayxAxGIv9jjo4iA7w4/YdSrY6nw
I74OG3rfbbN7PpwEsO5VZ9o9BDob579oVD5K9/7////vP302egdCTRy+bS3kF8aFyj/YMhZVmMFwP9sXlfxji6C9fTZ6B0JNHL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAADcxNXXJiue9Cc7jlYQMY77S9bzl38+SvUwAb7Z22eo9AAzEVrp5Wr7VXA81B3iXPpc/Tkl39M5AAAAAAAAAAAAvkeMgwha0P0AJTOhWlGI/L5HjIMIW
tD9ACUzoVpRiPyO9gU0ly2LA4Ql0iGcp7z8jvYFNJctiwOEJdIhnKe8/131mPeoQiD9x7NrqRugTv9LOoH3qEIi/qlKXZkTTEz96Xb86NBYwvk7ogT8dcIE+4/AOS1Hh
2j3fO3ZyGTZQPqaL/f///+8/cI+Q/nFmKb5WlxsPOIbKP8cKPA9hh3U/8prHl9Gis71wj5D+cWYpvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEH2gURf+
8r2Ud1X4E/tnvs1/lvk5Xp69bd0rtOTm8D0AAjK1qkBZvk6zlKsDI54+ezuv4Sd800AAAAAAAAAAAMpmnQhYF7Q/rGICgZ2mZz/KZp0IWBe0P6xiAoGdpmc/Ot/C4gXL
YsAtQrJ7kNXzPzrfwuIFy2LALUKye5DV8z/ye4gZwhCIP53WZvBoVxm/OmaTg8IQiL/rbKX19TwZP5Pv2tjXxzm+S4yASaL0hT6cY5ceLS7bPZwVvAHqwEk+hEX7////
7z/JYQb4LQAzvl0kgNfshso/qUsiW41yez/BTPrD7unCvclhBvgtADO+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYuJ689W/+vaH/dvZzMG6+NvUZTFpX
qL1DCIT710f1PQCeM4IQUFe+O3JOglk0oz59Q/BQt4fYQAAAAAAAAAAA7b+BrkUYtD+jFRjYIvttP+2/ga5FGLQ/oxUY2CL7bT+tQGgU1MpiwDiFwYqrJPk/rUBoFNTK
YsA4hcGKqyT5P88K93aCEIg/KgslTOkPIL/RgUYjgxCIv9Zio8eG/h8/M+Ki81uSRL57sl0TQKWLPpqcmXOAXts9qnIv3bl0RD5Kp/f////vP4O3oaP9Tzq+MB0qcwuI
yj92Q4x12GmBPxY7f+lssdC9g7eho/1POr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG89UjKYSQi+CAHrwZUAc74eOElsPW2zvQgxjkGky/o9AIqmX8Q8
VL7A/VYn2lyoPn+M17Ox4d5AAAAAAAAAAAAK1hBXvhm0P8ffzxgC9HI/CtYQV74ZtD/H388YAvRyPzKy0iOFymLAxmCu+z3K/z8ystIjhcpiwMZgrvs9yv8/BttYmx0Q
iD/Uth3f5E4kvxWRrLAeEIi/c2pRyu85JD/flCaGUF9Qvvu9KEwnaJE+eSgNqLl82z04HSmoaT9APiXp8f///+8/rI9EFhSDQb5mZH220YnKP9bcYqSWB4Y/aTo26LUt
3L2sj0QWFINBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbeiS11UE74+19pQxut3vnV4c8757L699z6+OBnfAD4AcPoN3blOvkn9pv0u0a4+kw8e8lZw
40AAAAAAAAAAAPwcBj0THLQ/DoBZgnfsdz/8HAY9Exy0Pw6AWYJ37Hc/vF7dCgjKYsAWKuMoSxAEQLxe3QoIymLAFirjKEsQBECQjnjGfQ+IPyw9PYxXoim/UQM2gn8P
iL8BwXT+9YcpPw4XRbZiBFq+LbB8B4nslT43B/bVXo/bPfdkkek0zzk+C87o////7z/bLLumisxGvg4AnZihjMo/OTxYCDfRiz/vjQlj9THnvdssu6aKzEa+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgUSupaLcevmEOA5+gHH6+pGjaEtySyL16sSA31j8FPgAgsLvPjT6+XTgRE4R0sz4Xl8kl13joQAAAAAAAAAAAayIGCcUf
tD+wlXckVyp+P2siBgnFH7Q/sJV3JFcqfj+Q/rHSQcliwOWamEhgTAlAkP6x0kHJYsDlmphIYEwJQCff4oSADog/4DaQSzwpML9+Lk5Igw6Iv9Lfzd2hGDA/OrpFGUqm
ZL4fmegB5J6bPmC5gFZ2mts98/TlK3J/ND6FX9r////vP7tQhHcaTE2+Y/FjRBaRyj9Y1rKdl4qRP4NmAYo90PK9u1CEdxpMTb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAO7FNZ8gYSi+HOIRHIzzgr5uq/oKO4HTvZ/9G/opxQo+AABJwZ9nMj5Smea4D4m4PvkhmYD3zu5AAAAAAAAAAAAVK6lsnyW0P/UgAsf+AIM/FSupbJ8l
tD/1IALH/gCDPwnercoHyGLAdxmTux7gD0AJ3q3KB8hiwHcZk7se4A9AmtGOS+8MiD+6qnRy1lw0v9jEtbDzDIi/r9Fp1fBHND89hSQ1m2BwviAawaP5Z6E+TTGGNWWg
2z1pmA+fIUcwPuaBw////+8/+AVW8dGsUr47FXdjJZjKP3K5uxLVGpY/Oue00Qw//r34BVbx0axSvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASSnnl+lV
M745BKR6P9qHvqzVmSWY8N69Kpms75zeED4AkmKZ9/1XPjmysZzh6r4+xWzxLI1k80AAAAAAAAAAAImV56/kLrQ/YKmd9G/uhz+Jleev5C60P2CpnfRv7oc/sK+xZxbG
YsChI4QY/BEUQLCvsWcWxmLAoSOEGPwRFEDs+mHOcwqIP3UfKRd6pDm/1W8ryXoKiL9neWAJLoo5P8tSCca69nm+Wo9Zm+/zpT4teDmlc6LbPfSw7Qd32Sk+KUqf////
7z/uiPKbwbBXvsLNx6RTo8o/M0d1RqnWmz+Pa/PGdS0Ivu6I8pvBsFe+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABULEUHXac+vu/hDt9XBI6+Qj4zC5GG
6L11fcX2YkYVPgDCzUk2Wms+jMgiNuN3wz4FAAAAAGr4QAAAAAAAAAAAGGdgN5I9tD9vTavMOB+OPxhnYDeSPbQ/b02rzDgfjj+NEqLnAsNiwBR7C4wVQxlAjRKi5wLD
YsAUewuMFUMZQLX046aFBog/YRvOFUojQL/ezDm5kAaIv/hNqzW/EkA/95TmGByShL6a0woAZ7erPj33DyYUods9/1S1KBOFJD488mX////vP5yKahDR9F2+FLXlYAe1
yj/UeYxKP4WhPzH9YYG4QRO+nIpqENH0Xb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqcBspoSUi+SwGU0Azikr5OPXB0fm7zvW58tOut2xo+gPxxzjbV
eT5pWB/AVIHIPoi/q6hIvP5AAAAAAAAAAACErM7dy1S0P3qd2rlt8pI/hKzO3ctUtD96ndq5bfKSPyDd29EkvmLAZLMuorfHH0Ag3dvRJL5iwGSzLqK3xx9AdMyGlU0A
iD+3C9OSPU1Ev3M5bSFfAIi/syLsj284RD+y1Qh7DEqQvjnARkmIhrE+tRR0B/2b2z1AiWDcb0ggPqM1C////+8/LBJEDc3lYr5428EQCtHKP3S+xcSECqY/r7R6n0uZ
Hr4sEkQNzeVivgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASW0QGs7U77I100w0b+XvqMg6N1bxv69QtUbHv76ID6ArQmxy4iGPlFPCtsL1M4+wefQjcpY
A0EAAAAAAAAAAOwRc/aCebQ/48F7F8jRlz/sEXP2gnm0P+PBexfI0Zc/MrjC9nK2YsCTCMDq9/kjQDK4wvZytmLAkwjA6vf5I0AtYkrJePaHPxs59TnJhUm/+USGkZT2
h7905HPiomtJP2G0Wc+wx5m+sML2In44tj7kV2Z3GpLbPY36pyaY0xk+AcV7/v//7z+Xna8nMM1nvntyqrZR/co/h8dBw0+1qz+nD0/3r0MovpedrycwzWe+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrOZoPLnBevvcswslP2p2+R0W0nWRaCL4YxPXAXoYlPqCTfaCN3pI+uk801r1g0z5dChvaMVsIQQAAAAAAAAAA1iENO3ez
tD+2jGngaeqdP9YhDTt3s7Q/toxp4GnqnT8gx+GWTapiwO42WCHRFilAIMfhlk2qYsDuNlgh0RYpQOAGahP05oc/StL9/gEHUL9kfMcDIOeHvwrtpJgt7U8/tLQiNUxh
pL5dm/gicEm8PuaZFN9Xgds9VGsf3HV2FD5ZWpn9///vPzZEn/Le7W2+N8rLtTZDyz9WTXBQA2axP6i1WTktNTO+NkSf8t7tbb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAF+tnzM5EGi+WZqRkua+or7BCYlJmkATvum+GEhSZCs+QLfruILenj40sO5DJlbYPmBULCWlqQ5BAAAAAAAAAAATpmLgug61PycyYxwcwqI/E6Zi4LoO
tT8nMmMcHMKiP+o1gA0tl2LAGHydPbR2L0DqNYANLZdiwBh8nT20di9ARUjB/IPOhz+OaKAwfBlUvwJviV7Jzoe/8Ni5xeUEVD8J8+/jRRawvhzs0K2QHcI+IFf1Djlm
2z0zgrCSZjAQPgHNNPz//+8/RTzx6zbIcr6U6/TLR7HLP5YgWq/h0LU/71D49JdZPr5FPPHrNshyvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7u9eh9j+
cr6a4zbaXIKnvl7seln6ZB6+gCWsiIOIMT4AYi7ODeKoPiGbAhCOhN4+0rdmEA9NE0EAAAAAAAAAAMxw/w/rnbU/wweHRGp4pz/McP8P6521P8MHh0RqeKc/awaLrCp5
YsA8MxykDK8zQGsGi6wqeWLAPDMcpAyvM0CfGzCNLKiHP1ySQ1kQJlm/0xoW2pmoh7/nc+PzTgxZP0XFaz5sVrm+FR0JLhRrxz60fqN5NzvbPQCUD0+Djgk+72QF+v//
7z/Em4gFu4N3vvSeD4P3Xcw/HKC50jVKuz/AG55CbOpHvsSbiAW7g3e+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSCyQh1ut9vpqGvmcNa62+zCkBNePv
J76btrxk5KU2PvCeHE9+2rM++6YQjgAX4z57k6WubEwYQQAAAAAAAAAAP4JAbUV9tj/tPv0+BEOtPz+CQG1FfbY/7T79PgRDrT+Xmd9EW0piwEO7Znh7ijhAl5nfRFtK
YsBDu2Z4e4o4QCvefOJdbIc/b8SDF7daX79YfptzCW2Hv/UGE1KcOl8/ziJkaL/hw76WAltLIq/OPqeHSC3Z99o9fnbie3YZBD7Nzpz2///vP0V7d1wkVX2+XkQR/VNr
zT8Ap29YbQHBP5DZ32ZixlK+RXt3XCRVfb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR5vftZe4e+WSma6LlXsr4/XCN+ssgyvo04rvAmpD0+UJypID5q
vz6gm0eiycvnPuH8O+8Mlx5BAAAAAAAAAABa5oxmiNa3P06s14gJJLI/WuaMZojWtz9OrNeICSSyP4ODzC3/AWLAQ6VKoattPkCDg8wt/wFiwEOlSqGrbT5At45TeeoP
hz8iI6SALHBjvzGXtUr2EIe/hfpWtUZcYz+iUigpCAfPvk4JTiv9e9Q+f7RrUIiP2j2JGG9rDHD/PZv4V/H//+8/LRU8kvMxgr7kQR7GsgvPP/EfewiZEsU/RmhnyQ5Q
Xb4tFTyS8zGCvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA56dlNrJTkr5p0ZF3Z8C2vr/vWK0fUT2+1MwcQ7PBQz6088yxsqTIPt7mZmP9fu0+PrVfsFpB
I0EAAAAAAAAAAD/lqrXZ5Lk/DQ0DpZxNtj8/5aq12eS5Pw0NA6WcTbY/z/k/ALGTYcBloZE4jrRCQM/5PwCxk2HAZaGROI60QkDCwbbN+4KGP0jTQ8YE5me/KEwAWJqE
hr8k9e7bkM1nPx3nLHPtANi+M4INH4MI3D6tR2hkZ/DZPbSiDT7UX/g9KNhP6f//7z+n075Q82KGviqiAGoxw9A/R72U8iXiyT+8eRLYJ7BmvqfTvlDzYoa+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwXo3U0F2cvm9pMiI2/bu+kebsGQGvRr5xkBnD/vpKPkK9wrXnIdM+ukZPoKQf8j75xy14sD0oQQAAAAAAAAAATc8ia1r2
vD9aoQ2TthK7P03PImta9rw/WqENk7YSuz9BBsXmEO9gwEZY597EtEZAQQbF5hDvYMBGWOfexLRGQMpkjSemsIU/8MDVPpUCbb+1nL+pH7OFv28DfY7r5Gw/AhNMPKpU
4r7uYnv/QcHjPlA6xHrYAtk9VeC3oCKn8j01SFPd///vP1oeGqQANIu+RXReZcec0j9qiOMIQF/PPxTVpeVbVnG+Wh4apAA0i74AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAHog0/W6rKW+uFilnxUBwb45Ivs8o1NRvnwC8A+79lI+IBFsF/xL3T43HItlyvv1PgoAAACAhC5BAAAAAAAAAADtyzFmMLPAP1aJhfBlIMA/7csxZjCz
wD9WiYXwZSDAP1RrQ2L6AGDAQpVEDCINS0BUa0Ni+gBgwEKVRAwiDUtA0FECYnSAhD8vaq0L4kdxvzg8Bo4qhIS/Y221cTs2cT82UqIu73frvlK+YU62tew+Xj8VLz2r
1z24Q3W3aQHsPZun/cv//+8/zqKNOes6kL7N22zVnUnVP09Q0lKapNI/7EazMiwBer7Ooo056zqQvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqMikTBpB
sL5W6ZcNFkrEvmPMEFY8+Vm+LA1X1OF6Wz6kWjvMf//lPj0bUtjKKPo+t1draa01M0EAAAAAAAAAALgPks9ixMM/Hn1OibO1wj+4D5LPYsTDPx59TomztcI/Qz5AgrVv
XcDPJ3ctw2JPQEM+QIK1b13Azyd3LcNiT0C/Av+28tuCP2XktxC5DHS/oz7Hll7hgr9bR3VLR/hzP9eRKgxGCPS+UGMoDLJp9T71MsDpOdDVPT2xTEVhdeQ9A9YHtP//
7z9PD7OvkeCSvtpCceYe/Ng/uLH/sjmM1T9SKVh/Cv6Cvk8Ps6+R4JK+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACm2hVg5L23vlToJPEHmce+FOXMzQX0
Yr4R2TJ/bG9kPn7owE8VFPA+Xo/9BDBL/j60IUUx/S44QQAAAAAAAAAAWbhaa6LAxz8NYvmqCfPEP1m4WmuiwMc/DWL5qgnzxD+yZUMYaRhawLRJHuqQklFAsmVDGGkY
WsC0SR7qkJJRQE7qZU6PuYA/Umcku3tzdr8PtR3SM8GAvwqlXMimXHY/qLxNcBEt/L50lvhRDTYAP18X0Lf/ZtM9zWnZkQnQ3D0tHueU///vPzFknn9eOJW+40OG5YvJ
3T+n3YBZfPvXP2UsuXQ4xoq+MWSef144lb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8r8xYKvMC+8CCZv6+Gyr4er2o14a5qvj9eQ1rJ224+0ugUuWWt
9j5+quLTCekAP/fMoVD+cT5BAAAAAAAAAAAt9CQWsYjMP80USVpwcMY/LfQkFrGIzD/NFElacHDGP/imypk/FlbANfTAEv7SUkD4psqZPxZWwDX0wBL+0lJAvnWi4AlU
fD9jEsae1wx4v/fK9/2maHy/0tPG/Hz0dz8p+xDwTe4Cv/addHUViQg/8wenYHSC0D07GGUmAl/TPaBGkW///+8/t93wTNbelr6a6jpO1sXhP9StY7Y3cdk/65QOLNcN
kr633fBM1t6WvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc/v6+22Rxr7wYTGespbMvnYG6dNX9HG+y/h18LBMdz49gGQ5lJf+PhF2PjhTBwI/vrQ7Nwcq
Q0EAAAAAAAAAAC2//Ikg4NA/IbRQHD/Yxj8tv/yJIODQPyG0UBw/2MY/1rNxuJi2UcBBTFWe4ypTQNazcbiYtlHAQUxVnuMqU0DH59W+gr12P5TdqksZfXi/WNbYbe/X
dr+3H+zsd2R4P0UHCR7yIAi/3M2SJCxHEj+4GlE02rTKPQdTOnYhrsg9ZlPaRv//7z9h9a9E8IKXviU0kxYj6eQ/jRc/VnCB2T+48EeTtSSXvmH1r0Twgpe+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6IfSs/e3MvvVo/QPFY82+GULmg0bwdr5WAtuJvVOBPsf/N9uPnAM/JBecwec3Aj/IZYDUUiBIQQAAAAAAAAAANyp5LVBx
0z8H6PSWPBDGPzcqeS1QcdM/B+j0ljwQxj/zYod+X9FKwA+ZpXNRhFJA82KHfl/RSsAPmaVzUYRSQHuuYQGnPXE/3lFTtTiod7/cOZAoyl1xv6+OeSmvkHc/e3+uMvAT
Db8Z6s2ZO4UaP10Yhy5afsQ9KmjgSUKuvT2uddMe///vPyH+do1sDpe+y5ejBfL95z+Yz28yyAbYPxbmQ0qRJZy+If52jWwOl74AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAABKHlw2Fl9G+mOL1hxbSzL6Q+SuvzL97viaLfCrSG4k+HyJpqaPaBz/ejDrPFmMBP1z4TtqHX05BAAAAAAAAAAACj0vujrnVP6d3QffmR8Q/Ao9L7o65
1T+nd0H35kfEP6u4xSgSKkPA5MOBkSYHUUCruMUoEipDwOTDgZEmB1FAGsWavwC0aD+6rlMkJsF1v6b2jd1p/mi/oPVR7OCrdT+AcG2OH5YQv4zfzs8CqCI/jio7+Xbw
vT2+B1r3CtmwPQaGUfv+/+8/AzANUPyzlb4lqKfgALjqP5rcV0t8M9U/d+mfn+dKoL4DMA1Q/LOVvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6KlA6ld
1L6v95XQAyHLvs+LPxNZ2n++RX9BQKilkT6C0fz7CJ4LP6c8yCqWW/8+Dn6FFWgeU0EAAAAAAAAAAPufCYvNk9c/d7JkdPTewT/7nwmLzZPXP3eyZHT03sE/ogGKAgjn
OcB72nVJYwdOQKIBigII5znAe9p1SWMHTkDSK98v18NgP0iToJh7LnO/Kkd27XAWYb+g4E4KQBxzP+OzHv/m+hG/PtBQHEp9KT+KgFlkM/i0PZT8gY2IFqI98oCh3v7/
7z+gbyVgm9aTvv5nctgC6ew/C/eUClVy0T9x8dvw5xWivqBvJWCb1pO+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlxh8rZ5vWvunu0L1GzMi+I+ctFKhw
gb4SYWGIRBiYPgyfzBpKqA4/ths986HI+j6QondcsRFYQQAAAAAAAAAAnRFHPxH52D/kHn04F3W+P50RRz8R+dg/5B59OBd1vj/AzqMgGIowwAOuTp6pnUlAwM6jIBiK
MMADrk6eqZ1JQONzVwFJkVU/mRMbl6tccL8GsT6rskJWv+EO0ZbSTXA/AEovzLOSEr9qdiAFq/0wP2WK6e7uaqw9Cy+uFTdZkj25iT/J/v/vPzGTJzUg4JG+mvWsQBiG
7j9WTWJWd2XKP8+JcGQHbKO+MZMnNSDgkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCK6soMR9i+s1qYjSpYxr5FY2R9iFKCvqo6CLOdDaA+LAkvpRl2
ED8fCVO2lq31Pvo5OZYcTV5BAAAAAAAAAABoeAncO/fZPxZqugKNTrk/aHgJ3Dv32T8WaroCjU65P4AsO0cPwCPAH0e1fMVRRUCALDtHD8AjwB9HtXzFUUVA5heSJ0Ab
Sj/lXnYVxztrv0wPNksHj0u/DFfZleskaz9QmscGQTwSv1I+s3cUOzY/wlxr3XLJoj2oyGSedGeBPYsJarr+/+8/G8Ov2HMkkL7sTaObMJzvPwwXR/yviME/cRpNZ19Z
pL4bw6/YcySQvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAubxOmrlv2b7I/VLlkS3Evq9UViUEhoK+j/WRCqL+pD5LxhkpHD8RP5RZJrWSgPA+CAAAANAS
Y0EAAAAAAAAAAH81R0WSpNo/8rmnDqaitD9/NUdFkqTaP/K5pw6morQ/8MaQOrZMFcDpyBiBCm5BQPDGkDq2TBXA6cgYgQpuQUAWs8AHCfY8P7XS5pM6Q2a/2KAhlFfz
P79AU/mP8DJmPyXD0Vp+wxC/N48cjrWxPD9ivjrnmGaYPbIH7kl60W09hS3psP7/7z/8Ly0UTLWNvqwiWLIgIPA/gLHws4g2sT/xorQnbfGkvvwvLRRMtY2+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhWgv4yS3aviYn4gNQkcK+2QL96AX4gb4wgPZmEharPnCs6OqlvxE/2tNQwhIB5z6oLcbDGANoQQAAAAAAAAAA8tctnRAX
2z/+8fz5D5WwP/LXLZ0QF9s//vH8+Q+VsD/Dyh7o63wCwFtjKfBYITxAw8oe6Ot8AsBbYynwWCE8QDLAJU3JHys//nVs80T2Yb966kK2YJkwv4Vydsks7GE/W39NzsiR
C7+LlhM2ZFdCP7o9glX+R489WRJM3RGPVD1g05yr/v/vP630LUweSIy+RD63lOJB8D+Iytudfw5mv1v2/ckyRqW+rfQtTB5IjL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAJ5mvXbAl9q+pdy6GBOtwb7R7K3Scn+AvntDo3nITbE+Tqcsu+cGEj8atbTND//aPiVqln28Om5BAAAAAAAAAABMveBKkGDbP2KsIZusUKo/TL3gSpBg
2z9irCGbrFCqP9jGJBrrOde/QL773Dx4NkDYxiQa6znXv0C++9w8eDZAeGLejB/mDD+G+IaZCLBcv21I/dZ3qhq/mLmyPZCnXD+TeDe/IEsBv9G1vVBlSUc/H2ILwvjY
gz2pqnGMCoQkPewowan+/+8/2/ar6H0vjL77YW1PWzfwP772Qpmn3LK/q1I6ce1jpb7b9qvofS+MvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY61QbOm8
2r7sfIy2rp3BvrTzbOmtn3u+PlDJWvPztT7mHtfTIx8SP+jfkddAqsE+HSBl8j4Hc0EAAAAAAAAAAETaukUMjts/jJMmLUecpD9E2rpFDI7bP4yTJi1HnKQ/R9Kh6rmi
6z+yIX39UckxQEfSoeq5ous/siF9/VHJMUBMZ4XpzisFv1zATSP9sla/SMuqXzxs2b6VJGMUwrVWP4CwTQ8FrLG+l4PL+sNoTT/kgk/JhPV4PSXwLUXdYzO9e7EDq/7/
7z/pB2yE4JqNvmTdoa4f/e8/bztfWRfPwr8HIFDoxE+lvukHbITgmo2+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOzqGtqPavlCWEUnMgMK+e5YUKI/b
cr7RtCayTLK7PganbFWNDBI/RRFg5HOYwb7woQoFifR3QQAAAAAAAAAAcQMOQkWo2z+PTFd6bMefP3EDDkJFqNs/j0xXemzHnz/2zjUCZ6n5P2OrDdjj5CtA9s41Amep
+T9jqw3Y4+QrQOxuRo0SqRm/nnCP+cfJUb8wNTZnakgLP4BOk5x511E/nNDqusgLCj8fAN+J9ntSPz0O1YWeF289rWfNdZyaPL2mXICv/v/vP/6RY5htZ5C+yYZF3rce
7z+SInuMdZLMv6DEozX6B6W+/pFjmG1nkL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANPyOwH5Sdq+Qigv8EiBxL4oR1f95jlVvucrttx6YsE+MmzRsW3N
ET9/EqyYZSvavj5/oIlnKH5BAAAAAAAAAAAjG3iqxLTbP5DlRRK1+pc/Ixt4qsS02z+Q5UUStfqXP1Ayz6QuFgBAOX5mdFShJUBQMs+kLhYAQDl+ZnRUoSVAGCaNuaHy
IL8GPNPsoI9Lv66rAs1OKRY/CICWXD7ASz8iVRCpP+wgP2IdKnUDH1c/sZ+5vcEmYz1mYp6CfHw8vVqJrbf+/+8/Zbe+pW8ck75/8mpjzbjtPz+wndecUNO/ln5jaieF
pL5lt76lbxyTvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt+FJa3Gm2b78JvCAi+PHviAGx5ILnW0+KCtlSqa2xT5+ZuiQNlsRPz65BBd+qOW+PFtx6LT7
gkEAAAAAAAAAAO6UaEfatts/nEtwQkyLkT/ulGhH2rbbP5xLcEJMi5E/s6/kJ2FyAUBBC5L7iYogQLOv5CdhcgFAQQuS+4mKIEBb+8WERaAiv4xpL3b0C0W/r0KajSb0
GT9B4JWemlBFP/B6f4xagjA//aYJiPK+XD/CKzAkS0RXPfJ4yr1miji9fEAtxP7/7z9iKk4Z50GXvsMGMqiUrOs/QKRhsZxJ2L8+pED4K72jvmIqThnnQZe+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxGJUNd6zYvp6BXNNgEs2+Jzylb2CvhT7kDQ/4p/fKPtv2OQQKrRA/iO5/Hqzq7b6V3eYaAuaHQQAAAAAAAAAA69or3YKw
2z++XcJAUYiIP+vaK92CsNs/vl3CQFGIiD9jOHRPyWcBQNMmOtt+3xhAYzh0T8lnAUDTJjrbft8YQCaZZ3hqfiK/LaSFmlaVP7+xBcKEikoaP7xElYvWIEA/9YWr5yDE
PD/jcsT3+7hhPxDV2c9nyks97cZE9XNyM70tfnPV/v/vP+u/+NagVJ2+uqnjKpfk6D8aHqtd8cvcv6/EKh3IqKK+67/41qBUnb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAMKpWjL6Ute+9Np+geRU0r5O5ZP1JG6UPslljAdwpNA+Y1XWvjR5Dz+Xu5hHw6/yvjiLlbMdFo5BAAAAAAAAAACicBDuOKPbP5X0alMxBYA/onAQ7jij
2z+V9GpTMQWAP+wt+wt3VABAx7dxPXdZEkDsLfsLd1QAQMe3cT13WRJAFhK54nsFIb+pSC65KTw3v681VXEAGxg/omZ+t5kCOD8+uCVWSohHP0I0Jq+TmWU/3vEoOgRJ
QD07qgitWvwsvWd8Rev+/+8/l4BgNSv9or45xpGDlGjlP2HtNr3EIeC/L42KOahLob6XgGA1K/2ivgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl7IRUJKe
1b5nFRn/dbzXvgZIC7EpNKA+PN7KJepp1D5fh6FFUBoNP8c87n5vpvW+P8Tj3THwkkEAAAAAAAAAAKsgmX+VkNs/LE5iUTbDcj+rIJl/lZDbPyxOYlE2w3I//UL4/Lwj
/T8GAm1EdJcKQP1C+Py8I/0/BgJtRHSXCkAIfUOGulIdv6P9i4jzxjC/A+dsSglBFD+begG+jpoxP2VJQT/6aFI/b5I6mf7kaT9xuvxXC78yPcsktHHiiiS9hfBNBP//
7z/cJzAfdvuovtxvIrAgbuE/JHlwY7oN4b9hk1bvQXafvtwnMB92+6i+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADz3kU66anTvojVaqRTOt++Suw/E9EN
pz4GisvIb+rYPlxg2eGnYgo/BrTRR/B6974OAAAAhNeXQQAAAAAAAAAAk1Xj2Ip62z/yS9wCZeZhP5NV49iKets/8kvcAmXmYT9/mXdLk/z4P9vKwGdaBwNAf5l3S5P8
+D/bysBnWgcDQLcoE4qyyhe/OmibCnHrJ79rLY0GjDsPP6F/XrO7jik/NVidAVayWz/bAx5W+lVuPybCBMawTyU9BpGHMN77G73qki8e///vP7l9JTVlhrC+Zn6SfPqp
2j8JXexAsADhvyICuaINOpy+uX0lNWWGsL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG+XXYhIpNG+Nv6Ogf6n5L4TZIe+qSWuPouPdXYBV94+ocIH/fqT
Bz9vr1RXyfv3vha5t/TeA55BAAAAAAAAAADQwhydLWPbP8j8i8ITMkI/0MIcnS1j2z/I/IvCEzJCP2hrT2ZW4/Q/RL7E6x4n+z9oa09mVuP0P0S+xOseJ/s/ACQLwNNZ
Er+WURKZsAIhv6uoMIy+AAY/m17mGpuFIj+zspvzjQFkP+Ej2D6jOXE/InYDlMsnGD3e3kafDJUSvQgWQDb//+8/kou5tenMtb6k0uighRDTPxYoYVhsCuC/iYsGP/03
mb6Si7m16cy1vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3ifNkfyFz74PRpMiJEDrvoVVHeN5YrI+B03ynrx94j4qy5Lns/cEP/IQ3K3zRPe+WgJ+zrXk
okEAAAAAAAAAAAGXko5hTNs/cLPk6B5eOr8Bl5KOYUzbP3Cz5OgeXjq/p+ZUpvJU8T8OzdPJ0oXzP6fmVKbyVPE/Ds3TydKF8z/kBx/aMkgLv2CqN+oVbhi/Eo0hjvTt
+z5he1s8rggbP2DeLMV6n2s/I3VzzlXMcj8zZYCQXJcLPYSX4Catfgi9Nox3Sv//7z/9i2wMV4q8viDvvTx6W8k/oSGFtGDZ3L/2rkJ5DrGWvv2LbAxXiry+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/0EwZUl3MviTakmd21vG+tlOdexgttT78sIWoo6DmPjaDMHosxAI/JFOJoda29b4oaP6uDsmnQQAAAAAAAAAASpyFsMg3
2z9R3HGWDrlJv0qchbDIN9s/Udxxlg65Sb8nC15g7xHtPzZJ3qgLhew/JwteYO8R7T82Sd6oC4XsP/TZ2UJ84wO/NX5p4rTjEb9kyMFjXojuPmBbOPLA+hM/M1egx94h
cj9OT+9HyZFzPz9rbBYiAgA9wvA35DRRAL1K9udZ///vPxK7PFP7gsK+4vJ3G6P6vj+9Nb1p8ffYv4FoxjYBw5S+Ers8U/uCwr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAMYkeIXB88m+a0frJ7oj976RrxnTbEu3PvNstgRS1+s+LzjjSg4PAT/qApKyaMzzvnFKTUar8a1BAAAAAAAAAAD6kBD94CbbP5gHrSVQvUa/+pAQ/eAm
2z+YB60lUL1Gv+KgovRq++g/WR0Ajyk75T/ioKL0avvoP1kdAI8pO+U/wtR7bnP8/L70lTXSEdwKvzj8UVSiCdg+44so2UjwDT8ZcJLeZ5N2P4OGplKPXHM/hIbg9q3u
8jyHZ2VW8Ub2vBf/kWT//+8/VDmx4LjPx76kvNn5+LOwP9kR1e/bAdW/YZ4XHcBtk75UObHguM/HvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAafv0JDBJ
yL65QMcYp8P9vk5/ZoLpsbg+UDb4mus58T5Dn/Jq46P/PknVodyP8vG+ik8EtkDZskEAAAAAAAAAAFHy8/P6Gts/52NJQF4eML9R8vPz+hrbP+djSUBeHjC/JjbknXIl
5j9HQvBaFhfgPyY25J1yJeY/R0LwWhYX4D9mDJd3gn/1vjlq5H95swS/AM6FCOMCmr4d5DGHt6sGP4D6jtIatXo/9qBWIUs7cj9G9ojHT8vmPIDdBNWTX++8Nibyav//
7z+XWYGWcGvOvsuAEjY6bJs/Kt2G0gdV0b/yokw5u6GSvpdZgZZwa86+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADx+PoHKkrHvhoACV4mAwO/M40PhUZj
uT4KBq0ILW31PhWQ3EdQ7/0+ULoBYkB28L4Pso0iorq3QQAAAAAAAAAAZg2mAPkU2z+rxfjxeqk7P2YNpgD5FNs/q8X48XqpOz8jDiOlEz/kP8w+S/2zvdg/Iw4jpRM/
5D/MPkv9s73YP9qikvh2dfC+lCxC/iliAL/Amf3PcMfSvkILD54gQAE/ZV+774Y1fj+baghmqnBwP/EhKmZD19s869Hi8GfI5rzvyKVt///vP44a7AfnVNO+UG2ikWdS
UT+WlezvqTzMv0PhLOJGS5K+jhrsB+dU074AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvI75oY3sa+Fm/hySAqCL8Xc+OZzme5PqJXDj5Mw/o+frzpP6HP
/D72SfNzqw3vvv+UoKGC371BAAAAAAAAAAAbzLKHDRXbP1PoxqHqClM/G8yyhw0V2z9T6Mah6gpTP11Lu84pAOM/X+f5b2440z9dS7vOKQDjP1/n+W9uONM/mNY6f905
6r66u7AOV636vqjm83uc+d2+1QtZxHks+j7glbBUwnqAP/p9e5t7pGw/PnsVTyou0TwH/0mAyfvgvKjNSG3//+8/qtnSUf962L53fsedODuQvxstxueh0ca/+mz2SuZW
kr6q2dJR/3rYvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjmTW3Z/sxr4kUUMmv5kOv6nKVvUAzbg+OR0i1b7EAD+iXzOFAhr8PkGmtW6+ge6+Bnc9kNLN
wkEAAAAAAAAAAAcD3ZOYGts/5/IuTv4IXj8HA92TmBrbP+fyLk7+CF4/xIj3LYYx4j+wBJbLPBPOP8SI9y2GMeI/sASWyzwTzj9sa594p8flvi1sXtvVc/a+xIAtjeCV
4r6uFHRuBZbzPr3Z4jwlgIE/Hl25mKVRaD+otmhjplrFPAJ5wyS21dm85bF/av//7z/wOBcGAuzevqKbClp+ipu/3bR08vRZwr9Ac2vDCbCSvvA4FwYC7N6+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5qls0DFzHvjzmzEOBUxO/fiihvUertz7j9qANMBAFPzgkQIgerfs+QG8M+tJx775StVxVPqzHQQAAAAAAAAAABPIfIisk
2z+D2vW9dgZjPwTyHyIrJNs/g9r1vXYGYz9uTd0vXazhP/5zoB/do8c/bk3dL12s4T/+c6Af3aPHP4w1vjyty+K+i72pMc6w876agR5n29/kvgT76zRxbew+Gr39vC47
gj92C6SozEVkP1xD6GCLqro8jZuUhkLv07xvGg5m///vP9yIsQIHf+O+NW4kaAd4ob8fOQvWt229v3pxEbI8PpO+3IixAgd/474AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAB8jo97LDci+IKxcw8heGL9l7NwWzCu2PmIOiYVLgAo/l72VoEhw+z5vBkJFOgPxvhUAAABlzc1BAAAAAAAAAABGjUARyC/bP9CuZ7yLDmU/Ro1AEcgv
2z/Qrme8iw5lPx8gZC64VuE/ncDku8ujwj8fIGQuuFbhP53A5LvLo8I/uAWElbTE4L7C1flXsSfyvvyic7MYUua+4C+660td4z7r/2Sw5b2CP7ugtXXGrWA/YJ2s3bGz
sDwJ21a52xHPvG9D1WD//+8/CP44+R+P6L5OTS2E9OWjvw2DMGYljLe/F/MRklflk74I/jj5H4/ovgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMmedq3e
yL78RIb357Iev1qak4QuhrQ+ts/DJRWwED+3MQOxjFH7PnqSLjSzOPO+sNPyWGvC0kEAAAAAAAAAAKDUYMFsO9s/KmpsiFAnZT+g1GDBbDvbPypqbIhQJ2U/kXcU+q4f
4T97D+N0L3W9P5F3FPquH+E/ew/jdC91vT8YSA/QOMTevhTTbpU1tvG+aDPTDQI7575QCIQSwtLWPsv+JV21F4M/713qpr4tWz+d3zuGqfekPM75VS6jX8i8A4SrW///
7z+rKKJBWevuvgiKblGnf6W/mLDCbJbPsr8P1JB/j4qUvqsookFZ6+6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+RnpfM63Jvu73BMkXUyO/UJdBE/zy
sj5jpB99sgYVP247VpMxRPs+9yjqmEp69r7zgh1C453XQQAAAAAAAAAA5Y/7zaFF2z+KpCj2vcVjP+WP+82hRds/iqQo9r3FYz/fbVBjXvzgP1O8oUUgULc/321QY178
4D9TvKFFIFC3P3i1jfKY4dy+EE4FlK9M8r5I1t8oN83nvuBdN+IjacA+500bEXlUgz/HlTMyW/tVPywvZrUbXZo87iF1cGQ0w7z71ydX///vP6WsY2ZrdfO+/kSQfiSN
pr8M6jTwIAOuv5NOqAAFG5W+paxjZmt1874AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANyt1UDGYcq+/0r8P8ZSKL9mGLKpH5uxPh2D1N6dfho/JgPa18g/
+z5+Yzy9bvT6vjUCvlpSu91BAAAAAAAAAAB+P7Rzuk3bP38F26/ehmE/fj+0c7pN2z9/Bduv3oZhP3nzRcHD5eA/m1sj2nd4sj9580XBw+XgP5tbI9p3eLI/IAReNP+c
275oV11Fj+vzvjw8e4n3KOi+QA0l1ATGt77NgGza9nyDP6j//S8crlE/p0WkFveXkDxCNbuQ21m+vFdMilP//+8/Lkiuq559+L7Ph2pKaT2nv0hwby3e6ae/CNwSdbaO
lb4uSK6rnn34vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKZZEmTyyr6FnZlWBp0uvz6ldHxNkLA+BqImMtawID+Ub3qCTz/7Pj/zM0FucQC/iU7wCwu3
4kEAAAAAAAAAAC6owwSyU9s/ZQrU8pXpXT8uqMMEslPbP2UK1PKV6V0/rGBmNFfX4D/6Ql7Xd0qtP6xgZjRX1+A/+kJe13dKrT+Qd7DO6cXavuQXa4FAo/a+rHFpPJpi
6L7A25J092TUvtdlSlCRl4M//0VIivhSTD9Q379Q/ueEPM1Qu+E8B7i8L+HKUP//7z/njptqKdP+vootlerTr6e/WodYy0MJo78H5yrao+aVvueOm2op0/6+AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABH77bQTGDLvkkhoeL5QzO/TfTxqlGirz7t9JXMigYlP9SlSZoqQPs+pATBv3FKBL9vY4XjkI/nQQAAAAAAAAAAXkpOrd5X
2z/J9/eoP9lYP15KTq3eV9s/yff3qD/ZWD8RHKTwKc7gPxhdPaqlPKc/ERyk8CnO4D8YXT2qpTynP2BQ2vV0Odq+3J5kPPSU+r60DT5K4YbovpAzTh1t9uG+LBfUF9eo
gz8kaakaH59GP9nuFxwtW3o8Jn45o7MLs7xk7LhO///vP3ZM/4NOZgO/HVpeVIn5p7++i4YkJUmev+zXiHPiKJa+dkz/g05mA78AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAMPgaxAbs8u+iAz/JOI/OL8ImO64XqWuPkX1oo9Eeyo/yG9AZi9B+z6DFregFDkJv5YeMatKqe1BAAAAAAAAAADZHUQGsFrbP6Ek4Zr5P1Q/2R1EBrBa
2z+hJOGa+T9UP6l2wgRXyOA/rQstKo5woj+pdsIEV8jgP60LLSqOcKI/yB3UCu7e2b6A6dVPCvT/vnhvYubKnei+EE9OruOu6r7Wbh/y87ODP3yldW2fB0I/dXyF3Quf
cDwZpXZYVDeuvLNvFE3//+8/jCAZPGprCL+LIRLnuCiov/BU95lOFJi/uCaiCXJdlr6MIBk8amsIvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXDULjM70
y76PWR/LRIY+vx5MJGG2EK4+212CU52sMD99RyjU7EH7Pl0LHL4mgA+/Il0EpbGr8kEAAAAAAAAAAJdh72+LXNs/KorWMYNDUD+XYe9vi1zbPyqK1jGDQ1A/U8rJnKbE
4D+IHlYu2USdP1PKyZymxOA/iB5WLtlEnT9QS3rTWaXZvmBPsfAshAO/7LDWm1ys6L7gISRKemnyvix5RUsOu4M/LpZ9WZKyPD+n48MY6/hkPEM4zF0d+6e8uqOZS///
7z+t8k9gYr0OvyHM8k3JRqi/RG+eJE4jk7+AIrqIy4yWvq3yT2BivQ6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/+hq/i/Mvq3xMXxdNkO/DjM1XbzR
rT5x13UH+f40P/703nQ+Qvs+t2/gX326E7/L1Ew0R4H3QQAAAAAAAAAA40Wn5L9d2z8Ir7Sqr8tJP+NFp+S/Xds/CK+0qq/LST9yYxUwUcLgPxhQ5ilBOpc/cmMVMFHC
4D8YUOYpQTqXP5C0eltngdm+yEOIFdEYCL/4Sf4OxLXovmDdXzd7dvi+lbeCT5O/gz8mwN1qD9A2P3R6pxbzeFo8RQyFM9IJo7ygxABK///vP3OE300zWRO/l4J6qeBZ
qL9GexB0y2mOv55F82vnv5a+c4TfTTNZE78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZL8Ebhb8y+zWBXIYAvSL8re+CoteCtPtGDtz6Zbzo/68I1PhRC
+z6zrNaB8cEYv6vis+pNl/1BAAAAAAAAAAD3pmUBhl7bPyMLiKrSLkQ/96ZlAYZe2z8jC4iq0i5EP0U1V5rXwOA/VPatZqttkj9FNVea18DgP1T2rWarbZI/+OMIPsxr
2b6A+DXpL/YNv6BJKIwMvOi+cJqGUPfQ/74PVLNQccKDPymu0GDeHTI/D/WxHAS3UDwB+gZmKjyevBbI9Uf//+8/rPGhVXpbGL/oA3Y4+WWovzZPsFU5KYi/W681/UYB
l76s8aFVelsYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoTyDvJjBzL5OagrrWHJOv72p32ZWQ64+KSRm4FGkQD/2M77hVkH7PslNzF71Gh+/EAAAIF+g
AkIAAAAAAAAAAFPjlmsEX9s/0ZlrRHwHPz9T45ZrBF/bP9GZa0R8Bz8/AA88Gum/4D/gX7yTADqNPwAPPBrpv+A/4F+8kwA6jT8YcHAcEGDZvji7/yIRthK/CG6CyJLA
6L5Q7AtsmG4Ev/NougxCxIM/tUQ1Uoi+LD8NIQk81R5FPKl6PYjlApi8pYgJRf//7z9eQIZT0Kkev2A/Vjugbai/WQWt/NMwg78SKl7rzl6Xvl5AhlPQqR6/AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4yTWmgjbNvrrmMzQiKlO/Vmqo1O0Prz53fXHTuPNEPxVP1KLXP/s+12afqgaOI79UaXRsZTogKiogc2NoX3BhdGg6IC9o
b21lL3NjaGlwcGVzL3hzY2hlbS1yZXBvL3RydW5rL3hzY2hlbV9saWJyYXJ5L2V4YW1wbGVzL3Rlc3RfYWMuc2NoCkRhdGU6IFdlZCBGZWIgIDIgMTg6MTc6MjQgIDIw
MjIKUGxvdG5hbWU6IEFDIEFuYWx5c2lzCkZsYWdzOiBjb21wbGV4Ck5vLiBWYXJpYWJsZXM6IDE3Ck5vLiBQb2ludHM6IDcxClZhcmlhYmxlczoKCTAJZnJlcXVlbmN5
CWZyZXF1ZW5jeSBncmlkPTMKCTEJdihkKQl2b2x0YWdlCgkyCXYoZF9sKQl2b2x0YWdlCgkzCXYoZGlmZm91dCkJdm9sdGFnZQoJNAl2KGRpZmZvdXRfbCkJdm9sdGFn
ZQoJNQlpKGUxKQljdXJyZW50Cgk2CWkoZTIpCWN1cnJlbnQKCTcJdihnbikJdm9sdGFnZQoJOAlpKGwxKQljdXJyZW50Cgk5CXYobWludXMpCXZvbHRhZ2UKCTEwCXYo
bmV0MSkJdm9sdGFnZQoJMTEJdihuZXQyKQl2b2x0YWdlCgkxMgl2KHBsdXMpCXZvbHRhZ2UKCTEzCXYodmNjKQl2b2x0YWdlCgkxNAlpKHZsb29wKQljdXJyZW50Cgkx
NQlpKHZwbHVzKQljdXJyZW50CgkxNglpKHZ2Y2MpCWN1cnJlbnQKQmluYXJ5OgoAAAAAAECPQAAAAAAAAAAAbwLkquWmwD+XNPInhfQgv28C5KrlpsA/lzTyJ4X0IL9L
a/j/yP5fwFY/Q+z4M62/S2v4/8j+X8BWP0Ps+DOtvxNoBw4KaKk/gBv3XC8X9z7gmdcMCmipv9OaD0trHfe+wXJILiV6lT0YROK71Q41PnvJ8Wjl89i9lz2ynqtWiz45
xP7////vPwMW1fhmm1U+5PL784CA4z/f5Nc471xEvzFau1hyvKO9AxbV+GabVT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8v5oGeFXI93oT46bkaJb5s
/AiV7rolPfae4zssMcU9AMQpVLJ8jL7x3m3pGSiHviA9Jp+zq5NAAAAAAAAAAAC4jQhs5abAP21I3cAozhe/uI0IbOWmwD9tSN3AKM4Xv/AEFjbJ/l/ADib4ZwCCpL/w
BBY2yf5fwA4m+GcAgqS/shvUOApoqT9/GvJcDDbwPuHtpjcKaKm/s925heU98L7cKg+HigGTPavOH1Oogjo+RL4R8Y3Wy73l43H3PbeFPglR/////+8/anusjl8KUT7Y
wCiqgIDjP3JlxC5PJz2/7wrNquvelb1qe6yOXwpRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbyZc5Nb5bz3pZ5JGoZEqvp5LCTm1TyM9im3K5+Ktyj0A
gmP0BH6MvmwIjsWEd4C+EWYLoZLDmEAAAAAAAAAAAFe9AkflpsA/gfF7l6DvDb9XvQJH5abAP4Hxe5eg7w2/56f3Vcn+X8CJEpZWOc+Zv+en91XJ/l/AiRKWVjnPmb+X
RApSCmipP0N4PCrVY+Q+b0DhUApoqb/Wg6Hul3fkviC0JW3cLY49V3VdfvKvQD7WanhlQNS7vQvsIvrcP4E+e6n/////7z9qlk/+T8NKPnXEd36AgOM/7/i+hjIiM7+I
qjotSaGFvWqWT/5Pw0o+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvteKdnVRpPTLBJWZfuTC+ZoynQ5v0Hj2/Tu19KMvQPQCYBz/Nfoy+wleKz9pOdb5c
kkucDC2fQAAAAAAAAAAATsfUM+WmwD8BpSp7Grb7vk7H1DPlpsA/AaUqexq2+75MBX9myf5fwHxEqCWb9Ie/TAV/Zsn+X8B8RKglm/SHv6oEG18KaKk/aX6mQRbj0j55
mfhdCmipv8VRwnvXFNO+8rbNf8zDgT00FcAEEAJFPpsmCQt+hKS91pU0M0pnez6n4P/////vP5uJ3US83kQ+Y7V6Z4CA4z9Iew4n3UMkv3jdNe0mWW+9m4ndRLzeRD4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOG79i2mF09Up360e0NNb54V906w80SPX+jXrBRJNU9AKa7bzZ/jL5PmHNJU6JlvpXPWdrFn6NAAAAAAAAAAAB8
2lou5abAP8kZ5jwXysc+fNpaLuWmwD/JGeY8F8rHPpZ0PWvJ/l/A9Ps6oTh1Uz+WdD1ryf5fwPT7OqE4dVM/F1PYYgpoqT9Tj9DcCwCgvrxcwGEKaKm/JDwtJ+QVnD7K
ykmec5FOvQtE11qUcko+wIeKLLZ5aj3iY2teccR1PjsBAAAAAPA/mxYcqK0WQD7aSDtggIDjP2Bj/9nXvPq+7ct3sDqqMz2bFhyorRZAPgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAc41M/8xOLr0TeoTEhIE6vnA5G9H0Jb28jb2GtrSd2j0AuhE7V3+MvoTq+NAH3iy+Lz15KY60qEAAAAAAAAAAALJbZjXlpsA/EatKQZXoAD+y
W2Y15abAPxGrSkGV6AA/pRg5Zcn+X8DdocnhEfOMP6UYOWXJ/l/A3aHJ4RHzjD9x0hBeCmipP05r8Ftd/ta+lW4JXQpoqb+V9rE0gq/WPo1LheYCjJC90i9I0dOlUD7x
XOuQ90mfPRqwekBZSnE+GQsAAAAA8D+LbOxh6VM4PlUAKWeAgOM/R+peji3OGj/OR7UoNjJmPYts7GHpUzg+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5
GUbwnllsvRViNxo7r0C+SuhSIq76Hr2acBFP+cDgPQD+LLU2f4y+tNN6kvntYT5Nf5a2JBqvQAAAAAAAAAAAhZR8SuWmwD+bD/Mihp0QP4WUfErlpsA/mw/zIoadED/B
dCVTyf5fwAlUMJgTgZw/wXQlU8n+X8AJVDCYE4GcP8JqvE8KaKk/Vmmixxib5r7NSs9OCmipv5Vy/rd1aeY+tU61cwehpL2+5S7AUvVUPhrK4N2teKg9xLN+efJ3az4Q
EAAAAADwP3m2HCQgxjE+aLfCfYCA4z8CQVdFgNwuPxEgeo8pEHA9ebYcJCDGMT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWIIKrnkYG9rj5rMSkBRb7Y
P2wTy9YzvQ9VOKN/F+U9AHbn2M1+jL6ARD4vIU9zPnYSblHfk7NAAAAAAAAAAAAzuipy5abAP5Ff6ZFFqRk/M7oqcuWmwD+RX+mRRakZPzGoGzHJ/l/A3X6oVJsGpj8x
qBsxyf5fwN1+qFSbBqY/cUjDNApoqT8UXmbvmHXxvifJ/zMKaKm/RJZlUFpW8T6cf1qcChu0vd3mAvKKYlo+u2lcSXMKrj3/9c1/rNFlPjIRAAAAAPA/w8IA7ExVKD5I
R+mogIDjP2oKpUpS+zg/0k700ioycT3DwgDsTFUoPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbQ5Wg3sXkb0X8TWxcXFKvkBe1p7ogEO9SZsAIpGN6j0A
1ugDBn6MvmAvQ9WCrn4+XU5HzZKluEAAAAAAAAAAAHJwAbXlpsA/Z9arom0JIj9ycAG15abAP2fWq6JtCSI/odLC98j+X8Cl4nl28/iuP6HSwvfI/l/ApeJ5dvP4rj/N
8VIHCmipPyipdxWri/i+MWzRBgpoqb9UishqVWT4Pt5SoR/Pz8G9rnYk2rubYD5oT012BsewPb3a9KLbVGE+vg4AAAAA8D8Q6/h8KtQcPmsX7fGAgOM/1AtXn3vuQT9O
3zTab3ttPRDr+Hwq1Bw+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+JnMIzkGevY8izrccpVC+ZXjiM7tYUb0d3yvd0LbwPQAG8BO0fIy+JCpLJBbYhT4D
ruhHSAe/QAAAAAAAAAAA6RBuIeamwD+oKDFmHTQoP+kQbiHmpsA/qCgxZh00KD+tF7qayP5fwHiIIxPFyLQ/rRe6msj+X8B4iCMTxci0PyePnL0JaKk/Zh8W6S54AL/g
mYO9CWipv1PEhm5sXwA/HMAC8twbzr3eNLoqnuhkPrHSn1LU4rE9vF7KUaSIWz4rCAAAAADwP4Asjk2BDQU+YsmQaIGA4z81pnumw1NIP/Ow/aJUVmA9gCyOTYENBT4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMoWYb+zj6m91fCN6Wv0VL4+M3CfM2JdvSMvg0u2CvU9ABRdF496jL4wdNsut4KNPgEAAAAAiMNAAAAAAAAAAABN
4NfO5qbAPysqqgbEqC8/TeDXzuamwD8rKqoGxKgvP+yf7AXI/l/ALvHKz2kwuz/sn+wFyP5fwC7xys9pMLs/QvS2RwloqT/fyCv7DosFv+i3Q0gJaKm/qdOsT+NrBT89
bdpWmMzYvbCsjQaNUmo+r+pzmeWVsj2A9TsH795VPh/4/////+8/Zde6fZ3c/L1FGHAmgoDjP5DWef1YAlA/AAbeXF6FT71l17p9ndz8vQAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAJ0O1+FAMtb0oJ+GiZ2Favmkwux0AO2i9TpH2DXl9+j0AtoCOIHeMvkrYJ1rUX5M+aczvhqCWyEAAAAAAAAAAAKVCreLnpsA/xQ+q1YJmND+l
Qq3i56bAP8UPqtWCZjQ/ovQ7Gcf+X8AfpqlkXIXBP6L0OxnH/l/AH6apZFyFwT9ScC+MCGipP9zsvv2gwwu/5trCjQhoqb/vja8vY5wLPzEKTgovH+S9ZRietauRcD69
aPUn4QazPWxrSaBjX1E+ms//////7z8d8K+nbFcZvofjhlSDgOM/2vonQxC1VD++KIuk4zJ4vR3wr6dsVxm+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ
MWa3VxPBvb+wi8QDm2C+JqQM65Ksc73kUQ87sKwAPgA+tdeqcYy+IS48r20GmT6XP05Jd/TOQAAAAAAAAAAADhB4mOmmwD+cbY8WwQ46Pw4QeJjppsA/nG2PFsEOOj9j
NJGhxf5fwIJjDOVfYcY/YzSRocX+X8CCYwzlX2HGP9Cgi2IHaKk/QXZQ7lm7Eb/MUb9lB2ipvwBTyXmmohE/K4NNtiou8L2K4vii9Nt0PlEjaygqTrM9y5IgXl6ZSz4K
jv/////vP8saIGqVaCa+19IJNIWA4z85rsvLE4JaP8CCMA13fYy9yxogapVoJr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDjc3x/dcu9cjXc+bTnZL7O
fLiddKd/vTjHbvT3/QQ+ABLvQABpjL6FKgtDGAGgPns7r+EnfNNAAAAAAAAAAADpdLdO7KbAP5nex+4djUA/6XS3TuymwD+Z3sfuHY1APzYQ1k3D/l/Ap9klW35uzD82
ENZNw/5fwKfZJVt+bsw/JsaMigVoqT+OglQSn4YWvzY3VJAFaKm/j31qUoZnFj8cpeAwBOH5vQxrs3KfQno+051fqSN7sz01d9EuN+xFPkgl/////+8/dvDynXirML6c
XHksiIDjP3n7xfM73GA/6ZHF9QxXm7128PKdeKswvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAp2LzAzH11b1hCiSRZFFqvuH5pzYQUom9pH8hLnFtCj4A
+ifpQVuMvp8ksTIoWaQ+fUPwULeH2EAAAAAAAAAAABlpRZvwpsA/KW+XO370RD8ZaUWb8KbAPylvlzt+9EQ/Ekl0nb/+X8DUvk7Mmv/RPxJJdJ2//l/A1L5OzJr/0T+Q
3lGeAmipP/9roj76hBy/HvEuqAJoqb9XD6tF1F0cPzvOXDkHoAS+TUZ6SKiHgD6TwvzcgpezPcddjPXuaUE+tn7+////7z9FljTz5gU3vvPQ+OGMgOM/0ByjYEddZT/Q
jzfxoRSovUWWNPPmBTe+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzUmKS1X/hvaNpsjbukHC+SRfu9u8ulL1SZCsnnKIQPgBgrWN4RYy+9Cnna57GqT5/
jNezseHeQAAAAAAAAAAAcZuua/emwD9ZITB5iXlKP3Gbrmv3psA/WSEweYl5Sj/YuJTEuf5fwAZl5SZTvdY/2LiUxLn+X8AGZeUmU73WPyxpWvz9Z6k/iLqNpg8EIr9y
sLAM/mepv6bszDVr6yE/00G2XilnEL6dlTr4X8+EPox4WYdnqbM9qbED5BqqOz5hdv3////vP1HFQAMxmj6+MKi7WJSA4z+CRdP/kQFrP08VUTD4TLS9UcVAAzGaPr4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALWJUC1j1eu9brZIUADbdL49anClow2gveBM4SBO8RQ+AFS9zu8ijL7mhOfJu0mwPpMPHvJWcONAAAAAAAAAAAB5
jnc4AqfAP5bL3WG+s1A/eY53OAKnwD+Wy91hvrNQP2m1IICw/l/Az9TyYQix3D9ptSCAsP5fwM/U8mEIsdw/GxOrpPZnqT8xs9RAOrsmvz/UQ7/2Z6m/EZekbjScJj+a
T0ziOQ4avn0Ct9PVMoo+dVStZa60sz3JJN+6ffk1PjvT+////+8/zXLimtPnQ76FKS4toIDjP6jUf1IBC3E/7zwTrhOzwL3NcuKa0+dDvgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAdOHyfyMb9r3MAUldYEF6vnEcqXpwgKm9QJhfh4xdGj4ADof+M+yLvvRd23kyjrQ+F5fJJdd46EAAAAAAAAAAAMW/XlYTp8A/0+BVT2UOVT/F
v15WE6fAP9PgVU9lDlU/Ls4H0KH+X8Bjt+ch7RXiPy7OB9Ch/l/AY7fnIe0V4j9EB48B62epP+an1lFCqCy/v2tqLOtnqb/69qM6NIEsP4Fl/QVHrSS+6Q8GKcV9kD6p
6M6ZxruzPQAAC4R0dDE+zDr5////7z9/0I/o5pFJvndJ9+yygOM/44p//4t9dT++u35MzhTLvX/Qj+jmkUm+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACd
rJ0k34oBvlA6evXThoC+7zcpz/c8tL0ojM2fp5ggPgA4/ax0lYu+HHTQLt3quT75IZmA987uQAAAAAAAAAAA3PIidy6nwD9qfW7gD4haP9zyIncup8A/an1u4A+IWj+V
hr+Iiv5fwDlv+OHbyeY/lYa/iIr+X8A5b/jh28nmP/U/C5DYZ6k/PSAf5vQNMr8L3avU2Gepv5MgFYtf9TE/lbbB91lmML4udhxEB8OUPmXlFys4wLM9EA036MK6Kz6u
HfX////vP9XrdS9CTFC+DrsGpNCA4z/4PIuDBBV7P5RFrvKkxNW91et1L0JMUL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSWsvDP0wu+/0L0xj3OhL5J
la+mYA3AvRHLOrve5CQ+AKgh2vgLi759epIgZ1TAPsVs8SyNZPNAAAAAAAAAAAARvpF1WafAPxbKn9irtWA/Eb6RdVmnwD8Wyp/Yq7VgP4aZKaRl/l/A/gcg9GO07D+G
mSmkZf5fwP4HIPRjtOw/4EcjVbtnqT96a5ku3L02v7Z+m8K7Z6m/8sGadOmeNj/Bf2WAlAE6vuu29DF+I5o+Z5QOpfjCsz0wbIy5pQYmPpaY7v///+8/B8qSYrOtVL5N
JRm8/4DjP754ntjMDoE/rHd5zWln4b0HypJis61UvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6w9sI1AQFr45rh3SOjGKvpTXdemXdMm9Yk4QxRZOKj4A
6DelFDKKvqZ+cI7wkcQ+BQAAAABq+EAAAAAAAAAAAMPJ1pidp8A/8I0ciQYLZT/DydaYnafAP/CNHIkGC2U/0aclLCv+X8Cyrf/TDBPyP9GnJSwr/l/Asq3/0wwT8j+o
iQoCjWepP5nL9QCuozy/eAg9sI1nqb8YAasouHw8P0jM2leCnUS+zL0cMlB0oD6yQMQXoMSzPZJlNNnPfiE+V0Pk////7z+GCewC8ihavkRP3F5KgeM/EqkJFot7hT9U
aCZzqbzrvYYJ7ALyKFq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1iScoc30hvr7uheGUfJC+7xdJFc0t1L1D508kHo8wPgCO1sfC2Ii+edopvcvnyT6I
v6uoSLz+QAAAAAAAAAAAaLSklAmowD8bqGdxFX9qP2i0pJQJqMA/G6hncRV/aj+YphWDzv1fwAx9xo0pwvY/mKYVg879X8AMfcaNKcL2P/4H8ZdDZ6k/B8xMpdkHQr9D
0resRGepv5dMLsJT70E/78HCSeZWUL5yVNvdhbekPne7vuqJxbM9JjTCo/rKGz4s49P////vP+lB3KVOhGC+3RnvpsCB4z/XsUUQ9wyLP3Fjx+ppDva96UHcpU6EYL4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMe5TnmPuSu+mBT3SS3BlL4U4WLdxvzfvaCfsGZA2TQ+AIql+4C1hr5UA5V+TE/QPsHn0I3KWANBAAAAAAAAAADN
1Uq0tKjAP2cdmzUCrnA/zdVKtLSowD9nHZs1Aq5wPwiK4Ks7/V/AA4sGXz2n/D8IiuCrO/1fwAOLBl89p/w/NV+VQM9mqT/uRkEvb7NGv1hT6/fQZqm/ouQLWJCURj/d
tVMS7eVZvlQQ03jOFao+G0hxmOjFsz3G10yhOxMWPsLvuf///+8/W3j/TRrVZL7nQE8YfILjP4lEdURkB5E/I7Kycw+EAb5beP9NGtVkvgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA8883Odn4Nb5HoyAddCCavourrEmqWem9Ur6WcDxAOj4AaJVwQVKDvpaHeRHUiNQ+XQob2jFbCEEAAAAAAAAAAPBxmd7DqcA/EMMNaYX/dD/w
cZnew6nAPxDDDWmF/3Q/ajU+/FL8X8BwGUieLAkCQGo1PvxS/F/AcBlIniwJAkCGxGTlFmapPx2pYZEGlEy/8cJSnhlmqb+yM4yUKm1MPwRJAFXAhWS+0UHehH5ssD7I
dD6V0MWzPXacioZviBE+ftCQ////7z9Y09qke0FqvikKqh6lg+M/IOpndRJwlT/kbph+4MsLvljT2qR7QWq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJ
5Gk3T2lBvmUJzH6xcaC+s50CWZ8W9L3WPQN6K4dAPgCcbjoA6Hu+ry+yrtzZ2T5gVCwlpakOQQAAAAAAAAAA63m3hHGrwD8D+7snm256P+t5t4Rxq8A/A/u7J5tuej8F
KxBO4vpfwC9P2s4DtAZABSsQTuL6X8AvT9rOA7QGQPiKyMryZKk/JTBLsqP8Ub/0y9sb92Spvw7T1+cu5FE/plR6rNJCcL6AVvReRK+0Pp6W/L08xbM9sfM+BVTZCz6G
qE/////vPxS0yGV7iXC+6vHTvXuF4z8uoDUFQPyaP6WVmzvvCha+FLTIZXuJcL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFd54aiNl0u+1DA8lNCypL5M
vhW1kNX/vW4TFBLJ0EQ+APgEfDrKZb7vYo9wOEXgPtK3ZhAPTRNBAAAAAAAAAAAKZMQqGq7AP3aGBrxTooA/CmTEKhquwD92hga8U6KAP50PED6a+F/Ai5Wx8y2TDECd
DxA+mvhfwIuVsfMtkwxAm9G0CiRjqT8B6i8biqNWv30+XeIqY6m/5NOVbMKEVj9fdGyYCMR5vhuyc0yUDro+9G25Rg3Esz34XSDTch0GPi1w6P7//+8/YV95qdTSdL7e
JE9MZYjjP6bEqxBm+6A/fYx+Mf14Ib5hX3mp1NJ0vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+N0vgS3cVb5Tf4wwEQ2qvg3c/DOOOAm+R3Nj9KU4Sj4A
3Iuh4Q1wPhC29BNyeuQ+e5OlrmxMGEEAAAAAAAAAAHNADixQssA/GKV0Z77uhD9zQA4sULLAPxildGe+7oQ/ozqoNf30X8D+PYbZxPoRQKM6qDX99F/A/j2G2cT6EUAY
P2MkR2CpPwA7ysgyfVy/5KoY/FFgqb/5RVU2d1ZcP14gi93SaIS+QDXV1hlrwD52nmj4AMKzPeUDViIQjwE+k/VE/v//7z9d/Un/YzZ6vqCw0hkCjeM/JOtnAqxepT9Z
mXPSprArvl39Sf9jNnq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrTKeD4FBhvhqJkmEwZLC+d76XSV36E77wSTk7dIVQPgASlNo3Xo0+6gwi0BnF6T7h
/DvvDJceQQAAAAAAAAAA10YN0Pq4wD8uMncnyVWKP9dGDdD6uMA/LjJ3J8lVij/lZxW/RO9fwHj0NHq0nhZA5WcVv0TvX8B49DR6tJ4WQGP1odq+W6k/1Hi/bsHrYb/U
3o8H0Fupv8SyZEtk02E/olSdwZEpkL4LeLEnzbPEPmEZJWCnvrM9qhBmFh7g+z0DJkL9///vP9+7B6L7fYC++Sh1ek+U4z9k1sFXQuKqP68jqOnP7jW+37sHovt9gL4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwx/rj7bGu+ORFrjDiftL5RlPgFP6QfvlERJy251FQ+AJ0JRLCTnz7EYseMyzXwPj61X7BaQSNBAAAAAAAAAABy
GSfwhsPAPxdKX/swj5A/chkn8IbDwD8XSl/7MI+QPzmq2cY35l/AcPYL5VJyHEA5qtnGN+ZfwHD2C+VSchxAr7/qIJNUqT/ExuYWgolmvw4D0lKuVKm/DMvNpt5qZj/w
99xPb5aZvqtaR6DOIMo+K53pMEm5sz2Ea+btJB72PWytqPv//+8/RhQUx0i+hL6UTX4O3Z/jP7ktn50r57A/9pjUT0pdQb5GFBTHSL6EvgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAzM1ceNi1db689yfbPO+5vurqlRcPDCm+I6cXC79JWj6AGsdd2yatPid0jNWPYvQ++ccteLA9KEEAAAAAAAAAAFSB8Iky1MA/dbsF283PlD9U
gfCJMtTAP3W7BdvNz5Q/K7+7wunXX8Ck7inUNeAhQCu/u8Lp11/ApO4p1DXgIUCpo3u6PUmpP40xWjIdU2y/NdZcwmhJqb++esEcnCxsPx89Vi3YPaS+tOmScwWD0D63
YLhUwrCzPfDx/vy4ifE9wIAh+f//7z+9qpGGxRKKvtGmm4UfsuM/AdUPLaw9tT9FF5oB/XlLvr2qkYbFEoq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABM
9BKn2yyBvq7y4sFHTMC+yLmV7HXQM756Cs1PSZxgPkAKWg3oIrk+nCzYPFae+T4KAAAAgIQuQQAAAAAAAAAAGoYIuoDuwD+ghe60WSGaPxqGCLqA7sA/oIXutFkhmj9K
DQwsV8FfwIzly+GycSZASg0MLFfBX8CM5cvhsnEmQF1qcWBbN6k/yRxc/RjIcb97uGBlnzepv69aBm3tr3E/1ENj3w3+r775KtIdnerUPktOg/BGo7M9nzipbODI6z3g
RyT1///vP3l974HNXpC+wPEwn+/O4z+OU+Io5Km6P8JHcz9wt1W+eX3vgc1ekL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2dh2npJYu+ew/tBfB2xL4F
ce8oX1E/vgIhVA1rCWU+wBTA+XTmxD7WXVGQ1hQAP7dXa2mtNTNBAAAAAAAAAABpwW846BfBP8bMxwnkYKA/acFvOOgXwT/GzMcJ5GCgPym1ocXPnV/AT47uZtkiLEAp
taHFz51fwE+O7mbZIixAY5cUITUbqT/XJLyIikp2v0QIxnqgG6m/AHtEvj4sdj8bc/gy8z25vkDuGXOqlto+rJfBLgqOsz21pm8QRPnlPQ/p3O7//+8/90TA1W2GlL44
V50xSfzjPyT5Q6kTtcA/dCg+8RYjYb73RMDVbYaUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmW225Spslb71l0AwYajJvj3x95H0tUi+xr43uXW7aj4w
emED3gHRPlM0BfQzKAQ/tCFFMf0uOEEAAAAAAAAAAGmjyjbRWME/rUrLH2J7pD9po8o20VjBP61Kyx9ie6Q/gX9OwxxmX8DitHfcwpcxQIF/TsMcZl/A4rR33MKXMUCM
Wa/GE++oP1pLJfBP4Hu/rQsYybzvqL9fb//cbrp7P91l9+mq3cO+e9HBmUj94D7ZylMsvGyzPb6B79OOVeE9hgwF5f//7z9vbHfDWayZvkpLAAFhQ+Q/t8OPn+PhxD9q
ETR68/pqvm9sd8NZrJm+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJ49gF/9ygvqNLSMXaC9C+z8I8ivNyU74mFpbMexJxPuDhaGJ0Sds+mhGTdbYzCT/3
zKFQ/nE+QQAAAAAAAAAAmCRcs/G9wT/4nA5PEoSpP5gkXLPxvcE/+JwOTxKEqT/OyQzjVQ9fwCjKB+m66jVAzskM41UPX8Aoygfpuuo1QFF9EQZTqqg/F2KvqSldgb/T
v7oXXKuov87Ghk+TRYE/E9qIeZolz771/G8GZ+LlPl4gaVbXOLM9JjkI8qU92z3sUa/V///vP5Lk1WFt/p++mHW+tCGy5D8WDni2S/7JP0IryQlXKHW+kuTVYW3+n74A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOci6j2Tcqq+5KDLmh//0772jQVIEX9evgxtbew++XU+2MKjzJ6m5T7iZtPMvWIPP760OzcHKkNBAAAAAAAAAAC/
EU7B+FnCP3yyPF1xma8/vxFOwfhZwj98sjxdcZmvP5xUJcNyiV7AeA42Ho4kO0CcVCXDcolewHgONh6OJDtA048u/T5AqD8MxFCuEIGFv0WT9kLcQai/tFaSQd5jhT+B
33jzuETYvmEub9+kg+w+WBEeM8Xosj3YtH6OF0bVPduXBr7//+8/Yodygj/So77Gi1d6/lzlP8AgaMMHE9A/TIshCVp+gL5ih3KCP9KjvgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAPCEvdAOetL64tyap5MbYviDqh5/tw2e+FeuVDO6YfD5U2OceoADxPrd+hhyabBM/yGWA1FIgSEEAAAAAAAAAAEVr6d0hR8M/wrMTPddjsz9F
a+ndIUfDP8KzEz3XY7M/qYOwwPC9XcDp+MK54qdAQKmDsMDwvV3A6fjCueKnQECi2YP2AZ+nP6Nppxk1ZIq//4VsfYChp78XGP4pZ0CKP33FCZamu+K+rY4wEtPe8j4h
4WplD2+yPTq60k5eddA9Kf8Qmv//7z8Q5rZXcViovqhbvpOpYOY/kmgWqqyv0z9Hi7k1wHuJvhDmtldxWKi+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACE
Uzeywtq/vmjuAiOebt6+3AnpH2pZcr49MZ0UEuWCPhztz6EOZPo+ymwkPIrRFz9c+E7ah19OQQAAAAAAAAAAGXVSiounxD/8wXCnWHm3Pxl1UoqLp8Q//MFwp1h5tz8V
7HyViI9cwKZlzKAvKkRAFex8lYiPXMCmZcygLypEQCkG3Xppr6Y/yQ0A05Dzj7+b0bCxNrOmv2d+4bBFyI8/2pdLMBSE7L6PtmZyEHv5PnTeligzurE9+ug67L0byT12
LqNk///vP9gS2yT0gq2+WkYi/Gvi5z8y/IrnGMHXP8AJPDGaa5O+2BLbJPSCrb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHygpJqJRsi+1mb43d5x4r5o
F86xZfF7vsrlwZSJdYk+wlvtTI0rBD9MicOiLMwcPw5+hRVoHlNBAAAAAAAAAAAkeRKZ/KHGP8JPGmCM27s/JHkSmfyhxj/CTxpgjNu7P683tZTz3FrAr8xR/JruR0Cv
N7WU89xawK/MUfya7kdAainNPxhXpT8x8+pG1vWSv/wkX1rGXKW/TJvVbzLckj8zaI+9sEL1vhPmsF5LmQE/3MAjXkm2sD2hKqM/Q8LCPXuE3hf//+8/zW3U1BuMsb49
v53QjAzqP+ak8wX6Ctw/hcKTcC8Enb7NbdTUG4yxvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHLHu06Ei0r4qWZp6J+/lvgi9erC32IS+ZEvCL7CJkT52
CR0ACDEOP66BxERbDSE/kKJ3XLERWEEAAAAAAAAAAKMLu0DZV8k/wTgBavISwD+jC7tA2VfJP8E4AWryEsA/sQsefYmJWMA9IrBX8Z5LQLELHn2JiVjAPSKwV/GeS0CT
MF/UWX+jP/g+gm/34ZW/MLjpmpqHo78CL1Oud8SVP5CrqQfwyv6+27bB2GnYCD+DG60QW6SuPaj+5PuaOLs9u4u4rv7/7z+ua3TDzlC0vkIGl6M0A+0/SHVA/dAL4D+h
SFdEdxSlvq5rdMPOULS+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgfPjpmFnavhnmZNsFZem+hxCYg0Y5jr6WFTN5zq+YPg4Z5Th09RU/crH8wBCdIz/6
OTmWHE1eQQAAAAAAAAAAt3ZTV8vSzD+Y4ywYqN/BP7d2U1fL0sw/mOMsGKjfwT8X4Pds/YxVwM7LZWz0t05AF+D3bP2MVcDOy2Vs9LdOQKvAWcWaIaE/11s4KC9WmL+O
Wh3nKC2hv7zfwG+KNZg/VDJFTptyBb8vUwEeFNARP9P41OLNEas9f95586H9sj3gs8Un/v/vP+kcSWjVtLa+eJhWNRNo8D9t7OQl7prhPwpD+sGkg62+6RxJaNW0tr4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJIWapIcuK+kaIPIg1i7L7eOfPI3hWVvqL3OIqEpaE+ZutcsU3EHj8ZdzGc87ElPwgAAADQEmNBAAAAAAAAAAAn
UT64FHjQP+BkkE82/MI/J1E+uBR40D/gZJBPNvzCP1lHRt0JBVLA5LTyh6NRUEBZR0bdCQVSwOS08oejUVBAIk4t8tGqnD9IVGxHWtuZv9W9Bm+7yZy/wizcF/K4mT9C
aV/O83QMv7zVAti0qBk/JiraaHPYpj3gS7Ed/DmpPe6eXIj9/+8/yryVz35QuL4npbqE9qXyP+7N6kDbTOI/JWmTCBu9s77KvJXPflC4vgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA/Hk/OGOs6L7X7RoXoGTuvqDSsPmGDJy+ty8K6KlZqT5prRlA6pUkP0h+XjkQ2iY/qC3GwxgDaEEAAAAAAAAAANBJs9VCrdI/2f9Dxl4mwz/Q
SbPVQq3SP9n/Q8ZeJsM/CzaZBe51TMBVJE02sXdQQAs2mQXudUzAVSRNNrF3UECEf/mlqKmWP4YE+P+EF5q/KtbQ5u3Qlr+RLYR+PfWZP8pmBdXD1xG/nyHTwpdVIj84
1ObR50+iPatMf8cMpp896JqU3fz/7z9IJNwj8Na4vq6pwaU+C/U/++KVqdnR4T/FI8EoWxO5vkgk3CPw1ri+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADR
6e8XM1jvvpWTAyqtDO++cHhn0j6pob6h4+KzcBKyPkHwb0ueKCo/HqN3IAO+Jj8lapZ9vDpuQQAAAAAAAAAAlitBrP7P1D/6fAmxHVLCP5YrQaz+z9Q/+nwJsR1Swj8j
+AV56SBFwLyHQ/rYh09AI/gFeekgRcC8h0P62IdPQMMzH7OF2pA/FMgeRX76mL98NSJT2gmRv4GxqyBY2pg/0ZTVekcPFb/nteH1g7wpP+zLairk2Zs9iY4F7LWpkj1m
jOg4/P/vP+mlhJo2Pri+gCCy36RX9z9O44qULRTgP41m05y7OL6+6aWEmjY+uL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKwa7F14/K+w35z1sRN7r4g
Rg+1Pf2kvp5+jJxPUrk+qrHR/C2ILz85EGxScUolPx0gZfI+B3NBAAAAAAAAAABpuQkcOa7WP//+3y0gsMA/abkJHDmu1j///t8tILDAP9VoJmd3bT3ACQ36IW/ATEDV
aCZnd209wAkN+iFvwExAxtn8a+uKhz/ELPdhosaWv/N54Y6W94e/eeelkEiqlj+Ms0VRUl0Xv0JBMOlYqDE/C1+IplIslD3To6c+uqWEPbQd16n7/+8/SkWMfXvHtr62
4qUUflH5PzXtEkkCfto/sY4xiaNYwb5KRYx9e8e2vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9zwvvMyu9b6XP4avWnnsvm5jSopXjqe+8s3IDQdZwT4A
r22jihkyPxQAc/UfuCI/8KEKBYn0d0EAAAAAAAAAAAOFkdniLNg/ZsMuRwYovT8DhZHZ4izYP2bDLkcGKL0/20qxoDUoM8CY48ia6ShJQNtKsaA1KDPAmOPImukoSUCn
mv1vu89+Pws8HTHX7ZO/+/OYtym/f78lmW66XdaTP0I8d5vGURi/MnAHu0awNz9B5zQFYwuMPWmEbox+WnU9C08MOfv/7z/wGdDwQOC0vhvz3ebs1vo/Hy3dX/9D0z8y
FNPDzhvDvvAZ0PBA4LS+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHn96swuL3voIduVdRGOq+aK4wyQADqb6v04dAsT7HPmyX6Khk8DM/HoB9VXbWHj8+
f6CJZyh+QQAAAAAAAAAAp9GZD4pJ2T8BBwJBPKG4P6fRmQ+KSdk/AQcCQTyhuD/sd1SBpwQnwHTsMqXFT0VA7HdUgacEJ8B07DKlxU9FQKu69rSYsXI/kjOCyf7gkL8+
G4vG67Bzv0956VLlzpA/iklnWiuGF78YmFmcMSs/P9e3AaCL3oI9Uq6IMFxhZD1RLvnn+v/vP/A6JePR97K+F7eRVebe+z/y/mrtVCnGP19aukYbYMS+8Dol49H3sr4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcIJj4iePm+3uVPcMa1574vwTJBWhepvrWpgdXtjM4+ap8Xzo1CNT+ITlkVR4wXPzxbcei0+4JBAAAAAAAAAADB
xKqwfBHaP5qGS1mlQ7Q/wcSqsHwR2j+ahktZpUO0P5tpGrrffhjAj/wgkCCcQUCbaRq6334YwI/8IJAgnEFAYsGscRpTZD/c7rCpkeOLv852cdBQZma/fha6e03Kiz+u
WqbpenkUv15LpdzDMUQ/JBMlPR/FeD2mMb8ETDpRPQLPorP6/+8/H/iQNJ1lsb4ROUawZW78P+5STJT+s6I/0Nn3w3Qxxb4f+JA0nWWxvgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAge+6DdJ9+r4qXFKKBL/lvt0hS8zQgqe+IGNqufzE0z6+XIemXhw2P17D2tVuGxA/ld3mGgLmh0EAAAAAAAAAAGm5VT6Dl9o/n78lvxxRsD9p
uVU+g5faP5+/Jb8cUbA/7koudWDyA8C2MDmRp408QO5KLnVg8gPAtjA5kaeNPEDPF82COKZRP4767/l6moa/K3OWi5fiVb8IbPT654uGPwhtjxtwvgy/r+2zfL7dST+b
5/V0FOdvPSCcMcdZSTY9Ywnml/r/7z+OWRPTgmawvtPUwoDQi/w/CEAm6usfu78dknLaZ6DFvo5ZE9OCZrC+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg
wALhgQj7vitboYojgOS+iNh0KIPYo76aWnBcf0jZPp5M68H4jjY/zg8hpWCVAT84i5WzHRaOQQAAAAAAAAAAm9QwPkDt2j/ErTtyO8SpP5vUMD5A7do/xK07cjvEqT9/
be9uaq7Bv2EhVLo/yjZAf23vbmquwb9hIVS6P8o2QJPgCh/Q6SU/7BlBXmQIgr8+k7yXcPs7v8FRlK4eBII/KIgMk1k5777m41mV0WpQPy3+lDjqOWQ9Ki5PN0Ri7zxH
G6CR+v/vP/mRJELuJ7C+M2/JZFo2/D9eh5N8/zjQvxIZ4pJ/ucW++ZEkQu4nsL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHKUt4HfJ/u+uRjN0ukx5L5I
XXqKG9yaviXOqYTMA+A+vZ2WuD6nNj/8V91fNiLbPj/E490x8JJBAAAAAAAAAADLJnbhfSDbPypZbI0t7aM/yyZ24X0g2z8qWWyNLe2jP5xOP/doH/U/Hkx1m+rtMUCc
Tj/3aB/1Px5MdZvq7TFAa/Ifl5DoOb/bnup0clp8vyxTqcMeFyI/WRrs+KJlfD9+uiTj2woKP0xi0DKorlQ/sCHeKH9HWT3bFJlPIMgdvZIwj5/6/+8/mJhoKXnXsL5P
ECuyh2L7P1OTTSyD7Nm/5AO4PcOBxb6YmGgpedewvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqeR3EzTi+r68fdRyVw3lvuDFmw+5iXq+FrXV2Eof5D5U
ihNrKWo2P4WGxNbdnvS+DgAAAITXl0EAAAAAAAAAAJuOTzbqOts/7yhfaLwNnj+bjk826jrbP+8oX2i8DZ4/tJrWMJ02AUCyyQsrT8krQLSa1jCdNgFAsskLK0/JK0AU
NzdluWpHv/DOZk9f8nW/cdb7+sdhPj9hjOuHNxB2PyRaiwB/yiM/Nmo55qPcWT/OJcY8kx5PPZG9fTY1RyO9ntouwvr/7z+wGX24sbKyvmpDuU/i+/k/jE+2IZfU4b+T
VIeVRPfEvrAZfbixsrK+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg/My+FTX6vsrsZyVeX+e+do6/ZDRKlz4otagTUBXpPiZy+1hj1TU/sZFDWPxiB78W
ubf03gOeQQAAAAAAAAAAoaCjLfFC2z/+7IdCHu2VP6Ggoy3xQts//uyHQh7tlT+wbBJZXFAEQFDjuMYnKiVAsGwSWVxQBEBQ47jGJyolQF5Cg1/oOEy/ih7SwpSwcL+D
vIr1WFVEP93w1ZNo33A/xoCCgwcaND93VnS6LQhgP/N5lIIM1EI91Yjp2kwSIr3h0a36+v/vP/lPePnpFLa+ehl5lwXt9z8L9WDgfnTmv4PwfbhIFcS++U94+ekUtr4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbu9+iaGvm+KD+1diSa677U8K7tnkSwPsMfCNnIAu8+QINV37bjND+qR6rMyLcRv1oCfs615KJBAAAAAAAAAACd
nh+g/DzbP/eCaf1RmI4/nZ4foPw82z/3gmn9UZiOP8wUjO8E3gRAGCEY1uKfH0DMFIzvBN4EQBghGNbinx9Ahqi9ppz1TL/f4Vk0W+Fov7/wXgPDiUU/uTWX6nRbaT8e
sVW/o7tBP79gs+0oqWM/ksAkleZYNj0idMQpzn0dvc3oBEn7/+8/jZD8CFd/u75vUhc86i71P7tWCI0TZuq/iJfMXOzbwr6NkPwIV3+7vgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA1EtldeeS974g4ydlli/xvg9DpMBe6L0+kB0peCEC8z42q0K3MpUzP5c6f52t2xa/KGj+rg7Jp0EAAAAAAAAAAOUNEhOyLNs/Szam9ccWhD/l
DRITsizbP0s2pvXHFoQ/xmVlFLClA0CjhgvUgykXQMZlZRSwpQNAo4YL1IMpF0CFZaxf7NtKv87g6XAuKmK/nFLwPLIDRD/dfMKUb7hiPzdJDr8RAk0/BKuYmRLCZz+O
LSkGjQAqPVwLjVdlDha9K+Wzqfv/7z+GMtWvvMrBvpBQUPVl2/E/6KCXx7sf7b9/E1NrMFnBvoYy1a+8ysG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADE
3PeGfK/1vpNFcttrPfa+b+TQbXgpxz6yTrPNqx/3Pg6omBDO+DE/aymAeEWkGr9xSk1Gq/GtQQAAAAAAAAAAuyj8ccMV2z+wuWMcyUB4P7so/HHDFds/sLljHMlAeD+3
t9F1o1kBQD8SCwN6rhBAt7fRdaNZAUA/EgsDeq4QQFQmmT2wCUe/6lKDuBQPWr9DniIZX9RAP8buUWrNPls/KcjcgMqBVj9ZXyUBpCJsP5ZTzjgrwB09xx1BtG3xDr2N
zpwU/P/vP1P2iOXjhce+MmP9o1Rs7D+OKRwL0DDuv5bUlosZW7++U/aI5eOFx74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItFtffvmPO+DVGt3lxn/b56
AVFjhxLQPmdIfpMi+/s+xJO32z8xMD8lv/FdD7Acv4pPBLZA2bJBAAAAAAAAAACyZm2L+PvaP/zu6N4Cxmk/smZti/j72j/87ujeAsZpP4DaNwW7Pv0/04MaRXXOB0CA
2jcFuz79P9ODGkV1zgdAJP8+eOyJQr/L1jnM9YFSv4wr9wcE6zk/la/SCOSuUz+Qrh+rHa9gP8+ftiLSNXA/yd4oD9bcED1FX93QArcEvTGPkH78/+8/zE2aPRZKz76H
s1o9Aj3lP2OvD0Wqe+2/w7p1hnsLvL7MTZo9FkrPvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAhNNC2H8b6cuWvmTY4Dv8Rn/yVFgtQ+upOed7TnAD8e
VhZolNwsPwJjhW0b7hy/D7KNIqK6t0EAAAAAAAAAAL+OPneX4to/eqwbL29tVT+/jj53l+LaP3qsGy9vbVU/0sq/olj49z/cZd8AEQIBQNLKv6JY+Pc/3GXfABECAUCu
csFAmWg8v0VdEf8NUkq/ChGSpJFdMj+roXXLhIFMP0VjnDVZn2c/OMF2tPkFcj9D3TUwjCMDPQorS5Qa+fq868Qh3fz/7z/8hWFLZbfUvrpHbO5Dtd0/PuAOu9FJ678I
IqvY8Ra5vvyFYUtlt9S+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7eCJPrlzvvu5qLJ4+5Qm/PYPlUZl42D4NP5ii0HsEP+h9zcOAuCk/wQriNz6yG7//
lKChgt+9QQAAAAAAAAAAMzKdx9jL2j+rrrVGd8IqPzMyncfYy9o/q661RnfCKj+ut4UXx4HzP013K6x4k/g/rreFF8eB8z9NdyuseJP4P8ChJHvdFjW/GMVYVFjxQr+C
v49cruUnP6ykCNeX3kQ/QkPXhiLTbz9Df+huFi1zP9GEiiKY9/U8vAFfBqVv8bzl+QEq/f/vP7fU0BfbK9u+cKgRmb5c0z+BF9eB6ifov5rX2zDwr7a+t9TQF9sr274A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALG8Pj3sW+y+Cine7mj7EL8AHYXhTLPbPvRiwHsc9wg/S3SC8PgqJz+QA6hJOZIZvwZ3PZDSzcJBAAAAAAAAAADm
WOzW4bjaP8GP2MpnXje/5ljs1uG42j/Bj9jKZ143v0i7Ep6hEvA/JdXfplwR8j9IuxKeoRLwPyXV36ZcEfI//LJmAKnuLr9wP+3Kn8s7v6BXnE/mABw/B2yKA9sMPz9a
vOzxkFR0P7CSUjCiaHM/8mXWLhao6TygydINztLmvAxvuGP9/+8/Jox7g12i4b6aO5oQ8S3HPxo/3AssqeS/mo2ghzzitL4mjHuDXaLhvgAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAE1miqcsa6r7VlFfk9AoWv39vnknUIN4+6Bi7sMykDj9k+62ebD4lP38KIXcTKxe/UrVcVT6sx0EAAAAAAAAAAAgqkAkaqto/2j6GCW+TQb8I
KpAJGqraP9o+hglvk0G/F+JsdJU06z85HdWVehLrPxfibHSVNOs/OR3VlXoS6z+yLqoYOtomvxl9iYtj1jS/tKWl9U6CCz/Wy4OLhX03P7QXIZG/oXg/zJDgziqpcj+i
Qpe3VYnePNxVO+K2r968LpAejP3/7z8un+Wd9K7mvqsvdLvbTbg/fYlGfOw84b+5VYx+C5+zvi6f5Z30rua+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ
rz5ezobovvwbXcWxWhy/BWVPBenQ3z7bTkScRe8SP63ZcXsJ4CM/X16iDlb4FL8VAAAAZc3NQQAAAAAAAAAA0x2/mHmf2j8HeaOxFo0+v9Mdv5h5n9o/B3mjsRaNPr/B
E1lWN9DnP5PuhMwIoOQ/wRNZVjfQ5z+T7oTMCKDkPwcAtNnITiG/7mTdwUHjL7+AbbjAY73vPqpldjkHCTI/Db9oIZdsfD/FtgFzeRtxP+rbYq3QetI8zPu1if1V1byU
iGCm/f/vP/ZvWzbL+ey+hppbmjiRoj8zSC7tNEfcv2lKX7v7zLK+9m9bNsv57L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxaQKo6gOe+S3v4AR8cIr/R
ov/iQXDgPvwr5IQQiBc/8ql9hSnxIj/4hLAZFUoTv7DT8lhrwtJBAAAAAAAAAACQ79zRtJjaPwlH3tZuYzC/kO/c0bSY2j8JR97WbmMwv3l0vSQIjuU/3X/Y+K3X3z95
dL0kCI7lP91/2Pit198/FE5uHjU6G7+otd/leNgovwDE6dGXYeS+yvL2EpMELD/bPjq0fXx/Pzp3T7+jIm4/gDLMNqmpxjyn/kl0QK7OvOVRorX9/+8/wmIPDQxq8r7A
4cbwnoBlvzHajEde79a/2c/bcO1Ssr7CYg8NDGryvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOG4Yzajn5r67wFIQjwQnvz2GnX9QtuA+uSzrXtNeHT8k
OXeuZVMiP6CGabpvThK/84IdQuOd10EAAAAAAAAAAOKBSEFWldo/nC6hreUaAD/igUhBVpXaP5wuoa3lGgA/gzruF4cU5D+qtdpqZ9DYP4M67heHFOQ/qrXaamfQ2D+Q
fVb3xmMWv6ORW4fpriO/kFR23fow+75OnkQ46PMlP72WbDcl5YA/7TBC3vq7aT/BGQLsng68PFcHV3UJtMa8bdFzvP3/7z+yLnUv5FL3vgNPf3oZpJy/8Do3Y8d30r9n
Uph0YRyyvrIudS/kUve+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV6MHReaPmvpAfUjudJy2/6/FTL7PG4D7GrxvX3mIiP0q8jTrl7SE/I8PDOEogEr81
Ar5aUrvdQQAAAAAAAAAAbX+ol86U2j+Jyqjnk4k0P21/qJfOlNo/icqo55OJND/dSPzV+CDjPzvvSg9WdtM/3Uj81fgg4z8770oPVnbTP57zAJFgPxO/CP3Tmq65H7+o
5Aye4hEDvxNc9FcbUCE/Y3ZTV9m3gT/img2vrH1lPz614hwAe7E8T43kGe4twbx9QtS8/f/vP/TeygI0ef2+85l5qhizpr8BT30DgJvNv6+eF+xdGbK+9N7KAjR5/b4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL21H2e1n+a+/ai+gcBrMr/cp97usqvgPl4xrfXxESc/fXeMmEiuIT9VC0hD09MSv4lO8AsLt+JBAAAAAAAAAABs
HAIedpbaP7EYNluXB0I/bBwCHnaW2j+xGDZblwdCP1oDRxLnhOI/oKBgTuSozj9aA0cS54TiP6CgYE7kqM4/JnrR5W81Eb+wLCEe2hYav+S2Zn72kAa/HB8MNHhzGz//
+yv0S0mCP0ExwexBrGE/4Lsc8g7gpTw521yLIGy6vOvveLj9/+8/LXPbBfWXAr+mwYO74hasvx4o0tuQqse/tySkgDg8sr4tc9sF9ZcCvwAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA54vOoEbL5r6ONVJH8j03v1EnvE3/b+A+Y0AvoG39LD8SAPCYpYchP4hDCfglfxS/b2OF45CP50EAAAAAAAAAANOu6DiKmdo/M90Z939BRz/T
rug4ipnaPzPdGfd/QUc/X2X4lT8h4j/0tbfLgDfIP19l+JU/IeI/9LW3y4A3yD+MbRAQPMMPv5mR8VZlBRa/2BCrRJjJCL+6jukhmd4VP+l9+82aq4I/nxYxWI/DXD9g
NZ1fo3ObPPJ14XH/i7S8lOsNsf3/7z86a+0oxm8Hv2XOPMkrjq+/+jln5iTiwr+wCl+jkHeyvjpr7SjGbwe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5
qDfMdBXnvnyxKLO3Sz2/U/Zk5XYg4D7xMRGpWzsyP92MfrATcSE/Avm3a9Y/F7+WHjGrSqntQQAAAAAAAAAAUa5oVj2d2j/SJ7QMupJJP1GuaFY9ndo/0ie0DLqSST9n
04GMuuHhP8aUgoCPKcM/Z9OBjLrh4T/GlIKAjynDP8xsp+7PBg6/giZ478o7E7/QVtXCkzEKv2wxysyghBE/jJLZWzbtgj+htrcFTT1XPzAQRO/BQZE8zfg5qvsYsLyT
STWo/f/vP80RV9LxhQ2//7uwPbDksL8FI8cy+Ri+v1M1abNVvrK+zRFX0vGFDb8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALUMRCDrbee+E2N2I7dzQr9o
O8HHOpffPn59fkH98TY/yn/HtXZkIT+us2lszT4bvyJdBKWxq/JBAAAAAAAAAACYUkyv3aDaP/qtTj2zR0k/mFJMr92g2j/6rU49s0dJPya5vpZJueE/kLIEL41cvj8m
ub6WSbnhP5CyBC+NXL4/KN9/uq/jDL8AcRpK7YkRv8zAV9H4FAu/8G89xnxDDD/8TfGymRiDP62TpUzxrVI/VO5dQUK5hTwFtd1h/VipvMoaQZ/9/+8/UqmBN8KWEr/S
bUlBoZyxv6orxhrc9re/up+xKfcFs75SqYE3wpYSvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj14e9HTH575QDWLFcjxHv2HgbBlv/d4++NQHxMTiPD/6
DAl/sV0hP6cMNDzdWSC/y9RMNEeB90EAAAAAAAAAACOo4R75o9o/ZdWWeFAdRz8jqOEe+aPaP2XVlnhQHUc/8LW/KpKf4T84pQytRRK4P/C1vyqSn+E/OKUMrUUSuD+w
02wFdSUMv0Dr8mVR0hC/qOyw4W+kC78AH2NwHgcHP65BDJgNNYM/VgqpfQ/qTT8J6GNxA197PNoNhoQsBaS8c3Pmlv3/7z95Vja3h2cXv6RBULXvErK/mZt4XFMRs7/t
8WlkzEizvnlWNreHZxe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmpYR9/xrovhfnA6VpQU2/jH3bhPGF3j6q3ElWNS9CP7ei/a4fWiE/CfmFn3r0I7+r
4rPqTZf9QQAAAAAAAAAABU5zC2Sm2j+m3Vd/tuZDPwVOcwtkpto/pt1Xf7bmQz/hmOTbPY/hP6JnD1vaF7M/4Zjk2z2P4T+iZw9b2hezPyAmRrjqqQu/gHhws+cGEb/4
JRtw5f4Lv0DPrV6gCAM/ZiUw/o1Hgz963hs1eOJHP1XucTBAQXE8m8F1x6uwn7ztAiWP/f/vPzbHT6YQdx2/LKnqy81esr+qKCDwqVOuv3aVlejXhrO+NsdPphB3Hb8A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgdu+KNaOi+htrxZ2pqUr/bn51mLTrePnXNgNtQ5UY/uqSCsSpYIT/9yeKqFqAovxAAACBfoAJCAAAAAAAAAACh
rgCRJajaP4ZftoavS0A/oa4AkSWo2j+GX7aGr0tAP495LnrjhOE/ZPP3a6FLrj+PeS5644ThP2Tz92uhS64/aF+QXllaC7/YvX92qCcSv5B8ZT3qNwy/EKPsSooPAD+y
413DfVODP67ZHgNCB0M/ptghZEzEZTxp0HpESB2ZvJLkXof9/+8/y/a+0gyMIr/8zVeyR4+yv+k9mBhsG6i/kvJt2wjFs77L9r7SDIwivwAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA/IRJEku26L7tsm4HEC9Xvz9Gjl5wHt4+5rBajszTTD9y9MTD6lYhP70YpfUKnC6/"}

View File

@ -0,0 +1,11 @@
v {xschem version=3.0.0 file_version=1.2}
K {type=subcircuit
format="@name @pinlist @symname"
template="name=x1"
}
T {@symname} -49.5 -6 0 0 0.3 0.3 {}
T {@name} 135 -22 0 0 0.2 0.2 {}
L 4 -130 -10 130 -10 {}
L 4 -130 10 130 10 {}
L 4 -130 -10 -130 10 {}
L 4 130 -10 130 10 {}