diff --git a/src/callback.c b/src/callback.c index 8a0028e4..aae76825 100644 --- a/src/callback.c +++ b/src/callback.c @@ -320,7 +320,7 @@ static int waves_callback(int event, int mx, int my, KeySym key, int button, int if(xctx->graph_flags & 64) { if( POINTINSIDE(xctx->mousex, xctx->mousey, gr->x1, gr->y1, gr->x2, gr->y2)) { char sx[100], sy[100]; - double yval; + double xval, yval; if(gr->digital) { double deltag = gr->gy2 - gr->gy1; double s1 = DIG_NWAVES; /* 1/DIG_NWAVES waveforms fit in graph if unscaled vertically */ @@ -333,8 +333,18 @@ static int waves_callback(int event, int mx, int my, KeySym key, int button, int } else { yval = G_Y(xctx->mousey); } - my_snprintf(sx, S(sx), "%.4g", G_X(xctx->mousex)); - my_snprintf(sy, S(sy), "%.4g", yval); + + xval = G_X(xctx->mousex); + if(xctx->graph_sim_type == 3) xval = pow(10, xval); + if(gr->unitx != 0) + my_snprintf(sx, S(sx), "%.4g%c", gr->unitx * xval, gr->unitx_suffix); + else + my_snprintf(sx, S(sx), "%.4g", xval); + + if(gr->unitx != 0) + my_snprintf(sy, S(sy), "%.4g%c", gr->unity * yval, gr->unity_suffix); + else + my_snprintf(sy, S(sy), "%.4g", yval); tclvareval("set measure_text \"y=", sy, "\nx=", sx, "\"", NULL); tcleval("graph_show_measure"); diff --git a/src/draw.c b/src/draw.c index 14317052..762c46fa 100644 --- a/src/draw.c +++ b/src/draw.c @@ -1528,7 +1528,7 @@ void drawtemprect(GC gc, int what, double rectx1,double recty1,double rectx2,dou * 112 --> 100 * 6300 --> 10000 */ -static double axis_increment(double a, double b, int div) +static double axis_increment(double a, double b, int div, int freq) { double scale; double sign; @@ -1545,10 +1545,16 @@ static double axis_increment(double a, double b, int div) delta = fabs(delta); scale = pow(10.0, floor(log10(delta))); scaled_delta = delta / scale; /* 1 <= scaled_delta < 10 */ - if(scaled_delta > 5.5) scaled_delta = 10.0; + dbg(1, "a=%g, b=%g, scale=%g, scaled_delta=%g --> ", a, b, scale, scaled_delta); + if(freq && scaled_delta > 2.5) scaled_delta = 10.0; + else if(freq && scaled_delta > 1.9) scaled_delta = 5.0; + else if(freq && scaled_delta > 1.4) scaled_delta = 2.0; + else if(freq) scaled_delta = 1.0; + else if(scaled_delta > 5.5) scaled_delta = 10.0; else if(scaled_delta > 2.2) scaled_delta = 5.0; else if(scaled_delta > 1.1) scaled_delta = 2.0; else scaled_delta = 1.0; + dbg(1, "scaled_delta = %g, scaled_delta * scale * sign=%g\n", scaled_delta, scaled_delta * scale * sign); return scaled_delta * scale * sign; } @@ -1810,12 +1816,16 @@ static void draw_graph_grid(Graph_ctx *gr) bbox(ADD, gr->rx1, gr->ry1, gr->rx2, gr->ry2); bbox(SET_INSIDE, 0.0, 0.0, 0.0, 0.0); /* vertical grid lines */ - deltax = axis_increment(gr->gx1, gr->gx2, gr->divx); + deltax = axis_increment(gr->gx1, gr->gx2, gr->divx, (xctx->graph_sim_type == 3)); startx = axis_start(gr->gx1, deltax, gr->divx); for(j = -1;; j++) { /* start one interval before to allow sub grids at beginning */ wx = startx + j * deltax; if(gr->subdivx > 0) for(k = 1; k <=gr->subdivx; k++) { - double subwx = wx + k * deltax / (gr->subdivx + 1); + double subwx; + if(xctx->graph_sim_type == 3) { + subwx = wx + deltax * log10(1.0 + (double)k * 9.0 / ((double)gr->subdivx + 1.0)); + } else + subwx = wx + deltax * (double)k / ((double)gr->subdivx + 1.0); if(!axis_within_range(subwx, gr->gx1, gr->gx2)) continue; if(axis_end(subwx, deltax, gr->gx2)) break; drawline(GRIDLAYER, ADD, W_X(subwx), W_Y(gr->gy2), W_X(subwx), W_Y(gr->gy1), dash_sizey); @@ -1826,7 +1836,11 @@ static void draw_graph_grid(Graph_ctx *gr) drawline(GRIDLAYER, ADD, W_X(wx), W_Y(gr->gy2), W_X(wx), W_Y(gr->gy1), dash_sizey); drawline(GRIDLAYER, ADD, W_X(wx), W_Y(gr->gy1), W_X(wx), W_Y(gr->gy1) + mark_size, 0); /* axis marks */ /* X-axis labels */ - draw_string(3, NOW, dtoa(wx * gr->unitx), 0, 0, 1, 0, W_X(wx), gr->y2 + mark_size + 5 * gr->txtsizex, + if(xctx->graph_sim_type == 3) + draw_string(3, NOW, dtoa(pow(10, wx ) * gr->unitx), 0, 0, 1, 0, W_X(wx), gr->y2 + mark_size + 5 * gr->txtsizex, + gr->txtsizex, gr->txtsizex); + else + draw_string(3, NOW, dtoa(wx * gr->unitx), 0, 0, 1, 0, W_X(wx), gr->y2 + mark_size + 5 * gr->txtsizex, gr->txtsizex, gr->txtsizex); } /* first and last vertical box delimiters */ @@ -1834,7 +1848,7 @@ static void draw_graph_grid(Graph_ctx *gr) drawline(GRIDLAYER, ADD, W_X(gr->gx2), W_Y(gr->gy2), W_X(gr->gx2), W_Y(gr->gy1), 0); /* horizontal grid lines */ if(!gr->digital) { - deltay = axis_increment(gr->gy1, gr->gy2, gr->divy); + deltay = axis_increment(gr->gy1, gr->gy2, gr->divy, 0); starty = axis_start(gr->gy1, deltay, gr->divy); for(j = -1;; j++) { /* start one interval before to allow sub grids at beginning */ wy = starty + j * deltay; @@ -1922,8 +1936,13 @@ void setup_graph_data(int i, const int flags, int skip, Graph_ctx *gr) gr->unitx_suffix = val[0]; gr->unitx = get_unit(val); val = get_tok_value(r->prop_ptr,"unity",0); - gr->unity_suffix = val[0]; - gr->unity = get_unit(val); + if(xctx->graph_sim_type == 3) { /* AC */ + gr->unity_suffix = '1'; + gr->unity = 1.0; + } else { + gr->unity_suffix = val[0]; + gr->unity = get_unit(val); + } val = get_tok_value(r->prop_ptr,"subdivx",0); if(val[0]) gr->subdivx = atoi(val); val = get_tok_value(r->prop_ptr,"subdivy",0); @@ -2020,6 +2039,7 @@ static void draw_cursor(double active_cursorx, double other_cursorx, int cursor_ if(xx >= gr->x1 && xx <= gr->x2) { drawline(cursor_color, NOW, xx, gr->ry1, xx, gr->ry2, 1); + if(xctx->graph_sim_type == 3) active_cursorx = pow(10, active_cursorx); if(gr->unitx != 1.0) my_snprintf(tmpstr, S(tmpstr), "%.4g%c", gr->unitx * active_cursorx , gr->unitx_suffix); else @@ -2046,6 +2066,7 @@ static void draw_cursor_difference(Graph_ctx *gr) double yy = gr->ry2 - 1; double tmpd; double yline; + if(xctx->graph_sim_type == 3) return; if(gr->unitx != 1.0) my_snprintf(tmpstr, S(tmpstr), "%.4g%c", gr->unitx * diffw , gr->unitx_suffix); else @@ -2085,7 +2106,13 @@ static void draw_graph_variables(int wcnt, int wave_color, int n_nodes, int swee if(gr->unity != 1.0) my_snprintf(tmpstr, S(tmpstr), "%s[%c]", find_nth(ntok, ',', 1), gr->unity_suffix); else my_snprintf(tmpstr, S(tmpstr), "%s",find_nth(ntok, ',', 1)); } else { - if(gr->unity != 1.0) my_snprintf(tmpstr, S(tmpstr), "%s[%c]", ntok, gr->unity_suffix); + if(xctx->graph_sim_type == 3) { + if(strstr(ntok, "ph(") == ntok) + my_snprintf(tmpstr, S(tmpstr), "%s[Phase]", ntok); + else + my_snprintf(tmpstr, S(tmpstr), "%s[dB]", ntok); + } + else if(gr->unity != 1.0) my_snprintf(tmpstr, S(tmpstr), "%s[%c]", ntok, gr->unity_suffix); else my_snprintf(tmpstr, S(tmpstr), "%s", ntok); } if(gr->digital) { diff --git a/src/save.c b/src/save.c index 54a24339..8e7e8254 100644 --- a/src/save.c +++ b/src/save.c @@ -222,16 +222,15 @@ unsigned char *base64_decode(const char *data, const size_t input_length, size_t * data layout in memory arranged to maximize cache locality * when looking up data */ -static void read_binary_block(FILE *fd, int sim_type) +static void read_binary_block(FILE *fd) { int p, v; double *tmp; size_t size = 0; int offset = 0; - int m = 0; - double val; + int ac = 0; - if(sim_type == 3) m = 1; /* AC analysis, complex numbers twice the size */ + if(xctx->graph_sim_type == 3) ac = 1; /* AC analysis, complex numbers twice the size */ for(p = 0 ; p < xctx->graph_datasets; p++) { size += xctx->graph_nvars * xctx->graph_npoints[p]; @@ -239,7 +238,7 @@ static void read_binary_block(FILE *fd, int sim_type) } /* read buffer */ - tmp = my_calloc(1405, xctx->graph_nvars, (sizeof(double *) << m)); + tmp = my_calloc(1405, xctx->graph_nvars, (sizeof(double *) )); /* allocate storage for binary block */ if(!xctx->graph_values) xctx->graph_values = my_calloc(118, xctx->graph_nvars, sizeof(SPICE_DATA *)); for(p = 0 ; p < xctx->graph_nvars; p++) { @@ -248,13 +247,19 @@ static void read_binary_block(FILE *fd, int sim_type) } /* read binary block */ for(p = 0; p < xctx->graph_npoints[xctx->graph_datasets]; p++) { - if(fread(tmp, (sizeof(double) << m), xctx->graph_nvars, fd) != xctx->graph_nvars) { + if(fread(tmp, sizeof(double) , xctx->graph_nvars, fd) != xctx->graph_nvars) { dbg(0, "Warning: binary block is not of correct size\n"); } /* assign to xschem struct, memory aligned per variable, for cache locality */ - if(m) for(v = 0; v < xctx->graph_nvars; v++) { /*AC analysis: calculate magnitude */ - xctx->graph_values[v][offset + p] = - sqrt( tmp[v << m] * tmp[v << m] + tmp[(v << m) + 1] * tmp[(v << m) + 1]); + if(ac) { + for(v = 0; v < xctx->graph_nvars; v += 2) { /*AC analysis: calculate magnitude */ + if( v == 0 ) + xctx->graph_values[v][offset + p] = log10(sqrt( tmp[v] * tmp[v] + tmp[v + 1] * tmp[v + 1])); + else + xctx->graph_values[v][offset + p] = 20 * log10(sqrt(tmp[v] * tmp[v] + tmp[v + 1] * tmp[v + 1])); + + xctx->graph_values[v + 1] [offset + p] = atan2(tmp[v + 1], tmp[v]) * 180.0 / XSCH_PI; + } } else for(v = 0; v < xctx->graph_nvars; v++) { xctx->graph_values[v][offset + p] = tmp[v]; @@ -291,16 +296,17 @@ static int read_dataset(FILE *fd) int variables = 0, i, done_points = 0; char line[PATH_MAX], varname[PATH_MAX]; char *ptr; - int sim_type = 0; /* 1: transient, 2: dc, 4: ... */ int done_header = 0; int exit_status = 0; + xctx->graph_sim_type = 0; + while((ptr = fgets(line, sizeof(line), fd)) ) { /* after this line comes the binary blob made of nvars * npoints * sizeof(double) bytes */ if(!strcmp(line, "Binary:\n")) { int npoints = xctx->graph_npoints[xctx->graph_datasets]; - if(sim_type) { + if(xctx->graph_sim_type) { done_header = 1; - read_binary_block(fd, sim_type); + read_binary_block(fd); dbg(1, "read_dataset(): read binary block, nvars=%d npoints=%d\n", xctx->graph_nvars, npoints); xctx->graph_datasets++; exit_status = 1; @@ -311,19 +317,19 @@ static int read_dataset(FILE *fd) done_points = 0; } else if(!strncmp(line, "Plotname: Transient Analysis", 28)) { - if(sim_type && sim_type != 1) sim_type = 0; - else sim_type = 1; + if(xctx->graph_sim_type && xctx->graph_sim_type != 1) xctx->graph_sim_type = 0; + else xctx->graph_sim_type = 1; } else if(!strncmp(line, "Plotname: DC transfer characteristic", 36)) { - if(sim_type && sim_type != 2) sim_type = 0; - else sim_type = 2; + if(xctx->graph_sim_type && xctx->graph_sim_type != 2) xctx->graph_sim_type = 0; + else xctx->graph_sim_type = 2; } else if(!strncmp(line, "Plotname: AC Analysis", 21)) { - if(sim_type && sim_type != 3) sim_type = 0; - else sim_type = 3; + if(xctx->graph_sim_type && xctx->graph_sim_type != 3) xctx->graph_sim_type = 0; + else xctx->graph_sim_type = 3; } else if(!strncmp(line, "Plotname:", 9)) { - sim_type = 0; + xctx->graph_sim_type = 0; } /* points and vars are needed for all sections (also ones we are not interested in) * to skip binary blobs */ @@ -335,6 +341,7 @@ static int read_dataset(FILE *fd) } else if(!strncmp(line, "No. Variables:", 14)) { sscanf(line, "No. Variables: %d", &xctx->graph_nvars); + if(xctx->graph_sim_type == 3) xctx->graph_nvars <<= 1; /* mag and phase */ } else if(!done_points && !strncmp(line, "No. Points:", 11)) { my_realloc(1415, &xctx->graph_npoints, (xctx->graph_datasets+1) * sizeof(int)); @@ -344,14 +351,24 @@ static int read_dataset(FILE *fd) /* get the list of lines with index and node name */ if(!xctx->graph_names) xctx->graph_names = my_calloc(426, xctx->graph_nvars, sizeof(char *)); sscanf(line, "%d %s", &i, varname); /* read index and name of saved waveform */ - xctx->graph_names[i] = my_malloc(415, strlen(varname) + 1); - strcpy(xctx->graph_names[i], varname); + if(xctx->graph_sim_type == 3) { /* AC */ + my_strcat(414, &xctx->graph_names[i << 1], varname); + int_hash_lookup(xctx->raw_table, xctx->graph_names[i << 1], (i << 1), XINSERT_NOREPLACE); + if(strstr(varname, "v(") == varname || strstr(varname, "i(") == varname || + strstr(varname, "V(") == varname || strstr(varname, "I(") == varname) + my_mstrcat(540, &xctx->graph_names[(i << 1) + 1], "ph(", varname + 2, NULL); + else + my_mstrcat(540, &xctx->graph_names[(i << 1) + 1], varname, "_ph", NULL); + int_hash_lookup(xctx->raw_table, xctx->graph_names[(i << 1) + 1], (i << 1) + 1, XINSERT_NOREPLACE); + } else { + my_strcat(541, &xctx->graph_names[i], varname); + int_hash_lookup(xctx->raw_table, xctx->graph_names[i], i, XINSERT_NOREPLACE); + } /* use hash table to store index number of variables */ - int_hash_lookup(xctx->raw_table, xctx->graph_names[i], i, XINSERT_NOREPLACE); dbg(1, "read_dataset(): get node list -> names[%d] = %s\n", i, xctx->graph_names[i]); } /* after this line comes the list of indexes and associated nodes */ - if(sim_type && !strncmp(line, "Variables:", 10)) { + if(xctx->graph_sim_type && !strncmp(line, "Variables:", 10)) { variables = 1 ; } } diff --git a/src/xinit.c b/src/xinit.c index 0e368813..7b3be538 100644 --- a/src/xinit.c +++ b/src/xinit.c @@ -447,6 +447,7 @@ static void alloc_xschem_data(const char *top_path, const char *win_path) xctx->graph_bottom = 0; xctx->graph_left = 0; xctx->graph_lastsel = -1; + xctx->graph_sim_type = 0; /* type of sim, 1: Tran, 2: Dc, 3: Ac */ xctx->graph_struct.hilight_wave[0] = -1; /* graph index of hilight wave */ xctx->graph_struct.hilight_wave[1] = -1; /* index of wave */ xctx->raw_schname = NULL; diff --git a/src/xschem.h b/src/xschem.h index ff422d3e..353d48b9 100644 --- a/src/xschem.h +++ b/src/xschem.h @@ -900,6 +900,7 @@ typedef struct { int graph_bottom; int graph_left; int graph_lastsel; /* last graph that was clicked (selected) */ + int graph_sim_type; /* type of sim, 1: Tran, 2: Dc, 3: Ac */ Int_hashentry **raw_table; char *raw_schname; /* */ diff --git a/src/xschem.tcl b/src/xschem.tcl index 5629f22e..b3e38a81 100644 --- a/src/xschem.tcl +++ b/src/xschem.tcl @@ -1449,6 +1449,7 @@ proc graph_get_signal_list {siglist pattern } { if {$graph_sort} {set direction {-increasing}} set result {} set siglist [join [lsort $direction -dictionary $siglist] \n] + # just check if pattern is a valid regexp set err [catch {regexp $pattern {12345}} res] if {$err} {set pattern {}} foreach i $siglist { diff --git a/xschem_library/examples/0_examples_top.sch b/xschem_library/examples/0_examples_top.sch index f16d7cba..22140837 100644 --- a/xschem_library/examples/0_examples_top.sch +++ b/xschem_library/examples/0_examples_top.sch @@ -1457,3 +1457,4 @@ xwtAgA9ve8fHC0Dod8blIpQLQJBdgRgxavQ/AAAAgEslwD6d7SiMdxwqP41maeirFRxABH/Rb+tVM0DO cwtAyKwqggMC8z8AAABAXz/APixDHOviNio/cIyWTt0GHEAHmaX3NW0zQHJvU5F/bTNA3V5CW3kqoL85tJeeXUIJQIB/waNeQglAcFfF8JIdC0DY7tjwBPjxPwAAALCc UsA+" } +C {test_ac.sym} 160 -90 0 0 {name=x15} diff --git a/xschem_library/examples/cmos_example.sch b/xschem_library/examples/cmos_example.sch index e1d48ebd..c9bf6049 100644 --- a/xschem_library/examples/cmos_example.sch +++ b/xschem_library/examples/cmos_example.sch @@ -4,7 +4,7 @@ K {} V {} S {} E {} -B 2 1210 -510 1840 -30 {flags=graph +B 2 1060 -550 1690 -70 {flags=graph y1=1.16665 y2=5.05705 divy=4 @@ -19,17 +19,14 @@ v(minus)" color="7 8 10" } -B 2 1230 -1050 1807 -523 {flags=image,unscaled -image_data=iVBORw0KGgoAAAANSUhEUgAAAkEAAAIPCAIAAAD7NJ3mAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydeXxTVfqHz01DbKGUgKxCBdcqMso4Kg7iyDIoIyCKyiiIC+Myg4go/EQdHdwGNxYXEBFxBVQUlVVEHUFBlEVQpFBZC4UWCiVd02a55/dH0jTNcpfk3HPvSb7Ph48mucv75PQk733PPfeGEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCXjih89lNZ++wdCCHEM3OyljZD97kMrR3cxWdIKNGqoFs8Wy5SWvtJCYYOzZpbKtHb1lY5korYaOufnw1Uef/2fw1ueP/tvSlHjO2eN3u2ntHxeq8Cy0x/5qdwnB3Z74q1WMV9JGMdfZ23ak//hiKzQK1l35/uof8/4pHZrDczpCRnnvPhbZZ1fDn0y68p+frFXlvqG0c7oCSCViJHD5MpNCz/44IMPPvz8f7+WeimltHLRxRlmi5qNzm+urLvzfVQ+PLlNUkEdf9vkpdTvPrZ3y/f/W/PzwWqZUioff7u7tj9H42+uET/W+H0HprUghBDHDVu9lPpLV77y1H8enzD0nIwYryRB9qMH5Mivv64flFNa++1fhe9JpvQEktF3VVldVen+bT9++83/ftheUitTSv37/6Ntt+gJIGWJkcP8e8Y2HDX9YXk1pbTy43amGVoEfd9cuXOOU+rLv13rcXI8Thl46zWnhEn0WFJFKa1bd4Wmz38j50a0eOUYpfKhJ7IVXkmCWN9cpNWzxTL17xvPJIKJmNMTInEM+dlLqXxkqqaqHD0BpBDtbl9WXCcHxyOKl7+4RTGHtXnrBKW0cmHq5bCM7surKZUPPBL2Scq44rs6Sv2778siig0V+OY69vmMXyuDYy6+yt+m9ggNFp31cSWlvvxbQy+0e+Cb4mpv/UCQ7HX9MrVn+NBSxjnjvznsrh8pkn3VBTN7xEpTjmt+jvwLNULBOTSC1GZ+eePx4iOzF0W+EvhmbHHNW7uq6geV/LUlq8aeXh+ozcJKSn07RoU8AiWje9XppMXUI3LE7l4M7G5ysUzl4mc1j4VyQsieQLosrlbKYegJIDWRTh44Z6+nZueH/3d9n159hz366Y69B0p87iW3OgkhxNbp3v/VebY+dXGL7Ozs7OatOl1w3XPfl3kOvH3NyRJHScronxodntntp3U/3dm0/gX7xQuOU1qxpJ+D2M56YqeX0rrCZS8+MHr89FWH6rw+P6UlszsTQkjTuzZ4qOzzeVw/v/P4vaMfm7vhhJ/KriWDA7vKeWSHn9atvyOzfse2zo9/W7D+09dfeGzcveMmvb5qv1uWT3waOkHS+rZvKmXqr8xfPP2RsQ9Mmj5v9c4ts6+wRxvbzphS6Kfyvuc6xno/ys6OwV9VU/n3Sdmk1dk9+r+6x089vz7Zp1evnn86Iyf6FUJsZzy6rY5Sb8nqWY+OnfDC57trZOo/+n6fgHTOM3tlWrm84RyP/U8fllF6eEY7QnLO6PnEL3XUX/h6/169evXq+afTcgLrtHridz91f39zZgz5GND5bP6pI0xPsGU627Zrl3tOn3vezK+R5YoVN8asZVKtJwBQj+3M8etq6zb+u1uT4Asn/emZXz1yoxzW+MCp9uCK8Rdzrvl55TDS+tEdPurdel/wg2X/y6cuSss+utRO7P2WVFBa9dW19d9qObesddPG31zUXzjlbFtgse20p3f5qL9gUltCiOPqL6soLZ6VGzdw5g3f1lD3d4GPsL3HguOU1m0d10FF13b249s9lFZ/Ozwn1mIV54ZvLkJI9gPbfLR23S0N3yGRr9j7LS6n1P39LfWx7Je+XypT328TnIQof3MRkjn8+1rq3/FIRMexX7G4nNLSd86xqbzTAPxymCg9wX7pIlf9R9NfvvaBs2M3ZMr1BADqaTHis2rP5n93bRicsP/x6W3eRjnMWzBn5F969erVq9cVV14/etq3h+tKVt7bNak5VZYlZ+xWL/XlP9KaEEIcA1ZUUlr6bncbIbmvHaa0+qvBDW878+bv3RFH3wenhY2wtnp6t0zrfhiZSUj2hN981J8/Mfxz6+zz9Nd7ytxef9jgyoEXnYQQ0vGVIkpr1w5XOSZtO3xpmZ/6j8wbEOeQQsVZ5zdX7ozDlLrX3Niwhu2sN49SWvPtDZkkwW8u0u7VQ5S6V99ovcNvQXpCdveh94y+94HHX/p06wk/lau+G90xRhZATwCCE/fYxpbT0mmXjxQflUMv+Y8cDntGCCG0unDLurVr165du2bVotfGXzf2U/tfn3pscMxDf9GpeHPGz56MvH/c34EQx6CHemfT4k/++6tM7Ke0ziKk+mCBL7SqZ2eRu/HGsutQdcOz2qITPmJvcYqdEJLZRCLU5wm1q63zYz+seqxv+9KVL0+8c9i1gwYOuv/7KkKaNMsihNg7tW9GSM2hXT4Sn1ZDP/rt/UHOii9v737LyqqYq2hy1oz9lLZZhLiL9zbsTS4uKqekScsOiR8713llQmwOC35xCdITqrZ+Ovu1mdOfHje0+xn3bfY2u/y/0y+JGnNGTwCiE7dnyRVlLp+U0yKn4eyWLceZo3Sui1YW7CiSm59z7qkpORO2Zt60n2ptp9/6YOemw8b3zKIHFzy3WybEd/iom5CTWoV9SO0dWkXUojZnx2YNzzI7tbQTX/lhHyFyictPbNknh75cskfdfo699vtRF1w3YcpbHy9evuKbIyS00FdUUk1J045nxTj/FcA58P3tC4e1rv5udPer3y+Ot5YmZ80E9pbV4fSwczEdOrWQiPdEsUwIIT6ZECkjrKtlZ6n2EFv7VpmEeI4fltXW5I8QPSGcssUbywhpdtofov7E6AlAdOIfHVVu+H6LfH6/K9rWpy1bxz79uip9ZKRW53fvnOE7euRYava22s9e/L5Gyh3+n0fHXXySvPe9qYUyIYQUf7axgjT/861d69vSfuHIi5o13lQ65fqH68fzbWdMuLmLJO//8staQmrXbncRqVXX8+sb1t60CSHe8qP1R7JNB91zUcMR6JH5q8voSZdMvDfWsBDJ7v/mts9vaVe34f8u6vN6odIfQYuzdooXbawgmZeMvSF0FuSS/wxpTfx7ln1dSwjx7D7iIZm559efcbGdeeNFzUMbyzV1MpFOahbxhhwXn92c0CNbt3gStTIQi/cEu73xx9R29n1XtSGkomBTbdS66AkgdZFOHjhnb+2hpeN7nZKZ0TS376Nf7i2v8jc6H+bb/f7oawYNGjRo0DU3jnpk7oZjfm/hO9e24TkxkSv2PovLKfX5/NS3fWLoMpbAzC5fyZLRf3Q6WvcYv+qYV6bRs9HKt857ctzYJ97d7PJT2bVkSOCD7BiwsorK+56rP0liv/idozKt3Tn9yg6ZTc8aOmN7tU+WKS1+LXjuvvXIrytlKlcVLHv18fETnpg+b3XB1jlXOAixnf3kTg+ltGbHR9OnhHhx0t+DJ/OzH93hp/TQjA4anHWeBSG20wKz0Y58N2fS+EemLdnjDp+NRpqOXOumsuu7iVec1vGcqx9bdaROlkNnQUjHF/bL1Htw0aN33TbylmsvbmsjhBBb9/ePUXp0bleLnsi3ck+wX7GouLpk+7qVi96bPevND7/aVuqhlNZueiAXPQGkG5lnD5v6RX5pTW116a41c/418P++qo05L1GWfXUVxTtWv//Y4NNTetja3uPDMkop9W65r9FJP+eV0zeV1voppX6Pa+cHTyw73viby/vrC2M/21PplSmVfVX7low+J3Sk7BiwopL6djwa+iJ0/PHRNcVuP6VU9rmPbpoxYUlZ2DcXIbbcv8/ZVFwTuALHX1e+f/m4s2yEOIb+r4ZG4/tlXOArMvuxAn+j/Sg46/3mIoQ07fHoqn0VHplSKvtqSja9dm34ZYKth8zefsIjU0r9taU/v/bQ0oYz+YRkXznjtxPBe2R5N/+zKSHEdtasw7Jc8mY3y35xWbgn2HJHffDrofJanyxTSmV/XUXRxnfuaBh1RE8AADDE1n1Osezf91xnfErrsV8875jsK5gU89I2kbB1e/9YRA7bOrZp3LW7zzkiU1k++uYfNZ3miov94keWbt13tLLOTymllUv76TnB1ci5UQ4jpN3N83ZVBK66Dk4gjH4lcevu4z/8ZunTfRpkHVcvq6Iy9e8SvycAkMo47/jBLbs+65PcF1fqkDNynVt2fZ7cjW8tgb4cRhzDtvoo9f08MMme0PTezbX+uooj+/aUeZPMYX3eP1hT/v29TQkhxN5rkYvS6q2vjL1j5C039uxoi/FKEsSYW58z7oBMqXv5xTi+A8DK2HLveHPVgrEY8ieEEOLoNenzFdOvdZrtwQB9Oaz1Q795qfvA5g+T7gnBWR32Xp+6ksthjWg69hcfrVt/W6bCK0kQncMcvSYt21birb+8DAAAQFLYTpt+QI6485Gt29wjMq3+aoiDEOLsP23D0Vo/pbK/tnTD9H9+HJnDfn1hXP35MG/lnsWjzw7VXB0m7/XTiqX9Qi84h87aUHgicImz7K8rK/g07OwZIcTW8YZZPx2q8gZPe5UXroy4G4fGHKbgHBpLzHliV6P7GXp/nvBs5CujmxJCSNMej6zaV+7xB8+HbZzRcD5M4RrnpqN/bvxbTsHzYaTpnRs81LPhrvjVKwAAiA63e46Jc79Eoi2H4X6JAABgNvxymCj3SyREUw7D/RKB4KBfgFRAYvRPA8dmzPrNZ+/2r3sD90v868P9W5BjS5/d4CMdrr+oOalZ/8qKmuCqFZ/MjLysmB5e9OLvwcvP5X3TP9xPbV2uuiqTEEfXjplEPrH/RNjKje+X6P64dxbJ7HJhJiGEtBvxl1akbuMLr8e9GYs2tDjr2Nt1F+eQ2g2vfFIRfMG34anFx0jG6QP/mnAZ5dt5oIqQ7C7RNxkBgCCHAaAXQe6XqAncLxGIDnIYADoR7n6J8cH9EoHoIIcBoBeL3y9RD7hfIgAApB1Wvl8iIcRx8V3PTZkyZdoHv9dSWrdn4fQpU6Y8d8+lwbuO4X6JAACQ3lj4fomEkLavHIq+dWb9Zcu4XyIAAADm4M6ZUaTMnTMBACD1wZ0zG5M6d84EAIA0AHfODCeF7pwJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAVqQONy0s9lP5+NsDT6p/zdF/drG/0U8X+Q+91jf+vacz2vee8N66Pcdr3JWHt62YOuK8hH9HFgAAQBqR5I88SK2vefb5PqS0ljaJWOIv/PihhxYGfqOdEOres80XtXWAzIseW7bs3+3XT584Ym3laUMfnvTOqlza46YFRXJybgAAAEB8JOeVs3aXfjFm9LvHfJF1WN2vT16gJUFK7W5bUu7dN6t/8NdwbV1Gf13p3TWlJ34yCAAAgDLJ/E5R9uX/efmm4ucefHu/P87OHVmZdkl5Jzl9BvduVrR4weqKwHO5cOH8Nd4uAwdryoAAAADSmMRzWFaPR179R83L98/Y4Y21OOPscWtc7uqa2sqiTZ88fe2ZmbH3Yj+9a16Wb+e2naGRRurKzy8inbvm4aQYAAAARRLNYSd1H//qmCZvjnvx57rohbR8x/KZTzx497CrB1w76plVcu9HPlnz/vDcWLEkZyun5HOdqKANW7vKXDTD2cqp7kYpxQM8wAM8wAMLPuBDYgN2Tc4d8+qENh/d/Mza6liLvRteunND/ZNVSxatPrr+u/GTxly0cOKGeBM7EoBzSzEBznyAMx/gzAdxnSVJ5WRS8iRSh9lyb5v677w1/536I23hdDqdzmYOSZIczVq0yMmKlROrNy1c/DvpfOGFbaLfDnWVuajd2TKnYZHkbNlC8rvKynXMSwy1lPUfwBnOcIZzWjkbSiI5LCP33LNz2lwzZ2fZiRMnTpw4cWThiFa2lsM/OlK2Z8ZfY04ntGVkEELlGEnJtze/wJ2R1y0vlPwk57ldO5HC/IKqBNSMglKqcCgUb6nyVkYDZz7AmQ9w5oOIzrqRcs7ocUXvBvpPXFHur/ji4f5X9MxrJRFis9vDU6PUsv/M373e7c9cGKtIk9rfvrTcu2dmv+aB57ZT71lV4d097TLVufWCtRohBM68gDMf4MwHOBuM4+q3wq8Ps506ZvmOb9565sG7bx0x8q4J05bsrPR79r47tEMwsTmueqPEU/Xp8GDSIlmXPLW52nPwy8mjhgwaNm7uZpe3eNEtMSeANEaoNgoCZz7AmQ9w5gOcDSYih0nOy8e/t3LjrsNl1R5PTVnhli9ev7/3KQ01mGPA3FK/+/MRzUOvZHToO3He+n1l7tqqku0rXxrZLVvLeCrPNmJVX8NZGTiz99NjpbwUznqBM3u/VELENoIzH+DMBzjzAc4KJHOfDgAAAMBMkMM0waq+5gmc+QBnPsCZDyI6i4qIrQZnPsCZD3DmA5wVEPvGupJECBHpT1t/8V8KOHO9jBEAAGIidg4D5mFUGqY07nX+NM7da+K9zgfl6HBmBZz5IJyzwEfT5v6lEyOFnDmXkvpaLIXa2dLAmQ9wVgB1GEgM47pmzOwY/aJIn2cAgEEgh2lCuPpaNbpQzpbOainUzipL4awXOHNA4INZ1Nd8sKSz8kimZElnFeDMBzjzAWOJACgQ/cEIz2pUqA87ACBxkMM0IVx9rRo9dZ0bJbP6Bwa+nXRtZ97AmQ/COQt8vIr6mg+COsfxte67ELSdCZyNB84K4F5TIDUJfIKikpZIV5cDAFTBWKImhKuvVaOnk3PodRr2X2ZvEO3MBzjzQThnkYrTCCilZIHA/oAh0ohGTxU/UTxOkiUAxov4AGc+cHMWqVEiQA4DiSGNaBhRpPOlxou429SD7yk+wJkPyGHqUEqJUH9UYaA0vOfx/PwkPo6h/2gmlMki0lisNZWWshp7EaOd4awHOCOHKYEcZiIWb3fNn5/IcUU6X9P+jSjXcKzNBzjzATlMHfxdDSLhqXvWeVd62lnl9Bi3rCZE34gAznyAswIiNUoEqK+VMdRZY57T+z5Namd9szyUs5rG2SUp3DcMAs5wjglyGFdS2Fk5q3F+w/rbOanJijGzmt7KLIX7hqWAMx+Qw9TB35UPCTvHzGp83nlCzgzm3EcnM+2ZLK36honAmQ/IYeqgvlbGOs7RySzevsx2TiSNxR5rbZzMojMZ+oZe4AznmCCHcSXNnSOSmXGtkIQzg2qsYV9qmazRyundN7gBZz4gh6mDvysfmDtzyGTJObNMY6RxJlNIY+gbfIAzH5DD1EF9rYzFncMzWWjXlnGmjb0UV9XmHJHJ0Df0Amc4G4PU4aaFxX4qH3974ElhL2e07z3hvXV7jte4Kw9vWzF1xHnNFPaha+UQlNJAMwkEnCN3HvaP5W4ZODOXIoQQOj/4L8Yi9A0uwJkPojhLrYe8U1haXOL2N8phmRdN2lTlKfrq+TuvG/z3B9/eUu49tHB4pzi/86Jr5TBEaaNw4Bw7BOuMwS6HGZjGIjIZ+gYf4MwHMZwl55Wzdpd+MWb0u8d8YTlManfbknLvvln9cwLPbV1Gf13p3TWlpyPWPvSs3AiebaQcK97S6NfhHNdHQ9Lg7qwpjSXYzlFpDH1DGTiz99NjpbzUXOeEyf7LtB0nvh9/brOr32qUw1rc9EmFb99LlzepX1FqfceyGu+OZy+O8WtlulZuhBBtFAGcVWIxqn3YORtVjZGoNIa+wQc484Gbc+K/45zV45FX/1Hz8v0zdngbL7Cf3jUvy7dz205f/SvUlZ9fRDp3zYs+z6VrZZDqNEzuMNMiHAPPSIfmKGq8JSMAIJpEc9hJ3ce/OqbJm+Ne/LkucpHkbOWUfK4TFQ3fQ9RV5qIZzlbOqHC6Vo5PKOEb9CD8mCLmg9BqqlvBWdmZhF6JFdQM54bg8ZwTbud4aQx9A86p5GwoieWwJueOeXVCm4/GP7O2mrGPRVGdIRpzBXPnlYrrLNWXP5REXUxmnnO8IEm2c8MVYxx/0FXcvqF3BTjrRTjnRHKYLfe2qf/OW/PfqT/SFk6n0+ls5pAkydGsRYucLDsJ1FF2Z8uchjclOVu2kPyusnI5cl+6Vo5PwzeC5R/AWeuDsKhmOzfaJ/t3GpXGLPJ3t27fgLMID/iQSA7LyD337Jw218zZWXbixIkTJ04cWTiila3l8I+OlO2Z8VcH8e3NL3Bn5HXLC03KkJzndu1ECvMLqqL2pWtl8wivlLUvVd7KaFLAOfRRoLGWxtvKGKQwER3RNTpzPjeWAn1D41I460VEZ91IOWf0uKJ3A/0nrij3V3zxcP8reua1kgiR2t++tNy7Z2a/5oH1bafes6rCu3vaZTHn1utZuRGCtRohBM6JCcRMHcqbGOJME3LRvHdKFa6Atiam940EgDMfhHJ2RMytJyTrkqc2V3sOfjl51JBBw8bN3ezyFi+6JTdY8zmueqPEU/Xp8OZaVlZAqDYKAucEHXSmDsOcDc5hoqUxK/QNvcCZD0I5R+cwQjI69J04b/2+MndtVcn2lS+N7JYdGhdyDJhb6nd/PqK5lpUV4NlGrOprOCsT1yr0z3znyDTGvJ055LBU6hvKS+GsF+GcuZ58Y0uggTifP0wSOCeuUf9A4/ENMcpZl4ie/YY5B3KY3l+C5o9F+oYu4MwHbs6JX+MMAE8s8/HlJyLKiCIAJoIcpglW9TVPUs+ZBIba9G5lFJFXfcZeKaF2NnqaYur1DTizQjhnyxzd6gf1NR8s5axxIM94Z6rBQuceo5xDCcyyg4qW6hsagTMfMJYIQAwirhgzj7iXi7GMYdXUBYB1QA7ThHD1tWp0cZ2jj+us76x3qxCBNMZ8RDFV+4berYwGzhxQ+4ETQAhRq4jjLTW39k9hZ6l+hrukYSvDCFqkcDvr2spo4MwH4ZxRhwGBMXtEkQcGlWIApAbIYZoQrr5WjS66sxTndb5Iofjx1mDYzgzTWGr3De1bGQ2cOYAcpglJkhSK5XhLlbcympR3Dk2rMNeZEKIQnEk7M5/ckfJ9Q+NWRgNnDiCHAeExdUSR0+cWI4oAxAQ5TBPC1deq0VPDWQpbZKSXFmILpEY7a9nKaODMBxGdRUXEVoOzEdCoBMLdOVpB/y40OFvtlvbW7xvRwJkP3JxRh4EUwQIfcU4KlkpjAJgLcpgmRKyv08eZmHqIqtxgbNuZ1eSO9OkbcNaLcM7IYZoQbq6OavRUcyaEmFSKNbaKVDConZMsxdKrb8BZD8I5I4cBwASuExQBAAGQwzQhXH2tGj31nM0qxaKsqOJSlde1kPw8+3TrG0Z6KQFnDuB+iZpQLpPjLTVxQEA1ego7c/4khUWXYo4lqm1lAmnbNzgDZw6gDgOpg2V+XsnwNIpLngEIgBymCeHqa9Xoqepcf2d7fumssVVk3FRtZ/7AmQ8iOouKiK0GZw4Erjc2z5kmdslzAu1s+iXPwvUNAmdecHNGHQZSDf6lWMz43MCIIkhnkMM0IWJ9DWc+byO+M1VYyqSdE55nj77BBzhzADlME8Jd96caPcWdOX6cYllJikuVXk8MvaVYWvcNjsCZA8hhIJUx+xwCpwmKAKQtyGGaEK6+Vo2e+s683kUcK0lxKft21lWKpXvf4AWcOZBYDpNyLnvwvZUbCg673F6v+8TBX1bOGnNZ24z6xY7+s4v9NBz/odf6OuLuLqN97wnvrdtzvMZdeXjbiqkjzmuWkJWBCFdfq0ZPH2ejP1imt3MCpZjpzgkAZz4I55zgfTqadj6rTdmPH7z45t5St6PdBYPvuuflVZe0vqLnE5vqgmv4Cz9+6KGFhXLgGXXv2eaLs6/Mix5btuzf7ddPnzhibeVpQx+e9M6qXNrjpgVFcmJuAASIcdsME+JTbjMV6XwMLQKQELZTx3zr9u2d1qsJISRQh9X9+uQFWhKk1O62JeXefbP65wR31WX015XeXVN6xi/bgvCsXlnV13BWhrlzgtdq6UHROXChGo921nWtGPoGez89VspL4awLNufD5OPFJR4adbhpc2Rl2lWOQXP6DO7drGjxgtUVwV0VLpy/xttl4GBNGZAXwtXXqtHTxJnDO1F0lkicC9UMameNaQx9gw9w5kAyOUyyZzbLzm7R5oyet097fBDdMPudDd7Qwoyzx61xuatraiuLNn3y9LVnZsbeh/30rnlZvp3bdoZGGqkrP7+IdO6aZ7mTYkBgzJ6gaDgYRQTpSRI5zJY7+suyykrX0d1r51xX+fJ1Q174xRNYQst3LJ/5xIN3D7t6wLWjnlkl937kkzXvD8+NFUtytnJKPteJiobvGOoqc9EMZyunDrdQ0WrQg/C6OOaD0GqqW8GZszMx2bnBXbtzYj7Bp/PRN+BsLWfL4ujwh569Lu/zt7/f/8rqwx7XT0/1yolZTDa79LlfPd6C5y+JMTrYpM+Mg76qD4ae1PBSRt7DGzx1a8Z2Vslhqm1twQdwNsWZkkZnxbj70HoLHc6JPQicFUPfgLPpD8KdRSCr19QCr/vbMafGzDv2C5/+zVv71T87RKc4+x+f2uat/eIfbRoW2Xs8X+CtWXyLUyWmaG1ECJx5Ee0cnsO4Q7XEZ9LOwRzG6w6KqdE3rA+cFWB0jbP71y07fU1yu3TMiLnYlpFBCJVjTJb37c0vcGfkdcsL1WiS89yunUhhfkEVGzUmKP894i01t+fBOcaaiavF36e6s+6tEkbjWTH0DT7AmQOJ5TCbrfF2Uut+V/2piWfvrkIfIcRmt4cvllr2ueOGM8meDZuOx3iPFauXranJvebmvzQP7jr3+uFXOAq/WPZLvOvJzEC4uTqq0dPN2bi3pMeZxnmdPcqlGPoGH+BsVWynj128acnr/3147F233nL76H/PXLmryl/z29Q+LSRCiO3UMct3fPPWMw/efeuIkXdNmLZkZ6Xfs/fdoR2Cic1x1RslnqpPhweTFsm65KnN1Z6DX04eNWTQsHFzN7u8xYtuiTkBpDGor/mQMs6mDieqx2fYztyGE1Omb4BCT7UAACAASURBVFgcOLNGatHjXzMWfZ9/8Fhlnbe2vLhg3SdT/nHJycG0IzkvH//eyo27DpdVezw1ZYVbvnj9/t6nNMzncAyYW+p3fz6ieeiVjA59J85bv6/MXVtVsn3lSyO7ZWtJ6DzbiFV9DWdljHY2Io1pdm4U3NB2Vj0rhr7B3k+PlfJSOKcLIrYRnPnAM4fpQSk+23bmU4qlUt+wMnBWAPetB2lEoL4X7MsAABAf5DBNsKqveQJnPuhxbsihRjsHJijGK8VSvZ21bmU0cOaAlW5KaGGUp9zEW2ruRB04K0DZzVREO/MBznwQzhl1GEgvrDH/l8cRq3IpBkBqgBymCeHqa9XocGaFTmeV33fmQxq0s6atjAbOQAkRWw3OfFB1NnWCYuzgBrWzoRMUU7JvWBA4K4A6DADOYHYkAMxADtOEiPU1nBVgmEYScw4sYhFfExGlGPoGH+DMAeQwTYh4DzE48yEh57i/78ycmHcBTpt2hrNuhHNGDgNpTfqM6GGCIkhJkMM0IVx9rRodzqwOGhMeSwwsZ2ShRHQphr7BBzhzANc4a0K46/5Uo8OZFYk5EyKZWASmTzvDWS/COaMOA+lL+kwQxPXOIFVBDtOEcPW1anQ4syIJ5+BDo8zik2btDGcdCOeMHKYJ4ebqqEaHc3BbQkhyaUSsdg6UYmI5a4kOZ1YI54wcBoDpmDOzA4AUADlME8LV16rR4Ry5k4Q3TMrZnENX9A0+wBkoIWKrwZkPep2tcPtEPu3M9vaJ6dA3rACcFUAdBoC5pM/sSADYgxymCRHrazhrJ5k0ImQ7z1e6W6NFnUVsZzgbD3KYJoSbq6MaHc6sYOXM+faJadvOPIEzB5DDACDE5BE9a/y4NAACghymCeHqa9XocGaFcM6q9+ywoLNqdDizQjhn3C9RE8plcrylJg4IqEaHczz0Tnhn5CwRQk1t+wbQN1gBZw6gDgMgiDUyCD9w+0SQAiCHaUK4+lo1OpxZwdqZyxsZrhQlPdqZB3DmQGI5TMq57MH3Vm4oOOxye73uEwd/WTlrzGVtM8LWyGjfe8J76/Ycr3FXHt62YuqI85op7E7XyqYg3Fwd1ehwjh2CEKIzjbBy5vkNoDpehL7BBDhbFqn98FlfLHjliQfuvvWWkXeOn7J4Z6W/evMTF50UXJ550aRNVZ6ir56/87rBf3/w7S3l3kMLh3eKky91rRyGuUcriQFnPiTjbNY9OyilnIMnf8+OdOsbZgFnw7GdOuZbt2/vtF5NCCFEanfbknLvvln9c4JLu4z+utK7a0pPR4xNda3cCJ5txKq+hrMyFnHWlUlYO/NIY4FY8XIY+gYr4MzeLwo258Pk48UlHlp/Tjynz+DezYoWL1hdEVxauHD+Gm+XgYMviDELUtfKpiFifQ1nPojuHJ3GrO+sfSmc9SKcczI5TLJnNsvObtHmjJ63T3t8EN0w+50NXkKI/fSueVm+ndt2+upXpK78/CLSuWte9HkuXSsDwBFTx0F4BMevsYAUIIkcZssd/WVZZaXr6O61c66rfPm6IS/84iGEEMnZyin5XCcqGj6G1FXmohnOVs6ocLpWjk+oaDXoQXhdHPNBaDXVreBsfWdJz+asnSMmehjezjFjoW/AmaGzoSSRw+SSj8f0ufwvfa++6YFZ+Wc89NnyJ3vliDQxRQ+qZXK8+toYHU3AmQ9CO8e7Z4eVnXWtAGe9COeczEknT/G2H4oJIeTbL5Zs9m799v+evvXNfjMOUFeZi9qdLXMkUhrMx5KzZQvJX1xWLkfuQ9fK8Wn4TFr+AZzFcCbByRVmOIcHt3pDJbm5kH0DzjqdDYXRNc7uX7fs9DXJ7dIxgxDf3vwCd0Zet7xQfpSc53btRArzC6qiNtS1snnEHHtRXaq8ldHAmQ+p4RxeionirGUpnPUionMC2GyNc5/U+rr3i3w1q+45RSKESO1vX1ru3TOzX/Pg2qfes6rCu3vaZTHn1utZuRHCtRqBMy9YOQeqIT40dqY8gyd8oVg69w2ewJk1ttPHLt605PX/Pjz2rltvuX30v2eu3FXlr/ltap8WwRoy65KnNld7Dn45edSQQcPGzd3s8hYvuiU3mPccV71R4qn6dHgwaSmvrIC12yg2cOaD+DmMa3DkMIsDZ9ZILXr8a8ai7/MPHqus89aWFxes+2TKPy45OTztZHToO3He+n1l7tqqku0rXxrZLTs0ROoYMLfU7/58RHMtKyvAs41Y1ddwVsZqzlqqIcOcDcxhMaKHpTH0DVbAmb1fKiFiG8GZDwyduVVDsZytXoqled/gBpwVwH3rAQBB8GssQDiQwzTBqr7mCZyZEBjWVti78c7s31p09PB7dqBvsALOHLDSTQktjPIVD/GWcr5OQld0OLPCSGfJoLFEtDMf4MwB1GEAaEKw0xH6iXfPDgCsDHKYJoSrr1Wjw1k7ykeYBjurjmUmgjXbWRk480E4Z+QwTUiSpFAsx1uqvJXRwJkPqedMFojnLGI7w5kJyGEAqGNINaQPHsHxayxAOJDDNCFcfa0aHc6sMN6Z/eGtavS0bGf2wJkDZk6ASZJAk5k7h0cvcOaDEc6hD6hBDaHoTI2MHBVsPiHaajL0DT7AWQHUYQBowtTvDwuMZQJgSZDDNCFcfa0aHc6sSD3n4DpRk+yt7CxiO8OZCchhmhBuro5qdDgnQMxqiK8zm68JFec4o4joG3qBMweQwwAQApHOhQDADeQwTQhXX6tGh3MyhAcTxVl7dEopGU5J1HCixZ1FbGc4Jw9ymCaEq69Vo8M5MaLDcHRmNrPD+u2sNzqcWSGcM3IYACAuuH0isDjIYZoQrr5WjQ7nhImohsxwTvbNanGOntmBvqEXOHMAv72iCeUyOd5SEwcEVKPDmRV8ndn8GgvamQ9w5gDqMABAbPBrLMD6IIdpQrj6WjU6nJMhfDiRuzODmR2itLP26HBmhXDOGEvUhHD1tWp0OLMCznyAMx+Ec0YdBkDipPwdDDGcCCwOcpgmhKuvVaPDOUlCh51mOCc7nChQO2uMDmdWCOeMsURNCFdfq0aHMyvSxJnOF89ZdSujgTMHUIcBkCDMbpuRODyC48edgZVBDtOEcPW1anQ4M8QM56QOe0VsZzjzQUTnBHB0/uuYF+Z/vbWwzO2pqyjO/99bE/p1bNKwuP/sYj8Nx3/otb6OuLvLaN97wnvr9hyvcVce3rZi6ojzmmmREK7VCJx5wc2ZsiuF9DszDK4h2HzL/aJYYsCZD9ycEzofZmsz8JHJtzq/+WTupFf2VTbN+9s99z2/otdp1/QY8+WJeml/4ccPPbSwUA48o+4923xx9pZ50WPLlv27/frpE0esrTxt6MOT3lmVS3vctKBITsQNAI5I9ZnEjLMBpgYHQGSyOp2Zm9XwVGp9w4ISf/WKf7QLfJgc/WcX1/365AVaEqTU7rYl5d59s/rnBJ7buoz+utK7a0rP+GVbEJ7HJqzqazgrI6SzYjVksHOCpVgC7Ryow9A3dAFn9n5RJHY+zF20+6C74Skt++mHHb4m7Tu0abw7myMr065yjJjTZ3DvZkWLF6yuCDyXCxfOX+PtMnCwpgzIC+F+j0A1OpzZEu/Dak3nBNo5OLNjgUjOqlsZDZw5wGROh+TscVm3jIod2w/4Q69lnD1ujctdXVNbWbTpk6evPTMz9qb207vmZfl2btsZGmmkrvz8ItK5a56mk2IAmIypydMCUyMBMBUGOUxqPWDys9c32/rq1BXBWoqW71g+84kH7x529YBrRz2zSu79yCdr3h+eGyuW5GzllHyuExUNH0PqKnPRDGcrpw63UNFq0IPwujjmg9BqqlvBOfWclWMZ7ZzAVom1c/DxfAbO6dM34Gx5ml044ZtSb/Gye/LinsBqdulzv3q8Bc9fEmN0sEmfGQd9VR8MPanhpYy8hzd46taM7aySw1Tb2oIP4JyqzpQQao4zrf/H5Z3Ob5TD0DfgrMXZUJKrw7L+cO/C5c9e8Nvjg2+eXeCJt1b1poWLfyedL7ywTfSwC3WVuajd2TKnYZHkbNlC8rvKynXMSwwNxVr/AZzhzNRZSmgrZoY8o6NvmK6RmLOhJJHDMs+9+4MvpvfcN3nIdc9vqlSOkpFBCJVjJCXf3vwCd0Zet7xQjSY5z+3aiRTmF1QlrsYc5WOKeEu5HYnEBM58aHSMrLhUy+t8SLidgw/MuAWw6H1D+1I4c8Fx1u0fF3oqNr3Qt3VUzrXZ7eGpUWrZf+bvXu/2Zy6MNdNQan/70nLvnpn9mgc3PvWeVRXe3dMus9TcelbAmQ+mONNYOUzH5kk5JxlcT6Swi53RN/gAZ9ZIrQfN2V3nr9r6xr3Dbghx/dXdW0uEENupY5bv+OatZx68+9YRI++aMG3Jzkq/Z++7QzsEE5vjqjdKPFWfDg8mLZJ1yVObqz0Hv5w8asigYePmbnZ5ixfdEnMCSGOs3UaxgTMfkMOMAzmMP3BmTcYf/rPFQyPxHXi1dxNCiOS8fPx7KzfuOlxW7fHUlBVu+eL1+3uf0lCDOQbMLfW7Px/RvGF/HfpOnLd+X5m7tqpk+8qXRnbL1jKeyrONWNXXcFZGdOfoTMLLWV8OS7Kdw2d2oG8oAGf2fqmEiG0EZz6Y5ZxMNZS0swmlGPoGH+CsAO5bDwBjBPuyAUBkkMM0waq+5gmc+RAePXoMnLuzpn0m2c6B+05xnp0oet/QvhTOurDSTQktjPIVD/GWcr5OQld0OLPCMs6S9grQMs46gDMfhHNGHQYASwIfZQwnAsAH5DBNCFdfq0aHMyus5Kw1gSbvzP829lZqZ63AmQMYS9SEcPW1anQ4syJedEqIJJqz8lI46wXOHEAdBgBjzPwG4o95vygGAEEO04hw9bVqdDizwmLOmoYTmTgHhxN5YbF21gScOYCxRE0IV1+rRoczK2JGl+ovORbIWXUpnPUCZw6gDgMgJeF3UGzKbewBCIAcpgnh6mvV6HBmhfWc1Y+ImTkP55gpLdfO6sCZAxhL1IRw9bVqdDizIq5VoBSKs9iazspL4awXOHMAdRgAqQqGE0HqgxymCeHqa9XocGaFavSYywx2VjkoZtnOvIYTU69vwJkJGEvUhHD1tWp0OLNCIbrCHQwt66ywFM56gTMHUIcBkJLwu3GjKbexByAAcpgmhKuvVaPDmRUq0SklsTKJlZ1FbGc4s0I4Z4wlakK4+lo1OpxZoeoc85NtcecEtjIaOPNBOGfUYQCkKhhOBKkPcpgmhKuvVaPDmRWqzjGHEy3uLGI7w5kJwjljLFETwtXXqtHhzAotztEfbus7693KaODMB+GcUYcBwAkzDlMxnAhSHOQwTQhXX6tGhzMrtDhHH6Na31nvVkYDZz4I54wcpglJkpQuZY2zVHkro4EzHwRxbvT9YqizQaWYIO2sIzqcmYAcBgAP+A3qxY7MJRLfX8UEgCCHaUS4+lo1OpxZAWc+wJkPwjknlsMcnf865oX5X28tLHN76iqK8//31oR+HZuEr5HRvveE99btOV7jrjy8bcXUEec1U9idrpVNQbj6WjU6nFkhjnPDV4zRzkYMJ4rTzlqjw9k8bB1Hf1NRsvmzGf+5b9TI28c889G2cn/d7zOvaln/HjIvmrSpylP01fN3Xjf47w++vaXce2jh8E5x8qWulcMw92glMeDMB8s60/jDiQY7K0ROYqexnOl8S89OtGzfUADOzMnqdGZuVsNTqfUNC0r81Sv+0U4ihBCp3W1Lyr37ZvXPCSy2dRn9daV315Sejhi70rVyI3i2Eav6Gs7KpLxzKJNwd26UwwxtZ4NyWMr3DYXX4Ww4ttwx39Z5fn6sWwYhhLS46ZMK376XLg8NLkqt71hW493x7MUxrqjWtXIjBGsjQgiceWFZZxq/IOKSwxjvXyGHWbYUs2zfUADOCjCZ0yE5e1zWLaNix/YDfkKI/fSueVm+ndt2+uqXU1d+fhHp3DUv+jyXrpUBEBzzzhhgdiJITRjkMKn1gMnPXt9s66tTV1QQQojkbOWUfK4TFWFDF64yF81wtnJGhdO1cnxCCd+gB+HHFDEfhFZT3QrOae4c8boQziK2M5yt42woSeewZheO/+i9f2SvemDEsz/XsTCyJKpTbuLN1TFGRxNw5oNu58An3ARnKRSWUzsvYPke06JvaNvKUIRzTi6HZf3h3oXLn73gt8cH3zy7wBN8kbrKXNTubJnT8KYkZ8sWkt9VVi5H7kHXyvEJtaD1H8AZziY6Mw8Rc4cRw4kWaV70DbOcDSWJHJZ57t0ffDG9577JQ657flNlw+u+vfkF7oy8bnmhSRmS89yunUhhfkFV1E50rWwe4ZWy9qXKWxkNnPmQmDPhPuQSETpN2hnOehHROSEcZ93+caGnYtMLfVtH5Vyp/e1Ly717ZvZrHnhuO/WeVRXe3dMuizm3Xs/KjRCw1eDMCes7U2LWL4pFR05iXwoZ2qqzE63fN6KBM2uk1oPm7K7zV219495hN4S4/uru9fks65KnNld7Dn45edSQQcPGzd3s8hYvuiU3WPM5rnqjxFP16fBg0lJeWQFrt1Fs4MwH6zunfA4jBDmMGXBmTcYf/rPFQyPxHXi1d+gqr4wOfSfOW7+vzF1bVbJ95Usju2WHyjXHgLmlfvfnI5oTDSsrwLONWNXXcFYmjZyjkgnPHManndnmsDTqG3DWA9eTb2wJNBDn84dJAmc+COEc+HyHFDk6R0ROYkeKzqEEZqkrxoToGxHAWQHctx4AYAiWSl0gVUEO0wSr+poncOZDws7BB0Z5qZIu7QxnXQjnjBymCUmSFIrieEuVtzIaOPMhcWcjrRRRicy8nZmcFUuvvgFnzSCHAQCMAsOJwGiQwzQhXH2tGh3OrEjGOXDgarXhxNRrZyO9lIAzB5DDNCFcfa0aHc6sENFZeTjRCOfkhxNFbGc4cwA5DABgIBhOBIaCHKYJ4epr1ehwZkWSzqYMJ4Yp6WhPodvZFODMAbUfSwaEELUr9eItNXWwCM6cENk59peOtZ31LYWzXoRzRh0GADCWwHCiBe+dCFIA5DBNCFdfq0aHMyuSdw797JIReopWsauxVG1n/sCZAxhL1IRw9bVqdDizAs58gDMfhHNGHQaAZRDqpq66wHAiMAjkME0IV1+rRoczK5g4c85dYdFjDCemcDtzBs4cwFiiJoSrr1Wjw5kVcOYDnPkgnDPqMAAshHn3nTIcDCcCI0AO04Rw9bVqdDizgpkzx7fQOHrkcGKKtzNH4MwBjCVqQrj6WjU6nFkBZz7AmQ/COaMOA8BaWO029gzBcCJgDnKYJoSrr1Wjw5kVLJ15vYuo6JLiUpXX+ZDufYMXwjljLFETwtXXqtHhzAo48wHOfBDOGXUYABZC6V68PMBwIhAM5DBNCFdfq0aHMytSxVlSXKr0Oh9SpZ3Vl8JZFxhL1IRw9bVqdDizAs58gDMfhHNGHQaAtTB7OJETGE4ETEAO04Rw9bVqdDizIoWcpbCFBjoHTonpJYXaWWUpnHWRYA6zdbpywsvzlq8vOFrjlz3rJ5yZEb7U0X92sZ+G4z/0Wl9H3L1ltO894b11e47XuCsPb1sxdcR5zRKzMg5JkhSK5XhLlbcyGjjzAc58gDMfhHNO8HxYxmkDRt34J9fPG1f+mDm8V6w1/IUfP/TQwkI58Iy692zzxdlX5kWPLVv27/brp08csbbytKEPT3pnVS7tcdOCIjkxNwBERyKEEkIJ7/vZA5A22Gw2Qgixdbn/u7qYdVjdr09eoCVBSu1uW1Lu3Terf05wx11Gf13p3TWlZ/yyLQjP6pVVfQ1nZeDc8NTIU2KKzjSwXMtWybQzna/vlBj6Bns/PVbKS010TvR8mCxrqJJsjqxMu8qRZE6fwb2bFS1esLoiuOPChfPXeLsMHKwpA/JCuPpaNTqcWWGos0HfAarR062dDQLOHDBsTkfG2ePWuNzVNbWVRZs+efraMzNjr2Y/vWtelm/ntp2hkUbqys8vIp275lnupBgA/MAoIgBaMCSH0fIdy2c+8eDdw64ecO2oZ1bJvR/5ZM37w3NjxZKcrZySz3WiImwQxVXmohnOVk4dbqGi1aAH4XVxzAeh1VS3gjOctTsb9C4UnRvm9hvazhE37EDfSGFnQzFkwM674aU7N9Q/WbVk0eqj678bP2nMRQsnbog3scPiSJKk/IeJV19z/nPqig5nJhjtTA2oyRJrsdRuZyOAMwd4XB9WvWnh4t9J5wsvbBP93qmrzEXtzpY5DYskZ8sWkt9VVq5jXmKoWa3/AM5w1ugsRb1iigbDlS3yZzIlaDo7Gwqfa5xtGRmE0FjTQHx78wvcGXnd8kIFoeQ8t2snUphfUMVFTRvhlbL2pcpbGQ2c+ZCKzsH/69oqcRltsxNTsZ3hzAAjcpjNbg/frdSyzx03nEn2bNh0PMZ7rFi9bE1N7jU3/6V5cOPc64df4Sj8YtkvVhp2lCRJ4eAi3lLlrYwGznzg4Mz8u0HVOYGtEtHQc8MO9A0+COec6PmwjE5/vubSjhlSmwta26SM8wdcf0OJ7D+8YdkPB7y2Tv9c/OV1RxYt//H3I+6TOvxx8J13DexycN5NM7cGspLjqjcOLB3+w+0dhi6oJISWfPT0y/d9+/A7n5RPeu2HqtOum/hEn+old0xf72H3JgEQFMmABAYAIKTZTYvcNAL3kludhBDJefn491Zu3HW4rNrjqSkr3PLF6/f3PqUhWToGzC31uz8f0Tz0SkaHvhPnrd9X5q6tKtm+8qWR3bK1JHSe1Sur+hrOysA5xpoGpDFtzpGRjWhn7Vc6o2+w99NjpbzURGfTKtbkCTSQiUV3AsCZD6nkHPoa4P5mqGpYJu0cyGGJ3Qg4kXAp1DesDDdn3LceAEsj0vcWANxBDtMEq/qaJ3DmQ6o70ziv8ybV21nrVkYjnLPAB3mor/kAZz4oOFt2OJFVO/McTkyxvmFZMJYIAAgi0lcXAHxBDtOEcPW1anQ4swLOfIAzH4RzRg7ThHDX/alGhzMreDqz+pLQ7CyFhzW6nZUn2aNv8EE4Z+QwAAQgtYcTuU2sB6kHcpgmhKuvVaPDmRVw5gOc+SCcs5V+LNnCKJfJ8ZaaO48Iznzg7ExZ1GR6nKX6G3aYOcBF0Dd4IZwz6jAAxCAdhhM13ncKgBDIYZoQrr5WjQ5nVsCZD3Dmg3DOGEvUhHD1tWp0OLOCv3Pyw4k6nYPDienWzskDZw6gDgNAGDCcCEAEyGGaEK6+Vo0OZ1bAmQ9w5oNwzhhL1IRw9bVqdDizIj2cJUKoJBETS8H0aGf1rYxGOGfUYQCIRKM7Z6QoGE4E2kEO04Rw9bVqdDizIn2cSf3NyI1D4YYd6dPOcNYFxhI1IVx9rRodzqxIG+fQcKI5pE07w1kfqMMAEIx0GE4EQCPIYZoQrr5WjQ5nVqSPMx/izbBPn3aGsy4wlqgJ4epr1ehwZkX6ONfD5JaNukmfdoazLlCHASAeJg0npvY11kBIkMM0IVx9rRodzqxIK2cjpRqIOZyYVu0MZ+1gLFETwtXXqtHhzIo0czbvPFl6tbNpCOeMOgwAITF1OBGTIoFVQA7ThHD1tWp0OLMCzsYRPpwoirP26HBmQoI5zNbpygkvz1u+vuBojV/2rJ9wZkbEChnte094b92e4zXuysPbVkwdcV4zhb3pWtkUJElSKJbjLVXeymjgzAc4G0H0DTus76w3OpzNpMnl0/IP7/hh2bz3/lfoi85hmRdN2lTlKfrq+TuvG/z3B9/eUu49tHB4pzj5UtfKYZh7tJIYcOZD+jhTc8b1gmENbWc635AbJ6ZP3zAXyzvbbDZCCLF1uf+7usgcJrW7bUm5d9+s/jnBdbuM/rrSu2tKT0eMHelauRE824hVfQ1nZeCsO3pCOSxpZxNyGPoGez89VspLzXVOhpg5rMVNn1T49r10eZP6F6TWdyyr8e549uIYsyB1rdwIUdooHDjzIX2cU7gOI8aUYunTN8yFm7MBczrsp3fNy/Lt3LbTV/8KdeXnF5HOXfOiz3PpWhkAEAvMTgRpiwE5THK2cko+14mKhh5OXWUumuFs5YwKp2vl+IQSvkEPwo8pYj4Iraa6FZzhzNBZSmir5J2jSe12hnMyzoaCufWaUJ1yE2+ujjE6moAzH+BsHMHZiQskLdEt4qwrOpyTx4AcRl1lLmp3tsxpeFOSs2ULye8qK5eTWjk+oRa0/gM4w5mtsynvNFABhitYrVms1mLp7GwoBuQw3978AndGXre80KQMyXlu106kML+gKrmVzUN1FCXmUuWtjAbOfDDdOfCFoWtfpjsnAJz5IJyzEWOJFauXranJvebmvzQPxsi9fvgVjsIvlv3iS3Jl05AkSeHgIt5S5a2MBs58gDMH6HzxnFWjw9lUMjr9+bobbrjhxn+9le/1Frw3ZtgNN9xwXc9TgzPksy55anO15+CXk0cNGTRs3NzNLm/xoltyg/nScdUbJZ6qT4cHk5byygqYe7SSGHDmQ7o5U511GDt4RGY7wz7d+oZZWN652U2L3DQC95JbnfXLMzr0nThv/b4yd21VyfaVL43slh3K0Y4Bc0v97s9HNCcaVlaAZxuxqq/hrAycE9fQk0zYjRfxy2EWaWddwJm9XyohYhvBmQ9p6GxSKYY6jAdwVgBz6wEASWLsV1XMn8QEIABymCbYjb3wA858sIizrtmJ7MaLdBgmjxXaWRcW6Ru6EM4Zv+OsCeUpN/GWmjtRB858gDM3lOfL6d2EAyK2s3DOqMMAAFYHw4kgHshhmhCuvlaNDmdWWMdZ+3AiQ+fQTfI0ShoE+gYrhHPGWKImhKuvVaPDmRVwtgLWdBaxnYVzRh0GABAGDCeCCJDDNCFcfa0aHc6ssJSzxuFE1s4J3LJRP8OV9o++wQrhnJHDNCHiPcTgzAc480F1jMuaziK2s1jOyGEAAABEBTlME8LV16rR4cwKazorDWytsAAAIABJREFU79oAZ8OHEymlgeHEmKfE0DdYIZwzcpgmhKuvVaPDmRVWc9ayU6s5awHOfBDOGTkMAACAqCCHaUK4+lo1OpxZAed6jB1ODESPd8OOdGpnYxHOGdc4a0K5TI631MQBAdXocGaFBZ0lEvxNlHgxLOisCpz5IJwz6jAAAACighymCeHqa9XocGYFnMMwcDgxFD3mcGKatbOBCOeMsURNCFdfq0aHMyus6aw8nGhNZ2XgzAfhnFGHAQAAEBXkME0IV1+rRoczK+Accx+JqsXfY1j06OHEdG1n9gjnjLFETQhXX6tGhzMrLOusMJxopLNk0Pkwy7azAnDmAOowAAAAooIcpgnh6mvV6HBmBZz5EBE9YjhRCGeNS+GsC4wlakK4+lo1OpxZYWXneMOJBjurXmOdCFZu53jAmQOowwAAAIgKcpgmhKuvVaPDmRVw5kNcq/mKSy3prLwUzrowKoc5+s8u9tNw/Ide6+uIu35G+94T3lu353iNu/LwthVTR5zXzCCxxBDu9whUo8OZFRZ3jnnnDOOd2d+wIzp64JRYvKXKr/PB4n0jJsI5G3k+zF/48UMPLSyUA8+oe882X5w1My96bNmyf7dfP33iiLWVpw19eNI7q3Jpj5sWFMkG6gEAAAAxcfSfXVz365MXaMmRUrvblpR7983qnxN4busy+utK764pPeOXbYTwrV5Z1ddwVgbO7P3q51doj8XIOTpsUsSMRefX/7NAO2uJrmUpnHVh9PkwmyMr065SYub0Gdy7WdHiBasrAs/lwoXz13i7DBysKQNyQbj6WjU6nFkhinP41wkXZ8bDiTGjh4YTrdPO2qPDmQlG5rCMs8etcbmra2orizZ98vS1Z2bGXs1+ete8LN/ObTtDI43UlZ9fRDp3zbPWSTEAhMTMmdoAGIxROYyW71g+84kH7x529YBrRz2zSu79yCdr3h+eGyuc5GzllHyuExUNR2zUVeaiGc5WTq16oaLVoAfhdXHMB6HVVLeCM5z5O0fsmY8z27ej4jyfMHFOw77BwdlQjBqt82546c4N9U9WLVm0+uj678ZPGnPRwokb4k3ssDKSJCn/YeLV15z/nLqiw5kJcI4HpUSSCGE0nBgvujQiOL0+bduZLcI5c7o+rHrTwsW/k84XXtgm+u1TV5mL2p0tcxoWSc6WLSS/q6xc67zEULNa/wGc4WyCMyGEECqWs2EaFnEWsZ0TczYUbtc42zIyCKFyjKTk25tf4M7I65YXqgkl57ldO5HC/IIqXnZqhFfK2pcqb2U0cOYDnPmgGj3il501bmUoqdfO1nQ2ApvdHp4dpZb9Z/7u9W5/5sJYY5dS+9uXlnv3zOzXPLjxqfesqvDunnaZdebWswLOfIBzjP2zGtQL36cmZyMiR8WYHzuHxVgTfYMLIjqHYTt1zPId37z1zIN33zpi5F0Tpi3ZWen37H13aIdgYnNc9UaJp+rT4cGkRbIueWpztefgl5NHDRk0bNzczS5v8aJbYk4ACUPENoIzH+AcOwTrZIIcxgc4c0dyXj7+vZUbdx0uq/Z4asoKt3zx+v29T2mowRwD5pb63Z+PaB56JaND34nz1u8rc9dWlWxf+dLIbtmqQ6o824hVfQ1nZeDM3i88RH0y4evMJoepOM+PncbQN/QinDPXk29sCTQQ5/OHSQJnPsA5dghCCNPPvDbn0BeZsX+O4OzEEWqroW9wgZsz7lsPQLoQmp1oRlgADAE5TBOs6muewJkPcOaDqnPwwfzI163sLGI7W83ZMncktDbKFXG8pebW/nDmA5w1Q5OpybQ4R58PS8t2TgrhnFGHAZBGYDgRpBjIYZoQrr5WjQ5nVojoTMIG32IusqCz9nYOr8ZEcda+ldEI54yxRE0IV1+rRoczK0R0VhYwxlmqn2Sf4E40tnPEcCL6hl6Ec0YdBkB6YdJwIgCGgBymCeHqa9XocGaFiM7KWNNZYzsHrg8LVWNCOOvaymiEc8ZYoiaEq69Vo8OZFSI6K2OYc1LDiSK2M5w5gDoMgDTFomUgAHpADtOEcPW1anQ4s0JEZ6IY2prO2ts5fDhRFGftWxmNcM4YS9SEcPW1anQ4s0JQZ4XvGyOdEx9OFLSdE1gKZ12gDgMgfUnt4USNv8YChAY5TBPC1deq0eHMCkGdFYYTuTjr3o+udg7dvd70dhaxb4jljLFETQhXX6tGhzMrxHWO95VjsLOUWPknbjvrXQpnXaAOAyBNSe2LnSMuFAOpCnKYJoSrr1Wjw5kVcE7YQt/aCTkTxTtDGo012lkfwjljLFETwtXXqtHhzAo4JxA/gfIvMWfVDQ3F7HZOBOGcUYcBkL5gOBGIDnKYJoSrr1Wjw5kVcE4I3dkz4bFEE7FAO+tGOGfkME1IkqQ8WBFzqfJWRgNnPsCZD4k5BzCrFEufdjbRGTkMgLTGvOFEHpFDF4qBVAU5TBPC1deq0eHMCjjzIWHn4AMzSrG0ameznDEvURPCzdVRjQ5nVqSMc+gmhtydNd0+MZl2NnEsMYGlFuwbqksxLxEAYBrmfWWa+WUNUgPkME0IV1+rRoczK+DMh2SczZpkn27tbKRXXAzMYY7zxy3dU+GRKZX97qObXhvSltXK/BFuro5qdDizIpWcqeJSY5y1zuxIpXZWXgpna+Ac+W01pb7jP7773NMvLd5VI1PfwRkXxzn9pmvlesw9WkkMOPMBzokI6J8jyMg5gcgJhZlP6Hzz2zkB4MwfW7c5JTL1bp/YMfDc3uvD4zL1bLwnO9mVG+DZRqzqazgrA2f2fpqtQpnEDGf1NJZ8O/PPYSnTN1SXmutsBLmvFMnUu+XepvUv2M6ee4TSuvW3ZSa5cgMithGc+QDnBB10FkQ8cxgTQmmMQyyGWKFv6IWbszHnwzJ7dT9ZIq5fvqmtf0U+sG6/lzi6XNomuZUBACmLYF/TwAoYc32Yrb2zCSE1Rw/LoZfkwyc8hGS1zbWTg77EV45CuMMTAmdewFk3od/G1KPBxDkwIcDwt79ACvwXfSNlwNx6AEA9Zn9LGj61bTjSQKphTB0ml7i8hDRte4qNVASrK9spziaEVB49FFVX6Vo5CrEmdAaOpOBsNHBOXIMQ7RqsnXm0QPAqsQWSQLdStEjf0AW3qtGYOqx27dbjlDjP7xualGE7tWcXB/Hs//FIciubBKu5OjyBMx9SzFnhci3LOissjfE6x1IsxfqGwlIRZ50oYzv/zRKZerZN6BB4br903jGZejb/M+bcej0rNyBiq8GZD3BOBu1zBA1wNnyCIqU0ODtRnN/GtE7f0I6Izo1pdcd31ZT6jv3w1uQnp39WUC1T/6FZPYJDl9mP7vBTemhGBy0rx0PENoIzH+CcDFRzJhE1h9WnMVGwTt/QjojOkTi6j1+xr9IrU0r9taVbXr+2XWjgMvuxAj+lxa910LJyPHi2Eav6Gs7KwJm9nx6rhqWxMgkv59hpjHk7c0hjqdk3rOcsKiK2EZz5AOckMa8O0x480b1zzGGssFTf0Ag3Z8ytBwBEYt6PO/MLbtbN7AFb8BuYmqCKc1vjLVXeymjgzIdUdY6+Vsv6ziK2M5yTRKQLDiIw9y+dGHDmA5yTJ1QHKQgZ5qwleKK7buwcqMMsfq2Y1fqGFrg5YywRABADU78veQfHiKK4IIdpgtVcHZ7AmQ9wNpKGcAY5G1qBidPOWqNb0Bk5TBMi/rYpnPmQws4Rkyv4OkcGMrqdjSjFUrhv6NrKUJDDAADWhOsERSAoyGGaEK6+Vo0OZ1aktnN4GjHPmapGT7KdDZpnn9p9Q/tWhoIcpgnh6mvV6HBmBZyNpCEcH2e2aUycdtYa3YLOyGEAAHXMu0sERhSBEshhmhCuvlaNDmdWpLyzFOd17hjezsxHFFO+b2jcylCQwzQhXH2tGh3OrICz8UghgbhrMHVmlcZEa2f16BZ0Rg4DAKhg6u0TuSpgRFE4kMM0IVx9rRodzqxIH2cSupWimcQVY9XODEcU06dvYCzR6ghXX6tGhzMr0sQ5NJxnoJYKSqGNaOfk01ia9A3VrQwFOQwAIAq8RxRxH0XrgxymCeHqa9XocGZF+jgHlxqjpEpjq0gL5u3MJI2lT98w0Vmkm/lHQPF7BFyAMx+EcA58S4XPticmODfcwTGRjfU4hxKYuXM9hOgbEXBzRh0GANCH2fM6+H2VY1DR+iCHaUK4+lo1OpxZkVbOxCrOkSfGjGvnZNJYWvUNjCXqBvU1H+DMB4GcQyOKpjonOKKYmLO5g4oC9Y0QGEsEAAAFGs7K8QiGQUWrghymCeHqa9XocGZFGjqbctuOWFYRt3I0tp0TSGNp2Df4I1JxGgHqaz7AmQ9iOQe/rizhrG9QMfl25j+uKFbfCICxRACAdbHAbTtCSGGVIcYV0w4rdMEE4Xlsohwr3tLo1+GsDJwFck7qKi39qDqHLVFqVVbtHJ7A4hVkads3VPfDEGZ1WPbEfD9tjO+38dlx13ecP27pngqPTKnsdx/d9NqQtqxMjEC4e4ipRoczK9LWmbO9qnPMWR7GtXN43qLzY9dkads3eGJnujdf0dIZH/3uDzyhVZuX18ZZ0Tnyy/XTe59U9tP7z3914tyb7h78r0Wb5T+fNmajj6kPAMBwqIXGc6T6BBZxRxFjgjW+w33gAX69RVSyJ+b7qXvNjZka1rV1m1MiU+/2iR0Dz+29PjwuU8/Ge+KXbTHgOROG1VwdOCsDZ/Z+eqyUl8Z25jVBUadzwItya+dAKRb+T79z3NdF7RtcnJnP6bBnt3Jmquy1491/ayv5fnvt1UOB574f/vN5KWly/u3Xa8mAZiBcfa0aHc6sSHdnSgmXNKbTuWHSCZ9mlkZEVmB0PiELJLIgjfsGF9jmsMzLP6qsPH7C7fdVF33/bD9nnLV6dT9ZIq5fvgmNNMoH1u33EkeXS9sw1QEA8MK0C5riEnGGjEfFGMhk0cks3gkzkDzMzofJRwt2/3Jg/bc//X40o/MVw0Zc2evhL7c1v+y0MT9FneKytXc2IaTm6GG5YevDJzyEZLXNtZODiZwSo5QGjgIMekDD5tjEXCewVMtWcIZzijmHn4OSLOccUYeFT180sJ3J8HrnsDosbhobnrJ9gwMJ5bCsdh1aZzoCJZxcXXrwWA0hNW9fl/d2/QrPPvb4nesL51x618sjJ1z6dryJHQIR+iMprJDAVoYCZz7AmYSlMeNIxrl+UcQJM8OHGRt91yvUYQuk4NLAgwVh64deGc6ptwjXnxPJYS2e/KXw/9o1CT4rmtoid0JF5DpH5726acalvc7qf47t7a1y42VyictLSNO2p9hIRXCR7RRnE0Iqjx5KcF5iwyGh5R/AGc6p6UyCo3UWEYulGqoSwsUbJTMDNeLPV9Q1zGiRxtTVNwwlkRxWNef+UXtPzgnUYf79X1XFXCsjQyKE+mMkpdq1W4/Ty9ud3zeT7KwhhBBiO7VnFwfx7P/xSAI6PAivlLUvVd7KaODMBzhHrkYMmdLO0JnS0CuRlVljkn0fGp0jz5/FuV6YDyL2ZybYMzPD06HttInbPJTWrh0ea6ah7fw3S2Tq2TahQ3DjS+cdk6ln8z8tO7eeFXDmA5z5EO3Mae5EEsRpZ8roH09nSyOas/3ShUfryn5fu/j92a+9/t7SzSV1MqXe3S90Dya27Ed3+Ck9NCOYtEirO76rptR37Ie3Jj85/bOCapn6D83qoa8oFK2NCIEzL+DMh5jOFk9jmtuZVVZj8y81+oaFsXW+d8me0iqPX6aUUtlbU7r903F/bKjBsh8r8FNa/FqH0CuO7uNX7Kv0ypRSf23pltevbad3mj/PNlKOFW9pjKNUOCsCZ/Z+eqyUl2p3NiKNCdLOwucwQdo5JRCxjeDMBzjzQcHZsqVYirWzZeHmjN9eAQCwJ3rKBABGgBymCVb1NU/gzAc4q8TSu0G8/aCduSCcs8BTIamAsznhzAc480HVOfStZp13lZLtbEG4OaMOAwAYRegLDIOKwCCQwzQhXH2tGh3OrICzMuFpLJk3jHbmg3DOIhWnEaC+5gOc+ZDyzhYZV0z5drYIGEsEAKQUrAoyAMJBDtOEcPW1anQ4swLO2pGSyGRoZz4I5yxScRoB6ms+wJkPaeUc8W3H8z2nVTubCMYSAQApi9Q4b2F0ESQMcpgmhKuvVaPDmRVwThhdmcwizrqAMwdEKk4jQH3NBzjzIc2duY0upnk7cwNjiQCANAKjiyAxEvkd5zRE+Zgi3lJzj57gzAc4MyTiTsHRaSxebLQzK4RzFqk4jQD1NR/gzAc4R+5c22p6Y6Od+cDNGXUYAMCKRH/5xcxquoccJUnLViKli/QGOUwTwtXXqtHhzAo48yFmdOPOmVnrbJwkEV6z/oTrGwIfbaC+5gOc+QBnPmh0tlYOI4RQmpLtnDyowwAAIBJLpQsTLxezPphbrwnhrvtTjQ5nVsCZD3Dmg4jOoiJiq8GZD3DmA5z5AGcFUIcBAAAQFeQwTYhYX8OZD3DmA5z5IKKzqIjYanDmA5z5AGc+wFkB1GEAAABEBTlMEyLW13DmA5z5AGc+iOisCcfAt/JLq+p8MqWUUt/Sfo7IFc4ft3RPhUemVPa7j256bUhbpb3pWTkeArRaFHDmA5z5AGc+wJkBLaYdkansq6uq9MbKYc6R31ZT6jv+47vPPf3S4l01MvUdnHFxnAuoda0cH8u1kQbgzAc48wHOfIAzCxwOByGEOG74xRuVw2zd5pTI1Lt9YsfAc3uvD4/L1LPxnuwYO9K1shI824hVfQ1nZeDM3k+PlfJSOOsFzuz9kiZmDst9pUim3i33Nq1/wXb23COU1q2/LTN6D7pWVsKybaQAnPkAZz7AmQ9wVoDFnI7MXt1Plojrl29q61+RD6zb7yWOLpe2SW5lAAAAID4scpitvbMJITVHD8uhl+TDJzyEZLXNjTrLpWtlzYQSvkEPwo8pYj4Iraa6FZzhDGc4p5WzocRKG1ntzjqtbWYGIYQQv+tA/sFynkaakSSJW2Opxor5EwPRW8FZGTgzlouvBGcOpLkzY7M4xMhhLZ78peD/2tXHdy9t2/SaUsV9yCUuLyFN255iIxXB6sp2irMJIZVHD/mSWlmNUDPhAR7gAR7ggaUe8CFGDquac/8k6RJnYJTRX/Bhmdo+atduPU4vb3d+30yys4YQQojt1J5dHMSz/8cjya0MAAAAsCP23Prz3yyRqWfbhA6B5/ZL5x2TqWfzP2POrdezMgAAAJA8WQOf/XTJkiXLNpbLlMp7Fk6fMmXKc/dcGpwh3+qO76op9R374a3JT07/rKBapv5Ds3oEi7zsR3f4KT00I5i0lFcGAAAAWNNlpZtGUTK7c/1yR/fxK/ZVemVKqb+2dMvr17YLTXnMfqzAT2nxax2IhpUBAAAAMbBf/MjSrfuOVtb5KaW0MuHbMOZcOXnJt9+ueOXGdpFLbB3/uXhPaVWdX6aUUtnnLt2+8J9dI8NYyzlcv/srB/2UUnnXEznWds6emO+POMTx/TY+iQFiXu3s7DVp1R5XnV+mVPbXVRz6cmxuwkdUxju3m3E4+lgyZijrOBNCMi+euGJ3oJGp7Ks5uvWd4Z2TOG7l4mzveu9nv5/w+Cmlsrey8OvHejSNsZapkqxCWMdZVcByNL13c62/ruLIvj1l3hjG2u6s2PQvM/Z5Ax9l/9EPhzgbLbSdP2N76f6tqz9/f/as199dsrG4Tqa0evXIxDOC8c4N8mdP3u31+/1J5zAOztkT8/3Ue3DJ9Cn1vPjEzeckMULMpZ2bXj3viJ/KtcWblr435833P1+97eDm6d0S/nY13jmzx13PTQnjpZXFPkrdq2/UeZcbns6k9T9/qqXUX/7rxy898fjkN/9XVEepXPp+r4R7Bwfntvf8UEOp37XlwylPTJ7zv0MeSut+magn8XKQZBLCUs4qAlbEbrcTQoi916euKGNNd1a0d386v5bS2oIpV/R4dGOVTL0HZ/dROF6yX7rwBKXezaP1HVOZ4Wzr/Mh2j7904Ye75WRzGAfn7In5fupek/h3qQnOjn4fn5Cpe+N9iVde3J0bk3nz925KK5dfmcRH3XDnpuN+8VFa+u759a2cfeePdZSWfaT/Rt+8nG3d5h6Rqa9gUn3PaHrtV1WUVq0cqKOhOXSGpENYzFltqYWJaax+Z0XbWeM3VMty1YZHutkJIcTW+a5VZX5a9/sLF8d9621fLJSp9+ckchgn53b3ba6Ty5cMbDvp9+RzmPHO9TksO7uVM5Pl6U3jnDP//p2byiVzutoIITYbQ2le/Tn7nk0eSss+upTBjCjjnJs+8KuPyoVTQuNKjqu/rKL0+II/JtvkhjlnT8z3U3nfc61Ce80cvrY2sS9VDp0hwRDWc9a41IrEMs68+Ts3paXvnNPQ0TNH/eShtHhWLiGE2Dre+U257C/78s5GBX7boR8Ue2X31se6hn2ubZnOtu3a5Z7T554382tkuWLFjcnP5DfWudWodW65evXwHJJtcA5j5Bw4HybLwVNh1UXfP9svzhCpRZxt3Rccp7Rq3asLCyp8lFIqe8t3f35vMuOfhjs3ptVD231UPjL3fBbp10Bn5x1rqqlcvXX6jd07tjvjirGfHfZS7+4XEh+zNdw5e9Iumcq/T2r4mnBc+00NpfLuJ3V/Djl0hkRCWNFZ69LGq6quYRrKd1Y86JMPvdmvxZtRmx399OYOTW5u/Jr9kvn71w9tEdhHxbrxFw/6uMrSzjl/X/jKn6Wf7xu2oIIYfd0cI2f5aMHuXw6s//an349mdL5i2Igrez385bbml5025ifdt1/h5OzI69SUkJP+fO/QEz+9858Ptp/U885xw4bM2LjiaIcrDegfDPtzkA4P3n1OBj30weTf5JjLLePservfH5t/9dP0cQu3jCOEEOLZ/8bV3R8yRpuJs2f9rhpyZm6fv2U++XEtIYTYzhx4XiYhUnb7loRUWEMyuRBWdE4IC+cwhvh+e3rUP7/p0PTksy6//rYhl039eXVdXu/XDhn1yU+WpgPnvdH3pIJJN846araKdmrevi7v7fonzz72+J3rC+dcetfLIydc+nat0nYmkmGTCJHk3c90//MTBwkhr7y6qObw5jv6PfNAq4+fVr09jdnYznjkttNt8t53nt9j1Y5cj/Pa+d9P6519fN3cmQu3VHfqe8fo6+5evq2ud97YHzxmu8XG87+nPjk64La/vPXdszUjpm49+e8zPrujnUQIobIBh2QgGSx8XVbYnRXrCdxZ0a3/zopVWz+d/drM6U+PG9r9jPs2e5td/t/plxiRvlk423vMentQ9pEFD8yTczt37tz51BZNCCH2Fp1yO7ZiN2GCrXM0R+e9uqmOOM7qf44RXYyJs6/oWB0hpPTr2QfrX9n27g+VxNbxz5cYMArPuJ1t3f59U0fJv/ON6cUMJSNg4mzr/tIbN7b1b7rv7F53PvnKzCkPXf+HS+eW2LuMnn0fi/FxQ5yJ78c7r3jwm6MnXfzwst9Li9bPGGT7bk2RTOSy/UzugG7Mh87YEBycE8LCOax27dbjlDjP7xv64mZyZ8WyxRvLCGl22h+MOFnIwtnR/TynZGt/6xd79+/fv3///u0PdJGI1GXc9gMH1k8wYGDRoHYmGRkSIdRvSO9m4uzbuqFYJoRI4SdObRIhVPazlA3Ctp3tlz52bRvJu+WV14wsGJk4Z/bo5pRI2cbFrvpX5N2rfq8jGaf8sYsB3z+s2tm386W/ts88+by/Xnf9wItOadb5Ff/JNnr0+89qrCTJMwQHZ5GJPZWTxZ0Vg1M1G3Z69nN7fZQem2fMnCgGzraOfUaNHdfAxBVHZSqXrpw49p4B/9/e/cdEfd5xAP/A0e+4phkNFtnYyKwdDTMhsyHMxmwlW6yLM4GEsBi2rLGEUfcD044tXc1UMKaaKoQoDAgOW1YLscOo5RrQOIytVioGKj9OEAyTAsLd8UPuuF/f7/PZH8dxBx7Hwf3Ajffrv+PunudzD1/uw/N8nx8v+Bl0ENs5MtK9ocOff7vDxmz5/Fd+dx2DFzPFFt5TWLl/1NmsES9/pBcsd+T72z8IYswO0nbNNLP5WlYAlzIEK+aI1AtTzLa2vOfmSn2pelSwcq8g2tv7VjPmhaTkkgGZ5Z6CFazCCEGQAa9itWL28dknipTy26PHjx8vru21MFuXtQ2jTyJS60dMD7uuN9bXVJafqrvcobMxs6X1LT9WBAU75gUCMi8x6O388tkx63jv5xf+Wfn3ippPbj+0CmZ733ub/fjgIWhn6dVavWBlqr3u2MHCkw39ZsFCX/vqyv9uQnRtRGZeNTMbG38RiL/woMcckVI+pDDLhta64oN/O1zR2DcjmM3Xc1aewoLfzpFZZ3u0Nz6p/UdFVd0V7YTMbOkqXN5MylBcwIGuYtVj9v7sk2j9iaGVbsPok/D47No7Q1MWWQh27CX09a33X0/w615YsGNeICA5LOjt/L0/XOzXGW2zW3rZZ3Rd5958yb9OQkjaOTx+V3W73qIws5DNY22Vmd/257cVmmvj6eybVuaJ+pVvdBHimMNj009+MWS0O64OxWLoOf/mZn+ujuDHLP30ZIfBLDs3x/rqo5zE5f7DEIKGDXgVqx7zUgEAAAAAAAAAAAAAAAAAAAAAAAAAAABAyGx8p2VKnt2Af6La33W4a4G087adWenfq5730113ZGblbo56sfcB+G1t7PkL4DMp89yhH30zTN90svyG7lHnxwHZHw8AggM5DGAe9SvfjSAeLsvcW+DxABYpOloaHw/O2T0AsExP8J6/AKEWc2aKJ/PWEYXFHZxmZjFaFEVRR0YEs6GpptcoC2arofdoFBGRKjH/3w8timPMUciPOktS3XZyiN3dMGJ1DEgK64imqN3GbGlOIiKKOTvNLGuz54bYpB2tdmbzpY2zj72U7AhG31DZNT073KnM9JRudVWsSsy/MmxmVv98AAAEdUlEQVRWhPPNpp6yLSraVD/NLIYORbkClHbctDHL2tCM9DnGFReyfrZFFYraAQDWhLgtabubppmFvvbXmZkZO5JjnGmDWRjbKn+ftiMrLytZRRT3Tq/MzHZda315SZVGaxLMysChOCIiUqWcmRTMwth5rvRYWUPPjON8a99ymNeSncEok9ff27U1Je3d1hlmNmlmc0F8Qb/MzPJEp6b6RNmHmpaBybHmLIkopmhUME9Ub3DWqc69qzBbb2wPyJaLO2/bmcXgkZQkN8n5va77YVGb03NynfYc+swomMXQkdgA1A4AAE7RZQZmMbh/bjNuR9oQoyVxrhdJ269bmcVosbPrRM/k3pWZzZe2qIik17pkZlmb6ywjKv++4mMO816yM5gH+5xTTdS7u2Vm08WNRCSlfWljFrrShMc/ljqvT2Ge+TTFkeyiDw8LZuOFpID0gxw5zLPH53SoM67MMLO1NRfzZQAAAmuRHPaozr3LkKCZYRZfH3A7dUK9t19hNpRHE226bF7w3a1+677iWw7zXvJsMO6zJWMvmpjt7RkSUWLjDLMY3OfxLAxpZ4uN2fZlmkREGz6YYGZ9eZynVy7fbD9s8lp5qZuyRr14LIepEo48UJiF/jSGESEQMKcDwBfWMYvrgfTit54iCvtO4TQXzn9ZZJyKpO+viyCSdR22uR/bugyCnvehGu8lO8lG1ymdwnGO5zeIpBfXP0WkjH1lIw9sjTmfmu6kJxflqDW3Kn75LPGDor8M+xCSz9jwrz/98YTZ9Vl2vfLGz9eFub9EndHY/tf4cHvb737wekswThqFNQc5DGDZbP16mSh85P28gi/mHVQtDzSPk61PLxNJ65Mkapn9RlcnPRdO5PzStjNRWLjbfKpnI8N8KnmJqHrH7ESR638okcZDGlM63qjWp+W9sP/wb4Z+pialY19RiGdXJryr/Xjb0zxe85OUCl1oqwYAWBsWGUvUnXCb00dSWouNWe7Lj/FUhPRap8ws3527Hxb95wG3+2HP7B8UzONVzsFJ1dZLZp67H+a1ZA/BxJw3McudWZLzvUJfnrjIMJ1jVFK2C2bL1dTAjeX5ssZZnd5kYmZbe57nTwYAAP7zKYcRxe3rsTOz3dB56cPy0lN1mmudw0bb8OloIte8RJO2obKkqrHPPG9eIkUdGBTM9v+cytqcuDX3g3uOOfhz8xK9lew1hxHFH+iXmVmZ7G6qKa88o2kZmNRdzXJlFin9lo2ZmR/VJQawzZbOYeq93TIzW+8U75mbnZibvXMTtvAAAAgkH3MYEW3Y0/DA5NyUioVs0WtPZzinqsdmax66rQ871uZaH0ZE8XnN43bns6OXq7rnrQ/zUvISOYxItentq3Nry1jIRm1piluHyzF9RIwWBbQztHQOi6k3epiziPVhAAD/A1SpN+flsFWLY9s1y+PJBgAAYHGrn8Oifpx7uLiu28zMluZt6P0AAICvVj2HOQJgZll3Ph2dMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP8X/wUNh7I314E5jAAAAABJRU5ErkJgggAA} T {CMOS DIFFERENTIAL AMPLIFIER -EXAMPLE} 250 -650 0 0 0.4 0.4 {} +EXAMPLE. DC simulation} 140 -730 0 0 0.4 0.4 {} T {This is an example of a code block that will be placed as a header in the netlist. use 'place=header' attribute and set the header text as a 'value' attribute} 720 -720 0 0 0.4 0.4 {} T {Select one or more graphs (and no other objects) -and use arrow keys to zoom / pan waveforms} 740 -800 0 0 0.3 0.3 {} -T {gain AC plot at 1uA, 10uA, 100uA bias current} 1250 -1090 0 0 0.4 0.4 {layer=5} +and use arrow keys to zoom / pan waveforms} 1250 -60 0 0 0.3 0.3 {} N 30 -310 30 -280 {lab=VCC} N 30 -310 60 -310 {lab=VCC} N 260 -240 260 -190 {lab=GN} @@ -110,6 +107,7 @@ value=".temp 30 ** models are generally not free: you must download ** SPICE models for active devices and put them into the below ** referenced file in netlist/simulation directory. +** http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s00/ASSIGNMENTS/TSMC035-n96g-params.txt .include \\"models_cmos_example.txt\\" .option savecurrents .save all @m4[gm] @m5[gm] @m1[gm] @@ -137,15 +135,15 @@ C {ngspice_probe.sym} 600 -260 0 0 {name=r3} C {ngspice_probe.sym} 770 -420 0 0 {name=r4} C {ngspice_get_value.sym} 620 -160 0 0 {name=r5 node=i(@$\{path\}m1[id]) descr="I="} -C {code.sym} 920 -580 0 0 {name=HEADER +C {code.sym} 890 -580 0 0 {name=HEADER place=header only_toplevel=true value="** ======================== ** ** This is a netlist header ** ** ======================== **"} -C {launcher.sym} 755 -835 0 0 {name=h3 +C {launcher.sym} 1195 -595 0 0 {name=h3 descr="Select arrow and -Ctrl-Left-Click to load/unload waveforms" +Ctrl key + Left-button-Click to load/unload waveforms" tclcommand=" xschem raw_read $netlist_dir/[file tail [file rootname [xschem get current_name]]].raw " diff --git a/xschem_library/examples/test_ac.sch b/xschem_library/examples/test_ac.sch new file mode 100644 index 00000000..121baf1a --- /dev/null +++ b/xschem_library/examples/test_ac.sch @@ -0,0 +1,827 @@ +v {xschem version=3.0.0 file_version=1.2 } +G {} +K {} +V {} +S {} +E {} +B 2 1030 -330 1570 -130 {flags=graph +y1=-5.7 +y2=44 +ypos1=0 +ypos2=2 +divy=10 +subdivy=1 +unity=1 +x1=3 +x2=10 + +subdivx=8 +node=diffout +color=4 + +unitx=M +divx=10 +dataset=1} +B 2 1030 -550 1570 -350 {flags=graph +y1=-180 +y2=180 +ypos1=0 +ypos2=2 +divy=10 +subdivy=1 +unity=1 +x1=3 +x2=10 + +subdivx=8 +node=ph(diffout) +color=7 + +unitx=M +divx=10 +dataset=1} +T {CMOS DIFFERENTIAL AMPLIFIER +EXAMPLE} 40 -680 0 0 0.4 0.4 {} +T {Feedback +network +loading} 870 -490 0 0 0.4 0.4 {} +T {gain AC plot at 1uA, 10uA, 100uA bias current} 1030 -120 0 0 0.4 0.4 {layer=5} +N 30 -240 30 -210 {lab=VCC} +N 30 -240 60 -240 {lab=VCC} +N 190 -230 190 -180 {lab=GN} +N 190 -180 230 -180 {lab=GN} +N 230 -180 230 -150 {lab=GN} +N 230 -150 410 -150 {lab=GN} +N 450 -220 450 -180 {lab=D} +N 380 -250 400 -250 {lab=0} +N 500 -250 520 -250 {lab=0} +N 380 -220 520 -220 {lab=D} +N 320 -250 340 -250 {lab=PLUS} +N 560 -250 580 -250 {lab=MINUS} +N 520 -400 570 -400 {lab=VCC} +N 330 -400 380 -400 {lab=VCC} +N 420 -400 480 -400 {lab=#net1} +N 420 -400 420 -370 {lab=#net1} +N 380 -370 420 -370 {lab=#net1} +N 380 -370 380 -280 {lab=#net1} +N 520 -370 520 -280 {lab=DIFFOUT} +N 520 -470 520 -430 {lab=VCC} +N 380 -470 520 -470 {lab=VCC} +N 380 -470 380 -430 {lab=VCC} +N 450 -490 450 -470 {lab=VCC} +N 520 -330 900 -330 {lab=DIFFOUT} +N 30 -370 30 -340 {lab=PLUS} +N 30 -370 60 -370 {lab=PLUS} +N 450 -120 450 -90 {lab=0} +N 450 -120 470 -120 {lab=0} +N 470 -150 470 -120 {lab=0} +N 450 -150 470 -150 {lab=0} +N 190 -120 190 -90 {lab=0} +N 170 -120 190 -120 {lab=0} +N 170 -150 170 -120 {lab=0} +N 170 -150 190 -150 {lab=0} +N 830 -600 830 -580 {lab=DIFFOUT_L} +N 830 -520 830 -500 {lab=0} +N 750 -250 750 -220 { lab=#net2} +N 750 -160 750 -140 { lab=0} +N 580 -250 580 -230 { lab=MINUS} +N 720 -230 750 -230 { lab=#net2} +N 650 -600 650 -580 {lab=D_L} +N 650 -520 650 -500 {lab=0} +N 790 -470 790 -450 { lab=DIFFOUT_L} +N 790 -390 790 -370 { lab=D_L} +N 830 -420 850 -420 { lab=DIFFOUT} +N 850 -420 850 -330 { lab=DIFFOUT} +N 580 -230 660 -230 { lab=MINUS} +N 890 -330 890 -250 { lab=DIFFOUT} +N 850 -250 890 -250 { lab=DIFFOUT} +N 750 -250 790 -250 { lab=#net2} +C {lab_pin.sym} 30 -150 0 0 {name=p17 lab=0 net_name=true} +C {title.sym} 160 -30 0 0 {name=l1 author="Stefan Schippers" net_name=true} +C {nmos4.sym} 430 -150 0 0 {name=m1 model=cmosn w=5u l=2u m=1 net_name=true} +C {pmos4.sym} 500 -400 0 0 {name=mtop_2nd model=cmosp w=5u l=2u m=1 net_name=true} +C {vsource.sym} 30 -180 0 0 {name=VVCC value=5 net_name=true} +C {lab_pin.sym} 450 -90 0 0 {name=p1 lab=0 net_name=true} +C {lab_pin.sym} 60 -240 0 1 {name=p2 lab=VCC net_name=true} +C {nmos4.sym} 210 -150 0 1 {name=m3 model=cmosn w=5u l=2u m=1 net_name=true} +C {lab_pin.sym} 190 -90 0 0 {name=p3 lab=0 net_name=true} +C {isource.sym} 190 -260 0 0 {name=IBIAS value=IBIAS net_name=true} +C {lab_pin.sym} 190 -290 0 0 {name=p4 lab=0 net_name=true} +C {nmos4.sym} 360 -250 0 0 {name=m4 model=cmosn w=10u l=1u m=1 net_name=true} +C {lab_pin.sym} 400 -250 0 1 {name=p5 lab=0 net_name=true} +C {nmos4.sym} 540 -250 0 1 {name=m5 model=cmosn w=10u l=1u m=1 net_name=true} +C {lab_pin.sym} 500 -250 0 0 {name=p0 lab=0 net_name=true} +C {lab_pin.sym} 570 -400 0 1 {name=p6 lab=VCC net_name=true} +C {pmos4.sym} 400 -400 0 1 {name=mtop_1st model=cmosp w=5u l=2u m=1 net_name=true} +C {lab_pin.sym} 330 -400 0 0 {name=p7 lab=VCC net_name=true} +C {lab_pin.sym} 450 -490 0 0 {name=p8 lab=VCC net_name=true} +C {lab_pin.sym} 320 -250 0 0 {name=p9 lab=PLUS net_name=true} +C {lab_pin.sym} 580 -250 0 1 {name=p10 lab=MINUS net_name=true} +C {lab_pin.sym} 900 -330 0 1 {name=p11 lab=DIFFOUT net_name=true} +C {lab_pin.sym} 190 -200 0 0 {name=p13 lab=GN net_name=true} +C {lab_pin.sym} 30 -280 0 0 {name=p14 lab=0 net_name=true} +C {vsource.sym} 30 -310 0 0 {name=VPLUS value="dc 2.5" +} +C {lab_pin.sym} 60 -370 0 1 {name=p15 lab=PLUS net_name=true} +C {code.sym} 10 -550 0 0 {name=STIMULI +only_toplevel=true +value=" +** ngspice +.temp 30 + +** models are generally not free: you must download +** SPICE models for active devices and put them into the below +** referenced file in netlist/simulation directory. +** http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s00/ASSIGNMENTS/TSMC035-n96g-params.txt +.include \\"models_cmos_example.txt\\" + +.param IBIAS=1u +.control +let C=180/PI +ac dec 10 1000 10G +write test_ac.raw +set appendwrite +alter IBIAS=10u +ac dec 10 1000 10G +write test_ac.raw +alter IBIAS=100u +ac dec 10 1000 10G +write test_ac.raw +* plot vdb(ac1.diffout) +* plot C*phase(ac1.diffout) +plot vdb(ac2.diffout) +plot C*phase(ac2.diffout) +* plot vdb(ac3.diffout) +* plot C*phase(ac3.diffout) +.endc + +** ngspice +* .save all + +** xyce, not needed if -r given om cmdline +* .print tran format=raw v(diffout) v(plus) v(minus) +" net_name=true} +C {lab_pin.sym} 790 -570 0 0 {name=l18 lab=DIFFOUT} +C {lab_pin.sym} 790 -530 0 0 {name=l19 lab=0} +C {lab_pin.sym} 830 -500 0 0 {name=l20 lab=0} +C {lab_pin.sym} 830 -600 0 1 {name=l21 lab=DIFFOUT_L} +C {vcvs.sym} 830 -550 0 0 {name=e1 value=1} +C {lab_pin.sym} 750 -140 0 0 {name=p12 lab=0 net_name=true} +C {lab_pin.sym} 450 -200 0 0 {name=p16 lab=D} +C {lab_pin.sym} 610 -570 0 0 {name=l2 lab=D} +C {lab_pin.sym} 610 -530 0 0 {name=l3 lab=0} +C {lab_pin.sym} 650 -500 0 0 {name=l4 lab=0} +C {lab_pin.sym} 650 -600 0 1 {name=l5 lab=D_L} +C {vcvs.sym} 650 -550 0 0 {name=e2 value=1} +C {nmos4.sym} 810 -420 0 1 {name=m7 model=cmosn w=10u l=1u m=1 net_name=true} +C {lab_pin.sym} 790 -470 0 0 {name=l6 lab=DIFFOUT_L} +C {lab_pin.sym} 790 -370 0 0 {name=l7 lab=D_L} +C {lab_pin.sym} 790 -420 0 0 {name=p18 lab=0 net_name=true} +C {vsource.sym} 690 -230 3 0 {name=VLOOP value="dc 0 ac 1 0"} +C {res_ac.sym} 750 -190 0 0 {name=R2 +value=10G +ac=0.1 +m=1} +C {ind.sym} 820 -250 1 0 {name=L1 +m=1 +value=100k +footprint=1206 +device=inductor} +C {launcher.sym} 1040 -650 0 0 {name=h1 +descr="Select arrow and +Ctrl key + Left Button-Click to load/unload waveforms +from .raw file" +tclcommand=" +xschem raw_read $netlist_dir/[file tail [file rootname [xschem get current_name]]].raw +" +} +C {launcher.sym} 1040 -580 0 0 {name=h2 +descr="View raw file" +tclcommand="textwindow $netlist_dir/[file tail [file rootname [xschem get current_name]]].raw" +} +C {launcher.sym} 1040 -720 0 0 {name=h5 +descr=" Ctrl-Left-Click to load/unload +embedded waveforms" +tclcommand="xschem raw_read_from_attr" +spice_data=" +VGl0bGU6ICoqIHNjaF9wYXRoOiAvaG9tZS9zY2hpcHBlcy94c2NoZW0tcmVwby90cnVuay94c2NoZW1fbGlicmFyeS9leGFtcGxlcy90ZXN0X2FjLnNjaApEYXRlOiBX +ZWQgRmViICAyIDE4OjE3OjI0ICAyMDIyClBsb3RuYW1lOiBBQyBBbmFseXNpcwpGbGFnczogY29tcGxleApOby4gVmFyaWFibGVzOiAxNwpOby4gUG9pbnRzOiA3MQpW +YXJpYWJsZXM6CgkwCWZyZXF1ZW5jeQlmcmVxdWVuY3kgZ3JpZD0zCgkxCXYoZCkJdm9sdGFnZQoJMgl2KGRfbCkJdm9sdGFnZQoJMwl2KGRpZmZvdXQpCXZvbHRhZ2UK +CTQJdihkaWZmb3V0X2wpCXZvbHRhZ2UKCTUJaShlMSkJY3VycmVudAoJNglpKGUyKQljdXJyZW50Cgk3CXYoZ24pCXZvbHRhZ2UKCTgJaShsMSkJY3VycmVudAoJOQl2 +KG1pbnVzKQl2b2x0YWdlCgkxMAl2KG5ldDEpCXZvbHRhZ2UKCTExCXYobmV0MikJdm9sdGFnZQoJMTIJdihwbHVzKQl2b2x0YWdlCgkxMwl2KHZjYykJdm9sdGFnZQoJ +MTQJaSh2bG9vcCkJY3VycmVudAoJMTUJaSh2cGx1cykJY3VycmVudAoJMTYJaSh2dmNjKQljdXJyZW50CkJpbmFyeToKAAAAAABAj0AAAAAAAAAAANOteLBbOrM/I9ZT +q5Urfb/TrXiwWzqzPyPWU6uVK32/fHMMF0dEX8DvuQnAzgkEwHxzDBdHRF/A77kJwM4JBMBRVjT3MCJTPy8n0nnLbPg+AgZhvzAiU79trppD2W34vim/ve0yYzE+r1FV +89XqZj4FX++uMh8xvveL989Ot4o+29HJ////7z+zOEjwVCBVPojF27nB3bg/4nsjnmEug78NwjFUEhf7vbM4SPBUIFU+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAABj3iIonWPIPddFUecouSO+ptWZlBm2YD3cnsBEaeeVPQCwDaWN1Q2+7F+cm5fuiL4gPSafs6uTQAAAAAAAAAAAbzn2fFg2sz/IicPbHAp2v2859nxYNrM/yInD +2xwKdr9W/uLdp0VfwNWbA1RFSP6/Vv7i3adFX8DVmwNURUj+v8Mh5/YHI1M/WrhXobt08j6SLR7AByNTv/VuH2sPdvK+wDSyg3+KMD5Qpx1849NsPjbr7Q+djSS+ImEI +NJc5hT7msd/////vP8asZyJnq1A+3mKrJY/YuD8vAI6qek59vwa8DMMMJ/C9xqxnImerUD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF0LgAdHM8c9MUqy +QZLVKL5ovG37yulfPW+eCAaOjZs9ALj94iUCJb73xnQ4UAKDvhFmC6GSw5hAAAAAAAAAAADSSoNi2TOzP/Zp8E9CFHC/0kqDYtkzsz/2afBPQhRwvwNg/1yDRl/ApoCD +PJoY9r8DYP9cg0ZfwKaAgzyaGPa/gEGJvI0jUz/ruXRcJe/qPuXmaIeNI1O/tNVPIH3y6r7VdlFEgWQuPq4Em+YBI3I+NsPUOz3TF763JiBHhNyAPgF57f///+8/3Bdb +OFAySj6nirYoUdW4P5LbFh2jznW/oQPI9P6G4r3cF1s4UDJKPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkNVXO9FPxT0r8835iEQvvvt384jag109oWCJ +WLFVoT0AxqoZJXUtvrSYiSnxMHy+XJJLnAwtn0AAAAAAAAAAAF/mBaZUMrM/tdeXLWHyZb9f5gWmVDKzP7XXly1h8mW/u1Ht4QhHX8DWKW8cLivuv7tR7eEIR1/A1ilv +HC4r7r9ZNUIc3yNTPwjiN+tPY+I+jlfE6d4jU79Pa0xxhWfivnHHsWRRICo+LCrSV2XTdj7DYqmpytYJvo72B67oyXo+Th/2////7z/8sIsrYnJEPv00iuRU07g/SwCB +PRfvbr87qKGkY8HTvfywiytickQ+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAB/W94VDCPTiVlXnfrjO+6CVoEN61WT33fQzv/dClPQA3GMBCUDG+8nro +6t/cc76Vz1naxZ+jQAAAAAAAAAAAr/QpdXYxsz+BxZ6/Dc5Zv6/0KXV2MbM/gcWevw3OWb/m3Pc2VUdfwNe4OO7fv+G/5tz3NlVHX8DXuDju37/hv/jL7aENJFM/9UYO +pqCj1T7L4p1zDSRTv/CYoPc5rtW+pbipD7NcIz6vecRnGrt8PjxW+I+sJvi9rpISL6JHdT5Kgvv////vPxG7P5fVkT8+qqpvwCzSuD8KOsIaF+Zjv2Nr83fY9sG9Ebs/ +l9WRPz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQAgaDfIbs9JNyrCMvHOL6nLqRWnK1TPTz4N13Vdas9AJpAOdHQMr7kKzyafS5pvi89eSmOtKhAAAAA +AAAAAAAyN+riDjGzP2+Q7hmILUK/Mjfq4g4xsz9vkO4ZiC1Cv+L8D9N4R1/ACAPD2iUZyb/i/A/TeEdfwAgDw9olGcm/6PFsViMkUz+2KSp5Rp2+PjVjvS4jJFO/q8PP +uabSvr4WkJhQ00cRPuWn6H1iFYI++15N4l8g270EqarHSOdwPmvL/v///+8/pl11WAHtNz4OU6vbmNG4P3iShoU82FO/eq8kRUhJo72mXXVYAe03PgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAFh38XiwmqD275xQGfzI/vr7lfeKRO0Q9zPvX/6NIsT0AUzfnMI8zvhrTVDtp9Fe+TX+WtiQar0AAAAAAAAAAAN2NPZcHMbM/RpAP +hu2SPD/djT2XBzGzP0aQD4btkjw/nKLdZHtHX8AtnDz9XXfDP5yi3WR7R1/ALZw8/V13wz8EC3roJCRTP9W1EoD+sre++VdLyyQkU78Zr6bDy2+3PnSn6D7XtBC+s3ub +mwXEhj5TO73sULbQPdMl1qmT2mo+GFgAAAAA8D+LQ39NOI4xPm02EE550bg/gHexYxBVDr9K4P4h5AWWPYtDf004jjE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAoee+7EpWnvZRF3CM1o0O+7WZBF5gnNL0QoqX3O8K1PQDgtRh0tDO+t/Cr6vfcEj52Em5R35OzQAAAAAAAAAAAFsM3/14xsz/842ukiMFXPxbDN/9eMbM//ONr +pIjBVz+tWEp6XUdfwPPOJ3lCROA/rVhKel1HX8Dzzid5QkTgPwvT0a4SJFM/2fD7+oTR076Uv0iiEiRTv7rXKbtevNM+WMjNqY2kMb4aqhvlkKmMPrTXjb2ZL+Y9Tl6s +PJdUZT6ZzAAAAADwP7t7QdttPSg+icSdSMfRuD8UQbUZ7+VRP5ByHGYRk6k9u3tB2209KD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGtA8Ha7zsi958ON +Tsq4SL6x40pPrg5dvfb0a+rxZLs9ALJzK6VIM77QYVCrA2BaPl1OR82SpbhAAAAAAAAAAACINkP2JzKzP/C4o+/v0GQ/iDZD9icysz/wuKPv79BkP9WQEZ8YR1/ACCTf +hTeI7D/VkBGfGEdfwAgk34U3iOw/XJ/huugjUz9H6BTqGWLhvvd6usjoI1O/eEbh7MlU4T6TvM4B9X1Dvo6ptil5C5I+TRpxPjrp7j08bgQRW/FgPl7cAAAAAPA/Csbr +1cNRHT6tWMadk9K4P6BVfj8Z2WI/3FKOwsKLqz0KxuvVw1EdPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACE2wCcFj271mAat4Nx9PvrZ6Hk3Tx3C9SVBF +fAo/wT0Ab9o7gjQyvrwONjOrfGo+A67oR0gHv0AAAAAAAAAAAEAf5tWNM7M/jKBQXIfcbj9AH+bVjTOzP4ygUFyH3G4/Jp/f+J1GX8DRb2lTUyj1Pyaf3/idRl/A0W9p +U1Mo9T95lPn/nSNTP6JnkGMfyOm+mLKhN54jU7+ClE82XbfpPpkk1pF4M1K+AiLOwD+5lj6pBWiCDzXyPRJlGuwn6lo+0ooAAAAA8D/IDRoHN3EHPrX6uWAK1Lg/BhrZ +tcy/bT+zymXkQlqhPcgNGgc3cQc+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChbBA2tZHpvcNA4rnGllO+UtWYLHzcf738LR90r7fFPQAfpQt7PDC+OSjH +XvSYdD4BAAAAAIjDQAAAAAAAAAAAG9x7yt01sz/V6mCDDUZ1Pxvce8rdNbM/1epggw1GdT+lGeAU00VfwARG80N4LP0/pRngFNNFX8AERvNDeCz9P4YJo2AiI1M/dyFE +HIDG8b4u+YvaIiNTvzZRydvzu/E+rcjlnWWZX76klOnk+J6cPteomMUv8fM9IT+a74BgVT7EjP/////vP3lkIRXJAPW9GznQYXzWuD+Q6X9fox11P0kFKbUfz4y9eWQh +FckA9b0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHdvz9eMfa903bnWqCoWL5/6CYqHOGLvRQ7PPFQWss9AIoUT77nKb4VpAPA2At9PmnM74aglshAAAAA +AAAAAACRNmtqlzmzP962uhodP3w/kTZrapc5sz/etroaHT98P0YTJziMRF/A3+aBnadeA0BGEyc4jERfwN/mgZ2nXgNAO8m8N1siUz8ziuvepJr3vkTmnxpcIlO/5AEM +/F2N9z5L3vEBBWpqvknh7/mXB6I+n3N8ZNoI9T3ct15ZRfpQPnLJ/P///+8/e4c2T2l/Fr6gY9GNcNq4P8PG2dtyenw/JVmK/W20ub17hzZPaX8WvgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAqnV5kc+MAr6JzOAq5wlfvsSqGrjpZ5e986tVp9Q60T0AwPQdApYeviZ4DdHThIM+lz9OSXf0zkAAAAAAAAAAAOj5/BSIP7M/ihNH +TuFbgj/o+fwUiD+zP4oTR07hW4I/Hqkf/oJCX8BDQYRLHS4JQB6pH/6CQl/AQ0GESx0uCUDuCzGhHSFTP3V4gFNUr/6+ZXFjKh8hU7/2TJd0np7+Pk6BeD9ynXW+Ti6K +Ncq5pj47XlvXbLj1PT/xEZ/59ko+YzP4////7z+alzxLfHckviOSc9/A4Lg/YG6CNPSsgj/IXyzJdTLPvZqXPEt8dyS+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAD5amkJwFsOvg9byhZsiGO+rbHNZIszo73ryUpaM7fVPQCAqDFEZeo9O9VvBMOMiT57O6/hJ3zTQAAAAAAAAAAAxl7v2fZIsz+iIRbk/pCHP8Ze79n2SLM/oiEW +5P6Qhz+ruxhMRz9fwG8kKx9nKRBAq7sYTEc/X8BvJCsfZykQQPpHoU4lH1M/O/8gGOyxA78MMT3fJx9Tv1dfTmlopwM/vZOtQEp3gb5ANEZBXKqsPkYlffjMJfY9caJv +PgNpRT4XzvD////vP+yPqjrswy6+CKSH+MjquD/kBI5bshmIP50nxIPSY9697I+qOuzDLr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXiedDWhxi+kIJG +dLSUaL50ooG35BOvveQz3v0zY9s9AKaF1B2RLD4KQtgRcXeQPn1D8FC3h9hAAAAAAAAAAAASk1sB6lezP2birfdpBI4/EpNbAepXsz9m4q33aQSOP8fwI3wnOl/AsZ0K +NQqWFEDH8CN8JzpfwLGdCjUKlhRANEvtAQYcUz8qZAizMRYJv9VOljMKHFO/xChTOfcICT+7m668BgKMvkOk/iBjGbI+CkFlSpdo9j3Tm1Ql7/5APjkD5f///+8/HvGl +jYhXNb6U0eUIsPq4P9h0HVbUy44/TGappcb86r0e8aWNiFc1vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEYjWEA+rI75blGR6Ju1uvohAM7bC8Li9cQeg +mdhJ4T0AGZKMFM9BPsenzondBpU+f4zXs7Hh3kAAAAAAAAAAAIJC/D+Ub7M/tcuXdZAFkz+CQvw/lG+zP7XLl3WQBZM/Sl+v7goyX8AhRG9MQxcaQEpfr+4KMl/AIURv +TEMXGkAiFY6+FBdTP5o9/yqFyw+/SBUfhBsXU7+OuO0j4roPP1zHuSIVWJa+v1KEN1Dltj5OuyZIOI/2PWlJd0Yg+To+BU3S////7z8Sjg4RXWs8vj43xvDcE7k/wF0o +UL+Nkz/auVuGfdn2vRKODhFdazy+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6f/fww2EvvmKNEC+scnO+NzRykITow715dKXL1NzlPQBn/hUUWVE+iyNo +Irewmj6TDx7yVnDjQAAAAAAAAAAApcV3xf6Usz9FEfiUWQaYP6XFd8X+lLM/RRH4lFkGmD+lcoLANyVfwOzSrdkMeiBApXKCwDclX8Ds0q3ZDHogQI5udkVED1M/FwLB +pToUFL+6mzceTw9Tv2PedQXGCRQ/9PewUovDob4DXQmzIgu9PvED3woLovY9mtgc1SBkNT4nsLT////vP/3sL8ilfEK+I+FsI6s7uT+ADWEK4bmYP953JSP20wK+/ewv +yKV8Qr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXGnFwU8zi+yLWNRxFyeL7Zem6HhqrPveGAmQDMt+s9QFt5YbmyXj52Ma89At+gPheXySXXeOhAAAAA +AAAAAADcEH7rDtCzP887mMz2Qp4/3BB+6w7Qsz/PO5jM9kKePxkNiRj5EF/AE+P8JxPBJEAZDYkY+RBfwBPj/CcTwSRAyMz7be4CUz9Rn0PuqEoZvwPCWbX/AlO/zogS +wIc9GT/kaRf5/iqsvsaJkVH2f8I+9sFRGSul9j1gI71yzPIwPuHshf///+8/akdwC2C2R75GWB8FgXq5PwpguoqkKp8/54DKyMeEDr5qR3ALYLZHvgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAox5JNibIQ758K3jVJLN+vimvL0e6HNm9r6sLzQak8T0AGiXr2OJpPmofv3JPQ6U++SGZgPfO7kAAAAAAAAAAAAg9EW8RLbQ/MQKi +r3wCoz8IPRFvES20PzECoq98AqM/3NbFrxfxXsBIrcEiKhMqQNzWxa8X8V7ASK3BIioTKkDbXPOage9SPxvhmjSLxh+/EgVBA53vUr/UIweRFLYfP0eV835cRra++6N6 +peO4xz4RxR2EYZn2PflT6cY60So+QUY8////7z/XvZmtBiFOvj8UFlZ03bk/NQa9GtKVoz8TiwXWN3cYvte9ma0GIU6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAD+26fX0ElPvva7mxfpP4O+AvVvg5Pc470zvZLXcpf2PbD01MddPXU+bJFltvS4qj7FbPEsjWTzQAAAAAAAAAAA3S2aKP2+tD+rUMx11s+nP90tmij9vrQ/q1DM +ddbPpz9squRzE79ewEkKaSG6VDBAbKrkcxO/XsBJCmkhulQwQP9ZFt0H0VI/Hke348DmI7+hzFMpM9FSvxOV/o503CM/qnXFa76Pwb4QsbXv47fOPjad1DVpfPY9JDUc +4M8qJT4GuMj+///vPzuj368jAVO+kKVTxbF4uj8QMNEXCYmoP38B9Z1/dCO+O6PfryMBU74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSUSSqRq1i+3vxX +2xcWiL46L2fKXFLvvU7Jk+6zMv09SHnXxMcggT4s26cSK72wPgUAAAAAavhAAAAAAAAAAABQm38rlqK1P2YV6zYyta0/UJt/K5aitT9mFes2MrWtP/XyqT4QcV7Aah+F +mOxfNED18qk+EHFewGofhZjsXzRAmsdmN3+hUj+OI9KdRtQov17XekzDoVK/9C5NUnDHKD+O3EKBH5TLvlypUhyfLNQ+ybu68a1I9j0zVCdwp6UgPsB6FP7//+8/EA7c +UIHRV77TymoY02q7P0gnVLI7m64/p604AFS4Lr4QDtxQgdFXvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeIG3MVfY77mrtNCeAiOvgbQ1Pi+mPi9MoAk +bkofAz5oaVR9b0eLPu8OayU14rQ+iL+rqEi8/kAAAAAAAAAAAP8kTJldArc/bgiUxKNssj//JEyZXQK3P24IlMSjbLI/PrXvYnz4XcB2/DPavUU5QD6172J8+F3Advwz +2r1FOUDN5OIiB1hSP9v8AT43zC6/rWmNhnFYUr+GDjaSTbwuP3Q2OSz6htW+TAk4bm8H2z78zPOfp/T1PX4LZyCNCRo+9OX9/P//7z8zkLqtO6JdvgFU0rgO4bw//DEp +UGn5sj/PjV1d0BA4vjOQuq07ol2+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADc2PTD7UBuvikBtdlun5K+ue3cDr0zA75QibzZ+4QJPrxelFL2e5U+DO4v +2VvmuT7B59CNylgDQQAAAAAAAAAA61WyqIMauT/ZnCc/5Ke2P+tVsqiDGrk/2ZwnP+Sntj9wv5F3tkBdwJ9RhNi2Ez9AcL+Rd7ZAXcCfUYTYthM/QJkN+JsN6FE/ovSD +tIjvMr/jI7BhsuhRv1w52W3B5TI/RkKWTACo4L6yWHRhHpTiPrqLVwcWcvU9hLdPONEvFD7FUFX7///vP+/3XpiKQmK+8Luqt2gbvz95EDHbm1C3P4Gnj+q8qkK+7/de +mIpCYr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO7oOjveane+ogWvD13nlr7EQWNSNbgNvq9LSCZncxE+OC9sn1i4oD5AO3z3kda/Pl0KG9oxWwhBAAAA +AAAAAADClBeEdDq8P4PVS4digLs/wpQXhHQ6vD+D1UuHYoC7PyA96UuFLlzAGTgjqrzcQkAgPelLhS5cwBk4I6q83EJATsi/PfxAUT8aq2qGcfw2v1yWoh74QVG/DIpm +kZTwNj+4Pj7kLXDpvtyWQ6YIVOo+5YKSSsCt9D0oRX4HSuUOPs/Y2/j//+8/UVQ3ncg0Zr6QS8jIKjfBP7S9bps4RLw/nnlYw5yQTL5RVDedyDRmvgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAQ5U82rjkgb6J6IhpbdGbvtQw7ehFsxa+Im5JuCyTGD5q1MrAnKOpPiB61mgsUMM+YFQsJaWpDkEAAAAAAAAAAFp3DK5uX8A/cWz3 +nCxhwD9adwyubl/AP3Fs95wsYcA/1x7MoCSiWsDKX4nXC3hGQNcezKAkolrAyl+J1wt4RkB+9eL5d09QP3v/0p+eYTu/NWCYxfFQUL9ODCirf1M7P2Ukxc4SDvO+M32s +uEU/8z6GoifeA5HzPY5MlptlMQc+/SBI9f//7z99sohgS4BqvqGArxErnsM/g8n1FybNwD/3YwUFvm9Vvn2yiGBLgGq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAADF0DUIdtWKviNVvHX7laC+3O9MtrwCIb64qPU3CNchPsaJq0YaRLM+MAoaqP/7xj7St2YQD00TQQAAAAAAAAAA5qi0aTx+wz+9Zlqfjf/CP+aotGk8fsM/vWZa +n43/wj/ivAp+iX5YwMXFKV/yD0pA4rwKfol+WMDFxSlf8g9KQOxh1TqdA04/uJsnN6XCP7+/4ri27AdOv+hG1Z5Isj8/3kgVp+TH+74d4Xc11OH8Pl+rVnwdB/I9kO+q +yXPxAD6OIFfw///vP1jhmQ4qz26++JQnm63vxj98l4Tft2zDP1U9FuO+UV++WOGZDirPbr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8TBWZl5O+lZcS +prZFo76rwkNLxdAovoIahSIslSo+u0BZb90rvD73+NzjoZ7KPnuTpa5sTBhBAAAAAAAAAAASi+kyVIvHP/deqlKXQ8U/EovpMlSLxz/3XqpSl0PFP/wqn/CSt1XAswHp +yi8sTUD8Kp/wkrdVwLMB6covLE1A99UsjzihSj+3mmqBfcZBv4C/16lLp0q/f/VdFFm9QT9HrPgMPIYDv1Rqhik1+wU/7jUngWkH8D3fjn7qcN33PYX07On//+8/mz79 +NUZMcb6RjsjdUD7LP4b8W0wpocU/8mb3egsTZr6bPv01RkxxvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfIoVNNCbm74U3plxU6KlvmGtH2QGdTG+2FuC +szkaND7JD8osq93DPrtzs7Vluc0+4fw77wyXHkEAAAAAAAAAACqfYD1aZsw/3/RjedzDxj8qn2A9WmbMP9/0Y3ncw8Y/UnOeGG9jUsC4SlPkRTxPQFJznhhvY1LAuEpT +5EU8T0AXVfJmyZJGP610Y6tFCEO/Mjl4sfmaRr8/gTEYgv5CP0BFh+88Ngq/YeiE7Sm0ED+a5Zq830PrPe6RFYcTDfA9DRw94v//7z8w6MYxDJxyvqTJ63+kM9A/q37f +h2n3xj8ZI4ry48JtvjDoxjEMnHK+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdH5K1gpuivu2EqeAQRae+rJCSZvV4N74iFBv2JWQ+Pug67gzYyso+cnmQ +z/+zzz4+tV+wWkEjQQAAAAAAAAAAYs++uIjY0D+8nP4NASrHP2LPvriI2NA/vJz+DQEqxz/NWrmfboVNwKdWIEHeyU9AzVq5n26FTcCnViBB3slPQMXr2ngIJ0I/QtlY +nZBeQ7+8NEJbhjFCvzedue+qVEM/dt5U/RuvEL+gLpV0S/YYP29yctd8CuY9f3uSEAl45D3SQ93Z///vP9GLgHQqFHO+wyt7FtoC0z+LONx8/Q/HP4pLxBZeEXO+0YuA +dCoUc74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTVQkQW16e+7bcxknzap75ragt8OfQ9vsfRqDvlnUY+s+IPfkgr0T6IeINgdQjQPvnHLXiwPShBAAAA +AAAAAADVs4WEXXLTPxBrk0VMXMY/1bOFhF1y0z8Qa5NFTFzGP5OFMxGSY0bAtdNo0cmxTkCThTMRkmNGwLXTaNHJsU5Arfc8EQmdOz8j+FV97rNCvxCv7xmLtju/amU4 +gW+qQj/ShWR35hIUv0ammcU3JSI/SahNOrvn4D3aRmKEZ6nYPRd8o9H//+8/4r3CElyicr6mT/9Xn8TVP0lpGZ4Wy8U/0RRk9EEud77ivcISXKJyvgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAA3r4w7eD6rL5tkK9iuEunvkGdt0xMF0K+cfWXTYdkUD5Rq1en9N/UPgrwQpmlqM4+CgAAAICELkEAAAAAAAAAABQOWxWowdU/t7n1 +T6+LxD8UDlsVqMHVP7e59U+vi8Q/tHMMig0OQMAiZbMAPTdMQLRzDIoNDkDAImWzAD03TEAmhIVqBeUzP7ItImhSMUG/vw7seooCNL/SCj9CrihBP0Scwyi62Ra/zF2P +/ZqPKT/2WJv7EbDYPbtugv1KGMw97VhYyv//7z/eD/TJD3Bxvpn+ackuNdg/eBmnx01Xwz9dK1qJ09N6vt4P9MkPcHG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAACISSD2xsSwvuAJnR2EzKW+y0uHXaa5RL7ZwGWGmgtXPn7HUXsLKdg+T6aiyJm9yz63V2tprTUzQQAAAAAAAAAA9v92GDKh1z9Cq5uhiRnCP/b/dhgyodc/Qqub +oYkZwj/UOVHMxtU1wPEglmTZ30hA1DlRzMbVNcDxIJZk2d9IQMQ/SKaqRCs/l92U61FQPr8HskEfMYYrv8wQu2FUQT4/oZLg2P6wGL8BVmYlYXkxP8bRcC+1SdE9QXTp +s+FZvj3zL3PE///vP9f7R0CSm2++o9fELdcr2j/5VXxjeRXAP12NWAZoxn2+1/tHQJKbb74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8WzCpGnLK+OmXw +G3jBo76OU6btjKFGvlK/NPknd18+z+Pki7/Q2j518lY+gdbHPrQhRTH9LjhBAAAAAAAAAAB7o6BxOgrZP7WoeOiR2L4/e6OgcToK2T+1qHjokdi+P6ixVFEzMizAuhT7 +Dzc4RUCosVRRMzIswLoU+w83OEVAysMqXPfWIT/NdCDYOdw5v008jINWHSK/bt9s5MTPOT8CCoKss2AZvw68Py4aTjc/kQqSQN5txz33lSm10yGvPbahC8D//+8/33Nn +rfchbL7mozLgt5/bP1QuuRaB1Lg/J7AiJS/6f77fc2et9yFsvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPS/yUoz8s76WXTTuWZWhvq/SGaiqrEe+bFbR +o3/2ZD5Mvk5gXczcPo/tL1tRgMM+98yhUP5xPkEAAAAAAAAAAByh/W0DC9o/glHUUoKiuT8cof1tAwvaP4JR1FKCork/ZbHTiHQvIcDs/qx7japBQGWx04h0LyHA7P6s +e42qQUAdQMYg7EIWP46v4cTNhzW/x06gWnDWFr8ufk863n01P1WaENAXtBi/Yea2BkN/Pj+be0Tr7fy+PRXFc5UBJZ491fr3vP//7z8Ig2XI7fhovuxFaPpandw/zmnY +4JM7sT9U8bBKAcKAvgiDZcjt+Gi+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtGEuaoPK0vj15gF9HN5++ujCKWbrER74y6n1v8GlrPi2gNX2YLt4+4sWS +pxVGvj6+tDs3BypDQQAAAAAAAAAA0/In/DG62j/McfwU0um0P9PyJ/wxuto/zHH8FNLptD+MWHcw81QTwEhkML4g6DxAjFh3MPNUE8BIZDC+IOg8QMrIk3gaMgo/f6RY +EaSdMb+AqQUs/GELv4nC4roSljE/to2Z0D9YFr81N4UCe65DP9CYrLpcI7Q91LgcynTvij1s5vW6///vP3HJdfNidWa+sKuzMb843T84fhtGlE2jP+AyGGWGQoG+ccl1 +82J1Zr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEP6uiE8k7W+2qANKMkSnL6mE/UCmcdGvqij10G9rnE+gM2I4jAV3z45SfOhMO21PshlgNRSIEhBAAAA +AAAAAACAWn4MEy7bP0MJb3810rA/gFp+DBMu2z9DCW9/NdKwP2lu7i6xtwLAkKy8xgVbN0Bpbu4usbcCwJCsvMYFWzdArkrJplkV/D54CObi1ncsv6RIoQyQf/6+oH3j +1AhtLD/DbLDC17cRvwDdlRr2J0k/fMOWKErZqT1BhPDKNbd0Pa0Vx7n//+8/DOpxndzGZL5Q9ZxoS4PdP1YJBzRaB4E/rZizlDqOgb4M6nGd3MZkvgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAI5OFJtbxtb5J15vymPiZvrgbgryhcES+6JZ7TTCXdj4xZuJlA5zfPhL8M1aWL6w+XPhO2odfTkEAAAAAAAAAAAWfgRTBeNs/O48R +BuG7qj8Fn4EUwXjbPzuPEQbhu6o/j7/voIoh57+lSWMXjrEyQI+/76CKIee/pUljF46xMkBNVoXzNaPoPjRtyIHiySa/NueknyCB7b6v09RwBMMmPxi2maC6ogO/EPzg +jQHtTz9P8U0zGG+gPSTz/CDEVVQ9r9U+uf//7z/SuunqSwlkvrzNoeqoht0/EHOLnkHAlb92wU+USrCBvtK66epLCWS+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAB7y+9wZRy2vpZrACugC5m+MjEgUsBDQL4Kkp1p8Kd8Pnt+vZLh1t8+SFmCVOjcmj4OfoUVaB5TQQAAAAAAAAAAoMJ7V2yn2z/Sh4x+YfykP6DCe1dsp9s/0oeM +fmH8pD96zm/ixWzTP9wOfK08sC1Aes5v4sVs0z/cDnytPLAtQOxDliM6esI+L+Q4uYoZIr/WHVHxV/jSvrOvhnhHFiI/SJv/rTcA6D4j6BNEQCVUP6uQPZtXu5Q9OyO4 +shohO72rC0a5///vP/op3Ax5VWS+o7nG1bFC3T8aIvv7sGmqv0QzRRV9roG++incDHlVZL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORmbIkhGra+rcmO +49Zqmb60dEjW1vAyvhh/Hq6GEoI+RocUFbrP3z4Y3z1QnldWvpCid1yxEVhBAAAAAAAAAACpFkBNAcPbP1oAFeNEO6A/qRZATQHD2z9aABXjRDugP9K3lluV8O0/eYzj +rk9kJ0DSt5ZblfDtP3mM465PZCdAXkRrVTfczr6dL0tHDogcv6i5JRrwGrc+OwvInDCIHD9X89q/X1EXP1DV1vI+S1k/LcY9kk7ziT0ZDgfydptQvfHT2rn//+8/Osrf +zu/OZb6gRF7j16zcP+2j2Qn3T7W/sBa/A0uJgb46yt/O785lvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoq4YA6Hrtb6oTeC4qkKbviDU8XSVmgE+y8yX +2oOthj5+6DOHt4bfPixgXlXR/5y++jk5lhxNXkEAAAAAAAAAAJ0qzikn0ds/3TwVy7eZmD+dKs4pJ9HbP908Fcu3mZg/BqudTYzU9D8f8OD/YUQiQAarnU2M1PQ/H/Dg +/2FEIkDSTzk1EL7dvqCoTBHhSha/8DYFDv4/1D7hiAmCJFEWP1FudUeahys/06Eff0iUXz9RuANg4RiAPRkht9QZW1K9xegNu///7z8WC0/xO7Fovr+/JQm/sNs/Hn3+ +MtfGvb/p39fOhTyBvhYLT/E7sWi+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlA6pFqYu1vpEw8ceJ3Z6+0bNxuxwBQT4+Iw4zME2MPnVzI9Bj894+cRtu +90IhrL4IAAAA0BJjQQAAAAAAAAAAxRaUqi3V2z/Bq6MAixWSP8UWlKot1ds/waujAIsVkj9bJbo4qrv3P39axKdoNxxAWyW6OKq79z9/WsSnaDccQDt4inESbuK+05P6 +KUs7Eb88KH25u6DbPr/t1M38RhE/1pbdEiX+OT+VIjTzSJJjP0JMS/MswHM9ow1C5cmcUL3Dyvy8///vP+fVWm8oXm2+ElGg6Voz2j8ILat9JDPDv+YlXU/NwIC+59Va +byhebb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQ+N98B8bS+iXaywNhaor71jCO2bwlUPrZhpkMkjJE+KcAJ4lIH3j4uiAOZALq0vqgtxsMYA2hBAAAA +AAAAAAD3hPp919DbP2BuT8DeXIk/94T6fdfQ2z9gbk/A3lyJPy7CTMlEfPg/T3kCNnJ+FUAuwkzJRHz4P095AjZyfhVAxjC1nndg4777bJrPqEkKv4DfPZZ75d0+PjmP +N6BpCj++FJzkcUFGP8Zf6FtpBGg/8gdN+MrmZz214yzrZTpLvXB0xb///+8/aOg0MAw2cr5yhCrGEhvYPy4T8MW/U8e/RL3q46IOgL5o6DQwDDZyvgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAWsQbXEwStL7WiljPjsOmvmojPCQN/2E+CMVgpWCYlT7yEJ292rPcPlBaFvQE87q+JWqWfbw6bkEAAAAAAAAAAErrPMcPxds/EIuU +1bN5gD9K6zzHD8XbPxCLlNWzeYA/s4/0Wlah9z+oXwTmdBwQQLOP9FpWofc/qF8E5nQcEEDQjFWv7V/ivo8XtRswvwO/4ImPCsRi3D4m0/WZ9+MDP4oscnyg+FE/xFKY +LwMObT8G1bZES3ZcPfi8xLJm30S9+Ehxw///7z9LAsL1UVd3vioVrCeaXtU/Oee1HEfUyr+T9gmEW0d+vksCwvVRV3e+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAvZ1+kmeyyvhTotB8mLa2+QfxLWShbbD6cip/duVqaPo/tUhTx89o+O1F3KucawL4dIGXyPgdzQQAAAAAAAAAA/FcxMpSy2z/Qs39/+7FyP/xXMTKUsts/0LN/ +f/uxcj+HpRz6P6D1PwIB4ekhwgdAh6Uc+j+g9T8CAeHpIcIHQEjMVVD29t++TowiPEA4/b5VeLR7jzHYPjRi6qE2gP0+tyPVfca+Wz/dCbm+5jhxPwG5K6Zsq1A9Acm5 +rNRYPr2DR9zH///vP4l4xL7nl36+RzmSkrIW0j/o5t2oMivNvzvNXz7cEXy+iXjEvueXfr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCSqekpi7G+qvbh +uPAes74SRXf4uWF0PhzlrRr9558+A4m0YdHX2D71kcqiJ+3BvvChCgWJ9HdBAAAAAAAAAACE/yAKgZrbP7XpdXhzdl8/hP8gCoGa2z+16XV4c3ZfP0EsEmel8/I/f+ks +t/9JAUBBLBJnpfPyP3/pLLf/SQFAX2+SCg+Q2b4v05WvFmH1vhjeFm38btI+B4ZbSf6Y9T54dx5u+YZkPxUz+ptk23M/sTrCxXRFQz3Zjd/L5x81vdqHqcz//+8/Xtwc +ZJ5FhL5DN3mZZAzNP1LfMuDX6c2/ofHUEjyreb5e3BxknkWEvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkABQsgULsL6oKwToBVe5vubOj3wcIHs+rrKT +cHU0oz7AForOaYrWPjgCGvL9q8K+Pn+giWcofkEAAAAAAAAAAOV4HZSefts/IY5PxLoSHj/leB2Unn7bPyGOT8S6Eh4/VI8R95kZ8D9QYwJKNgX5P1SPEfeZGfA/UGMC +SjYF+T/mggVjUbzSvmyPFFAfNO++1NSgcsJ1yD6HlU4k5GPvPiyYNyNdB20/i4g5pLETdj+3ZB9XLic2PTpy1R+Kgiy9PD5X0f//7z9VSt/dvuKKvoz6rzmTFcY/hh/b +5O31zL9RrdLhYFR3vlVK392+4oq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVtZVGeSmtvu3rikO3zcC+ZqEYqXHagD6m+y1ZmxWnPv6mtmj1R9Q+neoF +jsxHwr48W3HotPuCQQAAAAAAAAAAuRMRM2hh2z8HaIGGIBtMv7kTETNoYds/B2iBhiAbTL9wFV1cYvbqPyHnxNJJLfI/cBVdXGL26j8h58TSSS3yPyhDts1O8si+ZuTk +2WT35r7gwFbxEg26PjK37CZXyOY+YhvDcyOGcz+hNVRsr3p3P2NuGYdOkSk9K2dXkXD2Ir3f0mzV///vP+jQyMwkt5G+CkPdlhfqvz/549rX+ZvKv3hlhJCWSXW+6NDI +zCS3kb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF/NNk78m6q++2g9++0kxr4FHm5r+7eDPoUIiSqJ1as+NWwbrEVI0j7eh+bF6PHAvpXd5hoC5odBAAAA +AAAAAADdKJIJ2kXbP0fW0sH2/lC/3SiSCdpF2z9H1tLB9v5Qv96H4xpnq+Y/Q0AXvZK86j/eh+MaZ6vmP0NAF72SvOo/YE7TUcFkvb4wo3Yr3jnhvqCfr5HqLp0++cwP +AmyQ4D4VeV4VM+V4P9ZwenEmw3c/zwOTfHLfHT1V3yMGJVQZvRxtotj//+8/3YaOioMfl75kl5WDvBi2P1WF4K42ace/c4TQccmuc77dho6Kgx+XvgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAzl403XuaqL72owdqZOfMvs8oC29p7IU+k7191WrksD7A5VH096vQPhxbSyZiCr6+OIuVsx0WjkEAAAAAAAAAALVoQhAEL9s/25bl +aMEDQb+1aEIQBC/bP9uW5WjBA0G/F7h/1/tw4z/J9Sl8Fv3jPxe4f9f7cOM/yfUpfBb94z9YNczqtvurviBgU4sGhtq+gHPfXkgnm76e5wNmTQvYPifd5kojGn4/0e4T +HUrgdj+rLHBmb70RPXUUQPAWQRG9viHo2v//7z/tm9KO0uOdvo9hW/oDna0/2IFBwf7tw78S+i0h74tyvu2b0o7S452+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAABIMFjy6i6nvgSQL5hjrtK+B8LuZopchz43LRDsDay0Pk+1as1M8c4+1bAvHlW/ub4/xOPdMfCSQQAAAAAAAAAAttV0BXwf2z+fUK9dHO1BP7bVdAV8H9s/n1Cv +XRztQT8VBUFy4SjhP5+IE6rPX94/FQVBcuEo4T+fiBOqz1/ePyAIauQoqoi+FtVWX/0M1b7GWI0jmLWwvssn7JOONNE+znv1xaNXgT9ijS5IRQ11P0faDR22aQU9zDoR +XrAxCL0BVVLc///vP5sokSk2KaO+b8DQNaZgoz8ltwR7B5TAv6+Fh3/V1nG+myiRKTYpo74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKLUw+SKTKa+QOUz +s4Pz175kyWhdfgKIPg9Z1XVbgLk+wK3IKDJDzT7Sbh+RfJC1vg4AAACE15dBAAAAAAAAAACp6IbN/xjbP9SV9q0mNWA/qeiGzf8Y2z/UlfatJjVgPwtl0LrEOd8/Sj+K +CPZi1z8LZdC6xDnfP0o/igj2Ytc/8JPBARqHkT6kMlvWPkrRvqKHiMJZZLe+z57/pd+lxz6mspOkPzODP+UrPQ5YrnI/m1CEZCEx+jwgjBoRU3wBvbgfAd3//+8/VzUg +Ae9pqL4xW4043+eYP7RMLnCXKru/6u8iJHB/cb5XNSAB72movgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9BxMEzfpb4SYNzAaoTevnA4QSzd3oc+8+ix +cjutvz7pGf25PibMPmcouFhi0bG+Frm39N4DnkEAAAAAAAAAAAT6WPJvHNs/n51Md4RSbT8E+ljybxzbP5+dTHeEUm0/MQLHcH4u3T87VGMDhC7SPzECx3B+Lt0/O1Rj +A4Qu0j8gYpBr5d6iPpBxyHGRjc2+2LexnbLAu76S2TD1TG+9PpFkJsmCnoQ/6TM2x7AlcD8M+i1DuCzwPHHgXs3U9fm8RmIR3f//7z/EjMgDxfeuvo72NQ1vdI8/P7pE +F4kNtr+LaSjdTndxvsSMyAPF966+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADzGniWItWlvlBsKSLbWuO+dE3FIAfxhj75edDHWcjDPsE+m+pbdMs+ZWRO +7XdQrb5aAn7OteSiQQAAAAAAAAAACgf2GN4p2z+cmuGJkhV1PwoH9hjeKds/nJrhiZIVdT+A6bHnkdnbP0QzDFePdMw/gOmx55HZ2z9EMwxXj3TMPwDu/9k8zKk+dv61 +RsN5yr7gh6zSyYa+vpS36419bqs+ffOC7c+qhT9qIb8qjnBrPwkWZ9ibG+Q8six5WQ+u87yuJprc///vPwA293pflLO+WfCo0Utegz9JmZFUo86xvwdTNqnssnG+ADb3 +el+Us74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIihxdSnH6a+YaeNWXd56L4W/feKgDqFPgbMPe6A0Mg+zk9X3s8Oyz7aJ7YBi0Goviho/q4OyadBAAAA +AAAAAAA/CeMIW0DbP68FMTh7hno/PwnjCFtA2z+vBTE4e4Z6P/+XTByk/No/EQEDqzBcxj//l0wcpPzaPxEBA6swXMY/QJ8lv2y0rj4u3UflKw7JvlUnYnh+H8C+QLTo +gC0ecL5v5LVxZW+GP4HO4pEFEmc//W4HMxoa2Tz/cQihukvuvEOlstv//+8/HyGimLW0uL6rrlOpTrt2PzWi+ObwrKy/BLS9Xq0mcr4fIaKYtbS4vgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAA1vE1t1iwpr6rXaz+4uHuviou5JAWzII+8j6aPoo5zz6N0Vescd7KPo5qN57VdaS+cUpNRqvxrUEAAAAAAAAAABGXwV+cXds/GqPj +ee43fj8Rl8FfnF3bPxqj43nuN34/HExBFmFt2j9wcp5cA57BPxxMQRZhbdo/cHKeXAOewT8EGhNJRSqxPoYIkMIcKsm+ZAbtwtejwL7QGQ1Mc16vvpBBqgPOAIc/tstC +cZpCYz+2Ewj6eGvPPOtDhEDYkOe8uX962v//7z/xtxFoaiG/vrTF6Avx9mc/30k8gfcMp7/h+ocjwMJyvvG3EWhqIb++AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAB8p+cscHOnvopK/4DidPO+f+BwuXWpfz4Hic7vL7DTPmTs/iCP0co+3Jsx5n/lob6KTwS2QNmyQQAAAAAAAAAAiBQwWwh+2z/asAim6LJ/P4gUMFsIfts/2rAI +puiyfz+nwGvQIxDaPz3Lna2bz7s/p8Br0CMQ2j89y52tm8+7P1ioBb4AjLI+JJ/FgFPJyr7aPigom/DAvjyJj5rZLr++J+OiC5pthz8ik+KvovRfP16pPv0Ss8M8wf4B +/QN24rysRRzZ///vPynvzn6dmMO+sDXFVOKUUj/oSC3KIoGivwKR4yndcXO+Ke/Ofp2Yw74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI5Bq3RUTqi+8m95 +3sR++L6GVGhYNkd5Pm4E7yrR29g+NGg36f/Zyj6cN/XJSIagvg+yjSKiurdBAAAAAAAAAABssIt5k53bP2CCcNoz/n4/bLCLeZOd2z9ggnDaM/5+P/FgCgZE09k/5mz0 +Q2v7tT/xYAoGRNPZP+Zs9ENr+7U/WAamcQSbsz5kvD36mvzNvnB9v3l8G8G+gKwrC/kuyL58H4rB576HP62nMDZLU1o/Fy5TBaG8uDzZWg7Pgw/dvK+xxdf//+8/vb4M +ywKpyL4A63ewqDoavybkAi9Eqp2/3ItUKCcddL69vgzLAqnIvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyib8nAkqb6Nqsh9Q9P+vvi6u86dKHM+lu+2 +RCtm3z5bfBuIjOzKPtnOPW+LTKC+/5SgoYLfvUEAAAAAAAAAAMcw5lUKuds/RMDLxTSXfD/HMOZVCrnbP0TAy8U0l3w/SM/KFoar2T8JCOwxN2WxP0jPyhaGq9k/CQjs +MTdlsT9QYQuseGa0PmgtZ2IWdNG+UkaelrMywb7oSPSFXArRvguDzwyT+oc/RVtxpx6GVT8sdvc/XBmvPCMj59Dk8da85m+a1v//7z/d721hTQfPvnBT+eldFk+///dO +qMu8l78Rl+UMyLJ0vt3vbWFNB8++AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzFj4Qet+pvrDX4VyQZAO/ZCSLLi+/az6zuO2JX9PjPvjXb2JKAcs+8lEa +hiIuob4Gdz2Q0s3CQQAAAAAAAAAAHQTJD93O2z8v2gUzCTN5Px0EyQ/dzts/L9oFMwkzeT9F9BRArJHZP9QFdsoWj6s/RfQUQKyR2T/UBXbKFo+rP7zDhKQT+rQ+fPAK +E0Pj1L5qqohTDz/BvhLfJmCL59a+BmBhlx8liD/yeEwLaXhRP1cBNYOQkaM8ygDxC3In0rw/1avV///vP+IZ5BpxhdO+SCjek0v+WL+B/6++AfaSvzEDcmAVKnW+4hnk +GnGF074AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIsVoriadKq+a9uaYc1mCL/M4DsdrGNjPgsw74G/Bek+nVoW+MATyz6Y4XfkkiijvlK1XFU+rMdBAAAA +AAAAAACTsEC4A9/bP2uCPCneeHU/k7BAuAPf2z9rgjwp3nh1P7MKm5/0gNk/w+73IxXZpT+zCpuf9IDZP8Pu9yMV2aU/DA1ycl5htT5OwTgruXbZvlbLZYOnRcG+8uXr +Gmv+3b7Rgk7gi0KIP7cAb40OL0w/qWaUnJWlmDzONeGNVsTMvGU2+tT//+8/cQMWW8qQ2L5wxJOeIVBfvw4rZItzPo6/DU+NzeSCdb5xAxZbypDYvgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAnPX8AJ7jqr4IuNnx/LQOv3hCGME2dVo+/1sBZsqP7z7KsI+bQCLLPo2r9PibR6a+FQAAAGXNzUEAAAAAAAAAABwDqBJc6ts/z8DH +ExHdcT8cA6gSXOrbP8/AxxMR3XE/u+hYNzZ22T9U1HvkulShP7voWDc2dtk/VNR75LpUoT/oiwDHbae1PoYI//jiad++6qgIGUFJwb4Z9/6njVfjvoqWtctaVog/pH+y ++4ufRj+b/+g0BRCPPPHYXF8T0Ma8gt571P//7z8BbbeLsOrevlBvxc6XvGG/0zaOsywXiL8zX/O+EMJ1vgFtt4uw6t6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAE+7fulDKrvqHtUVeuUhO/MAH1StjYUT5eY3+T1OTzPuOMDrfHLMs+muJb/qapqr6w0/JYa8LSQQAAAAAAAAAA7DCj3gry2z/kNj9CWj1tP+wwo94K8ts/5DY/ +Qlo9bT+O9UYfWG/ZPwHkrZHjgZs/jvVGH1hv2T8B5K2R44GbPxSKD6XL1bU+EwumqfOF474+vE4KT0vBvoCZ1Avat+i+Sg/Am2pjiD/ylI9FchhCPz3ZCahclYM8Y9er +qAwawrycyyPU///vP6FGW+zvdOO+eHvaAaQWY78Y7ynj5SuDv1tpKzIa7nW+oUZb7O90474AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYpu76gaau+d4dx +5ytSGL9AYhCuqCRIPrK50JhrEfk+u3r69gs0yz6nK8yrHkGwvvOCHULjnddBAAAAAAAAAADroZQiHvfbP+CxRjwIq2c/66GUIh732z/gsUY8CKtnP7/bWQD5atk/KhXm +Y+nVlT+/21kA+WrZPyoV5mPp1ZU/ONONh+XztT6+WJWU02Hovg2r54GSTMG+1Dm7S0dp775rj+D25muIP0SjF0JY4Dw/Kr7tFZOzeDwnFcZT+Ly8vC6T5dP//+8/BR1c +VLp96L7UloxRV/VjvyUrXcZ/fn6/jFrqaDYNdr4FHVxUun3ovgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoQcoA4SQq75TsXLpKJ0ev4DnZmT+rUA+XDdz +4gCU/z7OMkvg5TjLPqwOBdIIDrS+NQK+WlK73UEAAAAAAAAAANxw4Hdq+ts/P0quLFQEYz/ccOB3avrbPz9KrixUBGM/gnDZvjJo2T+sFzzxA1aRP4Jw2b4yaNk/rBc8 +8QNWkT/oLWa4GAe2PvT/wLR5iu6+xq7yUHRNwb6duQVxgePzvgNSp/JbcYg/iOz3W0cANz9D7ii+ZSpvPOYTuXlb0ba8YKy20///7z9TRG8UYNTuvigOyM+wg2S/U1A/ +KNI9eL+k9jrQqSR2vlNEbxRg1O6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADypktE1K2rvhFdxQy8RCO/QENscR0vOD6jgAHdm+IDPzvnnEMQPMs+s/qJ +E/btuL6JTvALC7fiQQAAAAAAAAAA1WQLV4n82z8KJZzMSmdeP9VkC1eJ/Ns/CiWczEpnXj/LEb/lcGbZP7Z/O55jh4s/yxG/5XBm2T+2fzueY4eLP2i8rCgPE7Y+Q8qK +KNcp877WaNQONE7BvgAy3KSIIfm+RfDwPdh0iD/xWVF4vEwyPw6PkVBgqmM87IwolbMesrzxMY7T///vP5z3nhinZ/O+yLw9skPeZL9GjUPK8UNzvyWxbAfnOHa+nPee +GKdn874AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUYSckgx6u+RpHG3pBBKL/gR4g5dh4zPgLptcFXCgk/5AamlRc+yz6iDi72lSK/vm9jheOQj+dBAAAA +AAAAAAC77zn/4/3bP54tcWQDNlg/u+85/+P92z+eLXFkAzZYPwmQCF5UZdk/Hgfsbk7bhT8JkAheVGXZPx4H7G5O24U/1LSq4Coatj4e/GM0vxP4vvWacUcBT8G+zAQj +fC62/77Sg62pD3eIP7JRG2v8Fy0/ffGhlxPTWDy5K7gkC8isvIXpY9P//+8/O74Y16ht+L60lRuYuBdlv183vOmnnW6/umaDPQtOdr47vhjXqG34vgAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAflDI7hq74A0d4ME4kuv2BSOp4eNjE+SA6jzneHDz+vzUukXT/LPm2iOf8MgMO+lh4xq0qp7UEAAAAAAAAAAMaZ3WPA/ts/KEhZ +gjM3Uz/Gmd1jwP7bPyhIWYIzN1M/3KNYj6Bk2T/ipowi1VmBP9yjWI+gZNk/4qaMItVZgT+IKWTU3x22PpA8WK7rRf6+oNwcywpQwb6PNFoqlP0DvwMId3d3eIg/jDjH +ZVgcJz9+KiPb9VhPPN+73kED3Ka86ecu0///7z+fG+nNscD+vkAtbi0ZPGW/iOGcd+RSaL8GLWMLjGh2vp8b6c2xwP6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAACsdTwOrwKsvtelsSBvODO/YGHqkWAbMj6D/YjvN9kTPx639fkiQMs+dZPbNMN4yL4iXQSlsavyQQAAAAAAAAAAez9KHkz/2z8R1qIJ1WROP3s/Sh5M/9s/Edai +CdVkTj/fPPP+LmTZPxTKgRdzins/3zzz/i5k2T8UyoEXc4p7P9woT2ryHrY+afL+ymgKA79di1PuilHBvjA0IgyZMAm/dVZcNFt5iD+vDiBHV1giP6ySHrhDzUM8Bub6 +Choooryq0ePS///vP3yDjDd9WwO/WP7u1RlTZb8k9XcjxFJjv1AdyioXjna+fIOMN31bA78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnzfPWcMay+R5tv +hVwyOL/AljseqwU2PvWu1XFM/Rg/bAzw0Y9Ayz70IOGeJr/OvsvUTDRHgfdBAAAAAAAAAAC1sV+MpP/bP1O9BwqV7Uc/tbFfjKT/2z9TvQcKle1HPx/TvkvnY9k/d0pk +SwXZdT8f075L52PZP3dKZEsF2XU/bFcag5odtj6c36cRcfUHv/SbkATVU8G+oI/haAe7D78OgRYv63mIP5x7WARpGR0/mpr2yQ8JOTz3btox69ecvFN6ctL//+8/AtAP +UodeCL+gSIZ1omFlv+syAd0rs16/lY2l1sLGdr4C0A9Sh14IvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyNPjHN4rL7KvJMmKXY+vyB3PjC7zz0+ZITu +Lg92Hz9G1FC3ukDLPpYGWANeVNO+q+Kz6k2X/UEAAAAAAAAAAA3aIXPc/9s/675GfXy2Qj8N2iFz3P/bP+u+Rn18tkI/KbFzCbpj2T/dUmaHmlFxPymxcwm6Y9k/3VJm +h5pRcT/M54CHjBm2Po4/uI8aJw6/8IO0uWdXwb4vtzRJBfsTv55WciRGeog/iyS7qhsNFz97gMvkJbAvPJiRaXoY6Za8Ym7C0f//7z+3ifbVyq0Ov9QAMxDQamW/bqo2 +edliWL9aMjzPyB53vreJ9tXKrQ6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeXgsDe+asvjQTusWeLEO/cHz91HiURT6iS0xC3c0jPwLY5oqsQMs+qhMj +RK9Q2L4QAAAgX6ACQgAAAAAAAAAAw3v/wv//2z/pQXwZ6/Y8P8N7/8L//9s/6UF8Gev2PD/GgqN4nWPZP5bPNoC/bGs/xoKjeJ1j2T+WzzaAv2xrP1z909/nEbY+u/7U +JOv5Er++sDmPCF3Bvtzvqp/rKBm/+uW+k396iD/ZMQwoMDoSP0MVR+f+FiQ8XI/TKLsykrxKr63Q///vP8jAuEemTxO/zFI/YZtwZb8chAdivF5Tv3XT91ooqXe+yMC4 +R6ZPE78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnctXFyk62+tO6m2Y8jSL+A/B8I0zxQPk6CQBWw7ig/iOyCFmJAyz6c+LkgfpjevlRpdGxlOiAqKiBz +Y2hfcGF0aDogL2hvbWUvc2NoaXBwZXMveHNjaGVtLXJlcG8vdHJ1bmsveHNjaGVtX2xpYnJhcnkvZXhhbXBsZXMvdGVzdF9hYy5zY2gKRGF0ZTogV2VkIEZlYiAgMiAx +ODoxNzoyNCAgMjAyMgpQbG90bmFtZTogQUMgQW5hbHlzaXMKRmxhZ3M6IGNvbXBsZXgKTm8uIFZhcmlhYmxlczogMTcKTm8uIFBvaW50czogNzEKVmFyaWFibGVzOgoJ +MAlmcmVxdWVuY3kJZnJlcXVlbmN5IGdyaWQ9MwoJMQl2KGQpCXZvbHRhZ2UKCTIJdihkX2wpCXZvbHRhZ2UKCTMJdihkaWZmb3V0KQl2b2x0YWdlCgk0CXYoZGlmZm91 +dF9sKQl2b2x0YWdlCgk1CWkoZTEpCWN1cnJlbnQKCTYJaShlMikJY3VycmVudAoJNwl2KGduKQl2b2x0YWdlCgk4CWkobDEpCWN1cnJlbnQKCTkJdihtaW51cykJdm9s +dGFnZQoJMTAJdihuZXQxKQl2b2x0YWdlCgkxMQl2KG5ldDIpCXZvbHRhZ2UKCTEyCXYocGx1cykJdm9sdGFnZQoJMTMJdih2Y2MpCXZvbHRhZ2UKCTE0CWkodmxvb3Ap +CWN1cnJlbnQKCTE1CWkodnBsdXMpCWN1cnJlbnQKCTE2CWkodnZjYykJY3VycmVudApCaW5hcnk6CgAAAAAAQI9AAAAAAAAAAADmIwRQ+xW0P8DlE+vX0k6/5iMEUPsV +tD/A5RPr19JOvwMu+vBOy2LAbowM32Tp2b8DLvrwTstiwG6MDN9k6dm/jnztdB8RiD92zrdTE4gAPx2m8W0fEYi/iRqGDrqKAL+i/DpNgAXbPXuePIj5mUE+C/0RlvIj +Br6Cm2/dDQ+QPlQ+9////+8/JMGU1zZkWT4LsTnAToXKP1lgw5hqumS/7NCFl1eD0b0kwZTXNmRZPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdvFbVYzi +nz21ZVFZyzUovhDXtCWKS0o9Hx8OaH4PsT0AdoKLNsNbvtQdEH8lI4y+ID0mn7Ork0AAAAAAAAAAAOlHjO7mFbQ/JlmK1lM9Rr/pR4zu5hW0PyZZitZTPUa/V802OVPL +YsBJl6t5NLPSv1fNNjlTy2LASZereTSz0r+z1unrJBGIP6UB82Gj2/c+ZJ0Y5SQRiL+KBvtXUOL3vqQ8J3gqjdg9YOQYKpkoRj6k70OYVWL5vbVGkVMTg4k+ggP7//// +7z/DjNX7UwdUPmIdxsUzhco/jSmFuYpRXr+6kdSq9/HDvcOM1ftTB1Q+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVXo6uAPicPWKwlTGWei6+aFZuMzf2 +Rz3mXRmDQ3q1PQAm2n+0DFy+nJlWAyqGhL4RZguhksOYQAAAAAAAAAAA1k5dpNoVtD9OGF8O9609v9ZOXaTaFbQ/ThhfDvetPb+xKFXOVctiwGlwCRPf98i/sShVzlXL +YsBpcAkT3/fIv72IkTcoEYg/Y7C4lLfY7z7c2gMxKBGIv8Bx0oWG6e++tnfoePSi1D13s4fAT+VLPoOnzlgL7Oq9oUmJG9RDhD5GYv3////vP5q5Xgz0dk8+G9n0byOF +yj9wTdBAjstUvxELgOnQ7bS9mrleDPR2Tz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOE1053GWJg9DrTCeXIvM77KVqqhfkNEPYwVKtXWCbs9AB5AOjA5 +XL4MhQVt7wF8vlySS5wMLZ9AAAAAAAAAAAC7N2LK0xW0P44XYyLgdTC/uzdiytMVtD+OF2Mi4HUwv1HpBz9Xy2LA5QPZJmq7u79R6Qc/V8tiwOUD2SZqu7u/o3D9DSoR +iD+Y2vGjTKzhPtrQ2gcqEYi/rTCXv3XB4b53Y24OFd3MPb38CHsqj1E+98R/0YvA172L1THw1xiAPpfd/v///+8/eIECJjGMSD5CBCg4GoXKP5zmUH4cwki/jDUoQ5Am +or14gQImMYxIPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeyDY2HcFkT30kwgOJyc4vuhl7MsNzjw93hEYUAQFwT0ANEixQ1JcvuC0YLJZdXC+lc9Z2sWf +o0AAAAAAAAAAAJtQBObQFbQ/KCa3Mbp4EL+bUATm0BW0PygmtzG6eBC/AgHk2lfLYsBenuWOkQScvwIB5NpXy2LAXp7ljpEEnL8FXbfUKhGIPxf2Ing7w8E+lGk+zyoR +iL+/7X97yi3CvkmHRDFDZLI9Ctrd+RAbVj4ymhIsuA+zvaIjr6Gbknk+Vcf/////7z8yyN1rFPBCPtN4BSEWhco/rkL2TEF9Mr8ASgPiblV8vTLI3WsU8EI+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnvwjtLaV1PUWWnq0haD6+3KP2Y79zJD067TugJW3FPQCYs4FYXVy+ZDzIVYkkV74vPXkpjrSoQAAAAAAAAAAAU151V9EV +tD+BSLDpvwIgP1NedVfRFbQ/gUiw6b8CID+Cu43DV8tiwLPT/uNIs6o/gruNw1fLYsCz0/7jSLOqP1RDpLYqEYg/jVuO2Uoc0b4yOjiyKhGIvx8bsLQ32dA+YTwo2bv5 +xb1cK95SWNRbPmmPvnGn27w9inRFtydQdD76KAAAAADwP8scw8BIrDw+qe+HSBaFyj/MvO6ATxsnP3yNEe4QfYQ9yxzDwEisPD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAHT0REGS+om9XxRc9tEjQ76udY5MKzgzvVBMJpFk+co9AJaj/NJcXL6+W7da1VBSPk1/lrYkGq9AAAAAAAAAAADzzjE31RW0P0OEmZMQjjQ/884xN9UV +tD9DhJmTEI40Pz2R+/NWy2LA0ZUkJzY1wT89kfvzVstiwNGVJCc2NcE/Uk9GrSkRiD959cjlugHmvvp5hKopEYi/wSXpTILX5T6NCZskPdjhvQ6J1t2FhGE+oRBUteqL +zT2FjfCYoCJwPrBNAAAAAPA/KVDtiU3/ND4ljDa3GoXKP9y4/SwIG0U/lI8dZgdskz0pUO2JTf80PgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApHS81oUT +pb1g2+EVgRhIvkiKsqjJeFC9T0eYHLP60D0A4k5QllBcvlhWDvDxX24+dhJuUd+Ts0AAAAAAAAAAADevSVvdFbQ/XCGY8HsZQT83r0lb3RW0P1whmPB7GUE/XtNfP1XL +YsCP6JvHL6jMP17TXz9Vy2LAj+ibxy+ozD/vM1Z/JxGIPwhsFOCoUPK+f9o3fycRiL+VJ6lFFTbyPjMBw+ystfK969BMGbcNZj7QUl4Y4orTPeGtIIUjomk+uVkAAAAA +8D/RPP7CJuEsPiIH/GEkhco/dcpLN3rHUj/CB1eeRG6WPdE8/sIm4Sw+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADct5/V3Be2vXofBy2tVU6+VHOjgjl7 +Yb3SZqUlNGDVPQAisU/+NVy+28DV28aaej5dTkfNkqW4QAAAAAAAAAAAyFWUhesVtD+7JUCdCtVIP8hVlIXrFbQ/uyVAnQrVSD8PIn1HUstiwLt3LB/p0NQ/DyJ9R1LL +YsC7dywf6dDUP5xXZrQjEYg/Cn0iWiGa+r4Vj3a4IxGIv1zJBCSsePo+8yBWYFkcAb7Ix2+cnMNrPlQkeGg5jdY9TdNTwnpcZD6uTwAAAADwPwqg/stpTSE+fhoDXzWF +yj+Gu8PWcAFcPyOTUeqC65M9CqD+y2lNIT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALpQCiwPNMS9jV6pRTEYU74O1TQbMRFwveyGEjkr6do9AGi1gU0H +XL7cS0hjIbiDPgOu6EdIB79AAAAAAAAAAABB68bEAha0P9pi5zmO8VA/QevGxAIWtD/aYuc5jvFQP1iCT2hNy2LAwxu3Cn5p3D9Ygk9oTctiwMMbtwp+adw/s/Xkeh0R +iD811te/HicCvwvmlYUdEYi/BgrOSQ8SAj/nN8zwJmcNvoIBWnMOenE+eE7VgkJz2D0scK89ZyxgPmQtAAAAAPA/Zczpt0WWCj4EIwBZUYXKP/oT62OWXGM/9bvzGxGy +hj1lzOm3RZYKPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvCMZKp1b0b160OWx2AlYvm2w1AjErXu9EK9Qw4zw4D0AnE76b7pbvgOqozyvL4s+AQAAAACI +w0AAAAAAAAAAAIQ7YB0oFrQ/NqbAxo5fVj+EO2AdKBa0PzamwMaOX1Y/E6ymlEXLYsBMjoz9r8LiPxOsppRFy2LATI6M/a/C4j8ynuF6ExGIP/7XUU2g+Ae/HqcTkBMR +iL/Ob4zlHN4HP/6UDzg5cRi+DCmiOqoAdj5QeF+Y5qXZPRVim/yisVk+6tb/////7z/UCYq3Hj39vY6Qx1l+hco/u226+WHAaT9KWEWiPIt0vdQJircePf29AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdTroRqNvcvZ7zSMkvQ16+YGo29nYKh73wcnpmi1PlPQCWdpDOPlu+PEHbDOoMkj5pzO+GoJbIQAAAAAAAAAAABM3ZnmMW +tD9QenfNhv5cPwTN2Z5jFrQ/UHp3zYb+XD+o5A4cOctiwCop46tZUOg/qOQOHDnLYsAqKeOrWVDoP0KE1IsDEYg/T+4QSeEQD7+QaayxAxGIv9jjo4iA7w4/YdSrY6nw +I74OG3rfbbN7PpwEsO5VZ9o9BDob579oVD5K9/7////vP302egdCTRy+bS3kF8aFyj/YMhZVmMFwP9sXlfxji6C9fTZ6B0JNHL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAADcxNXXJiue9Cc7jlYQMY77S9bzl38+SvUwAb7Z22eo9AAzEVrp5Wr7VXA81B3iXPpc/Tkl39M5AAAAAAAAAAAAvkeMgwha0P0AJTOhWlGI/L5HjIMIW +tD9ACUzoVpRiPyO9gU0ly2LA4Ql0iGcp7z8jvYFNJctiwOEJdIhnKe8/131mPeoQiD9x7NrqRugTv9LOoH3qEIi/qlKXZkTTEz96Xb86NBYwvk7ogT8dcIE+4/AOS1Hh +2j3fO3ZyGTZQPqaL/f///+8/cI+Q/nFmKb5WlxsPOIbKP8cKPA9hh3U/8prHl9Gis71wj5D+cWYpvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEH2gURf+ +8r2Ud1X4E/tnvs1/lvk5Xp69bd0rtOTm8D0AAjK1qkBZvk6zlKsDI54+ezuv4Sd800AAAAAAAAAAAMpmnQhYF7Q/rGICgZ2mZz/KZp0IWBe0P6xiAoGdpmc/Ot/C4gXL +YsAtQrJ7kNXzPzrfwuIFy2LALUKye5DV8z/ye4gZwhCIP53WZvBoVxm/OmaTg8IQiL/rbKX19TwZP5Pv2tjXxzm+S4yASaL0hT6cY5ceLS7bPZwVvAHqwEk+hEX7//// +7z/JYQb4LQAzvl0kgNfshso/qUsiW41yez/BTPrD7unCvclhBvgtADO+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYuJ689W/+vaH/dvZzMG6+NvUZTFpX +qL1DCIT710f1PQCeM4IQUFe+O3JOglk0oz59Q/BQt4fYQAAAAAAAAAAA7b+BrkUYtD+jFRjYIvttP+2/ga5FGLQ/oxUY2CL7bT+tQGgU1MpiwDiFwYqrJPk/rUBoFNTK +YsA4hcGKqyT5P88K93aCEIg/KgslTOkPIL/RgUYjgxCIv9Zio8eG/h8/M+Ki81uSRL57sl0TQKWLPpqcmXOAXts9qnIv3bl0RD5Kp/f////vP4O3oaP9Tzq+MB0qcwuI +yj92Q4x12GmBPxY7f+lssdC9g7eho/1POr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG89UjKYSQi+CAHrwZUAc74eOElsPW2zvQgxjkGky/o9AIqmX8Q8 +VL7A/VYn2lyoPn+M17Ox4d5AAAAAAAAAAAAK1hBXvhm0P8ffzxgC9HI/CtYQV74ZtD/H388YAvRyPzKy0iOFymLAxmCu+z3K/z8ystIjhcpiwMZgrvs9yv8/BttYmx0Q +iD/Uth3f5E4kvxWRrLAeEIi/c2pRyu85JD/flCaGUF9Qvvu9KEwnaJE+eSgNqLl82z04HSmoaT9APiXp8f///+8/rI9EFhSDQb5mZH220YnKP9bcYqSWB4Y/aTo26LUt +3L2sj0QWFINBvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbeiS11UE74+19pQxut3vnV4c8757L699z6+OBnfAD4AcPoN3blOvkn9pv0u0a4+kw8e8lZw +40AAAAAAAAAAAPwcBj0THLQ/DoBZgnfsdz/8HAY9Exy0Pw6AWYJ37Hc/vF7dCgjKYsAWKuMoSxAEQLxe3QoIymLAFirjKEsQBECQjnjGfQ+IPyw9PYxXoim/UQM2gn8P +iL8BwXT+9YcpPw4XRbZiBFq+LbB8B4nslT43B/bVXo/bPfdkkek0zzk+C87o////7z/bLLumisxGvg4AnZihjMo/OTxYCDfRiz/vjQlj9THnvdssu6aKzEa+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgUSupaLcevmEOA5+gHH6+pGjaEtySyL16sSA31j8FPgAgsLvPjT6+XTgRE4R0sz4Xl8kl13joQAAAAAAAAAAAayIGCcUf +tD+wlXckVyp+P2siBgnFH7Q/sJV3JFcqfj+Q/rHSQcliwOWamEhgTAlAkP6x0kHJYsDlmphIYEwJQCff4oSADog/4DaQSzwpML9+Lk5Igw6Iv9Lfzd2hGDA/OrpFGUqm +ZL4fmegB5J6bPmC5gFZ2mts98/TlK3J/ND6FX9r////vP7tQhHcaTE2+Y/FjRBaRyj9Y1rKdl4qRP4NmAYo90PK9u1CEdxpMTb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAO7FNZ8gYSi+HOIRHIzzgr5uq/oKO4HTvZ/9G/opxQo+AABJwZ9nMj5Smea4D4m4PvkhmYD3zu5AAAAAAAAAAAAVK6lsnyW0P/UgAsf+AIM/FSupbJ8l +tD/1IALH/gCDPwnercoHyGLAdxmTux7gD0AJ3q3KB8hiwHcZk7se4A9AmtGOS+8MiD+6qnRy1lw0v9jEtbDzDIi/r9Fp1fBHND89hSQ1m2BwviAawaP5Z6E+TTGGNWWg +2z1pmA+fIUcwPuaBw////+8/+AVW8dGsUr47FXdjJZjKP3K5uxLVGpY/Oue00Qw//r34BVbx0axSvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASSnnl+lV +M745BKR6P9qHvqzVmSWY8N69Kpms75zeED4AkmKZ9/1XPjmysZzh6r4+xWzxLI1k80AAAAAAAAAAAImV56/kLrQ/YKmd9G/uhz+Jleev5C60P2CpnfRv7oc/sK+xZxbG +YsChI4QY/BEUQLCvsWcWxmLAoSOEGPwRFEDs+mHOcwqIP3UfKRd6pDm/1W8ryXoKiL9neWAJLoo5P8tSCca69nm+Wo9Zm+/zpT4teDmlc6LbPfSw7Qd32Sk+KUqf//// +7z/uiPKbwbBXvsLNx6RTo8o/M0d1RqnWmz+Pa/PGdS0Ivu6I8pvBsFe+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABULEUHXac+vu/hDt9XBI6+Qj4zC5GG +6L11fcX2YkYVPgDCzUk2Wms+jMgiNuN3wz4FAAAAAGr4QAAAAAAAAAAAGGdgN5I9tD9vTavMOB+OPxhnYDeSPbQ/b02rzDgfjj+NEqLnAsNiwBR7C4wVQxlAjRKi5wLD +YsAUewuMFUMZQLX046aFBog/YRvOFUojQL/ezDm5kAaIv/hNqzW/EkA/95TmGByShL6a0woAZ7erPj33DyYUods9/1S1KBOFJD488mX////vP5yKahDR9F2+FLXlYAe1 +yj/UeYxKP4WhPzH9YYG4QRO+nIpqENH0Xb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqcBspoSUi+SwGU0Azikr5OPXB0fm7zvW58tOut2xo+gPxxzjbV +eT5pWB/AVIHIPoi/q6hIvP5AAAAAAAAAAACErM7dy1S0P3qd2rlt8pI/hKzO3ctUtD96ndq5bfKSPyDd29EkvmLAZLMuorfHH0Ag3dvRJL5iwGSzLqK3xx9AdMyGlU0A +iD+3C9OSPU1Ev3M5bSFfAIi/syLsj284RD+y1Qh7DEqQvjnARkmIhrE+tRR0B/2b2z1AiWDcb0ggPqM1C////+8/LBJEDc3lYr5428EQCtHKP3S+xcSECqY/r7R6n0uZ +Hr4sEkQNzeVivgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASW0QGs7U77I100w0b+XvqMg6N1bxv69QtUbHv76ID6ArQmxy4iGPlFPCtsL1M4+wefQjcpY +A0EAAAAAAAAAAOwRc/aCebQ/48F7F8jRlz/sEXP2gnm0P+PBexfI0Zc/MrjC9nK2YsCTCMDq9/kjQDK4wvZytmLAkwjA6vf5I0AtYkrJePaHPxs59TnJhUm/+USGkZT2 +h7905HPiomtJP2G0Wc+wx5m+sML2In44tj7kV2Z3GpLbPY36pyaY0xk+AcV7/v//7z+Xna8nMM1nvntyqrZR/co/h8dBw0+1qz+nD0/3r0MovpedrycwzWe+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrOZoPLnBevvcswslP2p2+R0W0nWRaCL4YxPXAXoYlPqCTfaCN3pI+uk801r1g0z5dChvaMVsIQQAAAAAAAAAA1iENO3ez +tD+2jGngaeqdP9YhDTt3s7Q/toxp4GnqnT8gx+GWTapiwO42WCHRFilAIMfhlk2qYsDuNlgh0RYpQOAGahP05oc/StL9/gEHUL9kfMcDIOeHvwrtpJgt7U8/tLQiNUxh +pL5dm/gicEm8PuaZFN9Xgds9VGsf3HV2FD5ZWpn9///vPzZEn/Le7W2+N8rLtTZDyz9WTXBQA2axP6i1WTktNTO+NkSf8t7tbb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAF+tnzM5EGi+WZqRkua+or7BCYlJmkATvum+GEhSZCs+QLfruILenj40sO5DJlbYPmBULCWlqQ5BAAAAAAAAAAATpmLgug61PycyYxwcwqI/E6Zi4LoO +tT8nMmMcHMKiP+o1gA0tl2LAGHydPbR2L0DqNYANLZdiwBh8nT20di9ARUjB/IPOhz+OaKAwfBlUvwJviV7Jzoe/8Ni5xeUEVD8J8+/jRRawvhzs0K2QHcI+IFf1Djlm +2z0zgrCSZjAQPgHNNPz//+8/RTzx6zbIcr6U6/TLR7HLP5YgWq/h0LU/71D49JdZPr5FPPHrNshyvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7u9eh9j+ +cr6a4zbaXIKnvl7seln6ZB6+gCWsiIOIMT4AYi7ODeKoPiGbAhCOhN4+0rdmEA9NE0EAAAAAAAAAAMxw/w/rnbU/wweHRGp4pz/McP8P6521P8MHh0RqeKc/awaLrCp5 +YsA8MxykDK8zQGsGi6wqeWLAPDMcpAyvM0CfGzCNLKiHP1ySQ1kQJlm/0xoW2pmoh7/nc+PzTgxZP0XFaz5sVrm+FR0JLhRrxz60fqN5NzvbPQCUD0+Djgk+72QF+v// +7z/Em4gFu4N3vvSeD4P3Xcw/HKC50jVKuz/AG55CbOpHvsSbiAW7g3e+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSCyQh1ut9vpqGvmcNa62+zCkBNePv +J76btrxk5KU2PvCeHE9+2rM++6YQjgAX4z57k6WubEwYQQAAAAAAAAAAP4JAbUV9tj/tPv0+BEOtPz+CQG1FfbY/7T79PgRDrT+Xmd9EW0piwEO7Znh7ijhAl5nfRFtK +YsBDu2Z4e4o4QCvefOJdbIc/b8SDF7daX79YfptzCW2Hv/UGE1KcOl8/ziJkaL/hw76WAltLIq/OPqeHSC3Z99o9fnbie3YZBD7Nzpz2///vP0V7d1wkVX2+XkQR/VNr +zT8Ap29YbQHBP5DZ32ZixlK+RXt3XCRVfb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR5vftZe4e+WSma6LlXsr4/XCN+ssgyvo04rvAmpD0+UJypID5q +vz6gm0eiycvnPuH8O+8Mlx5BAAAAAAAAAABa5oxmiNa3P06s14gJJLI/WuaMZojWtz9OrNeICSSyP4ODzC3/AWLAQ6VKoattPkCDg8wt/wFiwEOlSqGrbT5At45TeeoP +hz8iI6SALHBjvzGXtUr2EIe/hfpWtUZcYz+iUigpCAfPvk4JTiv9e9Q+f7RrUIiP2j2JGG9rDHD/PZv4V/H//+8/LRU8kvMxgr7kQR7GsgvPP/EfewiZEsU/RmhnyQ5Q +Xb4tFTyS8zGCvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA56dlNrJTkr5p0ZF3Z8C2vr/vWK0fUT2+1MwcQ7PBQz6088yxsqTIPt7mZmP9fu0+PrVfsFpB +I0EAAAAAAAAAAD/lqrXZ5Lk/DQ0DpZxNtj8/5aq12eS5Pw0NA6WcTbY/z/k/ALGTYcBloZE4jrRCQM/5PwCxk2HAZaGROI60QkDCwbbN+4KGP0jTQ8YE5me/KEwAWJqE +hr8k9e7bkM1nPx3nLHPtANi+M4INH4MI3D6tR2hkZ/DZPbSiDT7UX/g9KNhP6f//7z+n075Q82KGviqiAGoxw9A/R72U8iXiyT+8eRLYJ7BmvqfTvlDzYoa+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwXo3U0F2cvm9pMiI2/bu+kebsGQGvRr5xkBnD/vpKPkK9wrXnIdM+ukZPoKQf8j75xy14sD0oQQAAAAAAAAAATc8ia1r2 +vD9aoQ2TthK7P03PImta9rw/WqENk7YSuz9BBsXmEO9gwEZY597EtEZAQQbF5hDvYMBGWOfexLRGQMpkjSemsIU/8MDVPpUCbb+1nL+pH7OFv28DfY7r5Gw/AhNMPKpU +4r7uYnv/QcHjPlA6xHrYAtk9VeC3oCKn8j01SFPd///vP1oeGqQANIu+RXReZcec0j9qiOMIQF/PPxTVpeVbVnG+Wh4apAA0i74AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAHog0/W6rKW+uFilnxUBwb45Ivs8o1NRvnwC8A+79lI+IBFsF/xL3T43HItlyvv1PgoAAACAhC5BAAAAAAAAAADtyzFmMLPAP1aJhfBlIMA/7csxZjCz +wD9WiYXwZSDAP1RrQ2L6AGDAQpVEDCINS0BUa0Ni+gBgwEKVRAwiDUtA0FECYnSAhD8vaq0L4kdxvzg8Bo4qhIS/Y221cTs2cT82UqIu73frvlK+YU62tew+Xj8VLz2r +1z24Q3W3aQHsPZun/cv//+8/zqKNOes6kL7N22zVnUnVP09Q0lKapNI/7EazMiwBer7Ooo056zqQvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqMikTBpB +sL5W6ZcNFkrEvmPMEFY8+Vm+LA1X1OF6Wz6kWjvMf//lPj0bUtjKKPo+t1draa01M0EAAAAAAAAAALgPks9ixMM/Hn1OibO1wj+4D5LPYsTDPx59TomztcI/Qz5AgrVv +XcDPJ3ctw2JPQEM+QIK1b13Azyd3LcNiT0C/Av+28tuCP2XktxC5DHS/oz7Hll7hgr9bR3VLR/hzP9eRKgxGCPS+UGMoDLJp9T71MsDpOdDVPT2xTEVhdeQ9A9YHtP// +7z9PD7OvkeCSvtpCceYe/Ng/uLH/sjmM1T9SKVh/Cv6Cvk8Ps6+R4JK+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACm2hVg5L23vlToJPEHmce+FOXMzQX0 +Yr4R2TJ/bG9kPn7owE8VFPA+Xo/9BDBL/j60IUUx/S44QQAAAAAAAAAAWbhaa6LAxz8NYvmqCfPEP1m4WmuiwMc/DWL5qgnzxD+yZUMYaRhawLRJHuqQklFAsmVDGGkY +WsC0SR7qkJJRQE7qZU6PuYA/Umcku3tzdr8PtR3SM8GAvwqlXMimXHY/qLxNcBEt/L50lvhRDTYAP18X0Lf/ZtM9zWnZkQnQ3D0tHueU///vPzFknn9eOJW+40OG5YvJ +3T+n3YBZfPvXP2UsuXQ4xoq+MWSef144lb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8r8xYKvMC+8CCZv6+Gyr4er2o14a5qvj9eQ1rJ224+0ugUuWWt +9j5+quLTCekAP/fMoVD+cT5BAAAAAAAAAAAt9CQWsYjMP80USVpwcMY/LfQkFrGIzD/NFElacHDGP/imypk/FlbANfTAEv7SUkD4psqZPxZWwDX0wBL+0lJAvnWi4AlU +fD9jEsae1wx4v/fK9/2maHy/0tPG/Hz0dz8p+xDwTe4Cv/addHUViQg/8wenYHSC0D07GGUmAl/TPaBGkW///+8/t93wTNbelr6a6jpO1sXhP9StY7Y3cdk/65QOLNcN +kr633fBM1t6WvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc/v6+22Rxr7wYTGespbMvnYG6dNX9HG+y/h18LBMdz49gGQ5lJf+PhF2PjhTBwI/vrQ7Nwcq +Q0EAAAAAAAAAAC2//Ikg4NA/IbRQHD/Yxj8tv/yJIODQPyG0UBw/2MY/1rNxuJi2UcBBTFWe4ypTQNazcbiYtlHAQUxVnuMqU0DH59W+gr12P5TdqksZfXi/WNbYbe/X +dr+3H+zsd2R4P0UHCR7yIAi/3M2SJCxHEj+4GlE02rTKPQdTOnYhrsg9ZlPaRv//7z9h9a9E8IKXviU0kxYj6eQ/jRc/VnCB2T+48EeTtSSXvmH1r0Twgpe+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6IfSs/e3MvvVo/QPFY82+GULmg0bwdr5WAtuJvVOBPsf/N9uPnAM/JBecwec3Aj/IZYDUUiBIQQAAAAAAAAAANyp5LVBx +0z8H6PSWPBDGPzcqeS1QcdM/B+j0ljwQxj/zYod+X9FKwA+ZpXNRhFJA82KHfl/RSsAPmaVzUYRSQHuuYQGnPXE/3lFTtTiod7/cOZAoyl1xv6+OeSmvkHc/e3+uMvAT +Db8Z6s2ZO4UaP10Yhy5afsQ9KmjgSUKuvT2uddMe///vPyH+do1sDpe+y5ejBfL95z+Yz28yyAbYPxbmQ0qRJZy+If52jWwOl74AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAABKHlw2Fl9G+mOL1hxbSzL6Q+SuvzL97viaLfCrSG4k+HyJpqaPaBz/ejDrPFmMBP1z4TtqHX05BAAAAAAAAAAACj0vujrnVP6d3QffmR8Q/Ao9L7o65 +1T+nd0H35kfEP6u4xSgSKkPA5MOBkSYHUUCruMUoEipDwOTDgZEmB1FAGsWavwC0aD+6rlMkJsF1v6b2jd1p/mi/oPVR7OCrdT+AcG2OH5YQv4zfzs8CqCI/jio7+Xbw +vT2+B1r3CtmwPQaGUfv+/+8/AzANUPyzlb4lqKfgALjqP5rcV0t8M9U/d+mfn+dKoL4DMA1Q/LOVvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6KlA6ld +1L6v95XQAyHLvs+LPxNZ2n++RX9BQKilkT6C0fz7CJ4LP6c8yCqWW/8+Dn6FFWgeU0EAAAAAAAAAAPufCYvNk9c/d7JkdPTewT/7nwmLzZPXP3eyZHT03sE/ogGKAgjn +OcB72nVJYwdOQKIBigII5znAe9p1SWMHTkDSK98v18NgP0iToJh7LnO/Kkd27XAWYb+g4E4KQBxzP+OzHv/m+hG/PtBQHEp9KT+KgFlkM/i0PZT8gY2IFqI98oCh3v7/ +7z+gbyVgm9aTvv5nctgC6ew/C/eUClVy0T9x8dvw5xWivqBvJWCb1pO+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlxh8rZ5vWvunu0L1GzMi+I+ctFKhw +gb4SYWGIRBiYPgyfzBpKqA4/ths986HI+j6QondcsRFYQQAAAAAAAAAAnRFHPxH52D/kHn04F3W+P50RRz8R+dg/5B59OBd1vj/AzqMgGIowwAOuTp6pnUlAwM6jIBiK +MMADrk6eqZ1JQONzVwFJkVU/mRMbl6tccL8GsT6rskJWv+EO0ZbSTXA/AEovzLOSEr9qdiAFq/0wP2WK6e7uaqw9Cy+uFTdZkj25iT/J/v/vPzGTJzUg4JG+mvWsQBiG +7j9WTWJWd2XKP8+JcGQHbKO+MZMnNSDgkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCK6soMR9i+s1qYjSpYxr5FY2R9iFKCvqo6CLOdDaA+LAkvpRl2 +ED8fCVO2lq31Pvo5OZYcTV5BAAAAAAAAAABoeAncO/fZPxZqugKNTrk/aHgJ3Dv32T8WaroCjU65P4AsO0cPwCPAH0e1fMVRRUCALDtHD8AjwB9HtXzFUUVA5heSJ0Ab +Sj/lXnYVxztrv0wPNksHj0u/DFfZleskaz9QmscGQTwSv1I+s3cUOzY/wlxr3XLJoj2oyGSedGeBPYsJarr+/+8/G8Ov2HMkkL7sTaObMJzvPwwXR/yviME/cRpNZ19Z +pL4bw6/YcySQvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAubxOmrlv2b7I/VLlkS3Evq9UViUEhoK+j/WRCqL+pD5LxhkpHD8RP5RZJrWSgPA+CAAAANAS +Y0EAAAAAAAAAAH81R0WSpNo/8rmnDqaitD9/NUdFkqTaP/K5pw6morQ/8MaQOrZMFcDpyBiBCm5BQPDGkDq2TBXA6cgYgQpuQUAWs8AHCfY8P7XS5pM6Q2a/2KAhlFfz +P79AU/mP8DJmPyXD0Vp+wxC/N48cjrWxPD9ivjrnmGaYPbIH7kl60W09hS3psP7/7z/8Ly0UTLWNvqwiWLIgIPA/gLHws4g2sT/xorQnbfGkvvwvLRRMtY2+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhWgv4yS3aviYn4gNQkcK+2QL96AX4gb4wgPZmEharPnCs6OqlvxE/2tNQwhIB5z6oLcbDGANoQQAAAAAAAAAA8tctnRAX +2z/+8fz5D5WwP/LXLZ0QF9s//vH8+Q+VsD/Dyh7o63wCwFtjKfBYITxAw8oe6Ot8AsBbYynwWCE8QDLAJU3JHys//nVs80T2Yb966kK2YJkwv4Vydsks7GE/W39NzsiR +C7+LlhM2ZFdCP7o9glX+R489WRJM3RGPVD1g05yr/v/vP630LUweSIy+RD63lOJB8D+Iytudfw5mv1v2/ckyRqW+rfQtTB5IjL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAJ5mvXbAl9q+pdy6GBOtwb7R7K3Scn+AvntDo3nITbE+Tqcsu+cGEj8atbTND//aPiVqln28Om5BAAAAAAAAAABMveBKkGDbP2KsIZusUKo/TL3gSpBg +2z9irCGbrFCqP9jGJBrrOde/QL773Dx4NkDYxiQa6znXv0C++9w8eDZAeGLejB/mDD+G+IaZCLBcv21I/dZ3qhq/mLmyPZCnXD+TeDe/IEsBv9G1vVBlSUc/H2ILwvjY +gz2pqnGMCoQkPewowan+/+8/2/ar6H0vjL77YW1PWzfwP772Qpmn3LK/q1I6ce1jpb7b9qvofS+MvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY61QbOm8 +2r7sfIy2rp3BvrTzbOmtn3u+PlDJWvPztT7mHtfTIx8SP+jfkddAqsE+HSBl8j4Hc0EAAAAAAAAAAETaukUMjts/jJMmLUecpD9E2rpFDI7bP4yTJi1HnKQ/R9Kh6rmi +6z+yIX39UckxQEfSoeq5ous/siF9/VHJMUBMZ4XpzisFv1zATSP9sla/SMuqXzxs2b6VJGMUwrVWP4CwTQ8FrLG+l4PL+sNoTT/kgk/JhPV4PSXwLUXdYzO9e7EDq/7/ +7z/pB2yE4JqNvmTdoa4f/e8/bztfWRfPwr8HIFDoxE+lvukHbITgmo2+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOzqGtqPavlCWEUnMgMK+e5YUKI/b +cr7RtCayTLK7PganbFWNDBI/RRFg5HOYwb7woQoFifR3QQAAAAAAAAAAcQMOQkWo2z+PTFd6bMefP3EDDkJFqNs/j0xXemzHnz/2zjUCZ6n5P2OrDdjj5CtA9s41Amep ++T9jqw3Y4+QrQOxuRo0SqRm/nnCP+cfJUb8wNTZnakgLP4BOk5x511E/nNDqusgLCj8fAN+J9ntSPz0O1YWeF289rWfNdZyaPL2mXICv/v/vP/6RY5htZ5C+yYZF3rce +7z+SInuMdZLMv6DEozX6B6W+/pFjmG1nkL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANPyOwH5Sdq+Qigv8EiBxL4oR1f95jlVvucrttx6YsE+MmzRsW3N +ET9/EqyYZSvavj5/oIlnKH5BAAAAAAAAAAAjG3iqxLTbP5DlRRK1+pc/Ixt4qsS02z+Q5UUStfqXP1Ayz6QuFgBAOX5mdFShJUBQMs+kLhYAQDl+ZnRUoSVAGCaNuaHy +IL8GPNPsoI9Lv66rAs1OKRY/CICWXD7ASz8iVRCpP+wgP2IdKnUDH1c/sZ+5vcEmYz1mYp6CfHw8vVqJrbf+/+8/Zbe+pW8ck75/8mpjzbjtPz+wndecUNO/ln5jaieF +pL5lt76lbxyTvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt+FJa3Gm2b78JvCAi+PHviAGx5ILnW0+KCtlSqa2xT5+ZuiQNlsRPz65BBd+qOW+PFtx6LT7 +gkEAAAAAAAAAAO6UaEfatts/nEtwQkyLkT/ulGhH2rbbP5xLcEJMi5E/s6/kJ2FyAUBBC5L7iYogQLOv5CdhcgFAQQuS+4mKIEBb+8WERaAiv4xpL3b0C0W/r0KajSb0 +GT9B4JWemlBFP/B6f4xagjA//aYJiPK+XD/CKzAkS0RXPfJ4yr1miji9fEAtxP7/7z9iKk4Z50GXvsMGMqiUrOs/QKRhsZxJ2L8+pED4K72jvmIqThnnQZe+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxGJUNd6zYvp6BXNNgEs2+Jzylb2CvhT7kDQ/4p/fKPtv2OQQKrRA/iO5/Hqzq7b6V3eYaAuaHQQAAAAAAAAAA69or3YKw +2z++XcJAUYiIP+vaK92CsNs/vl3CQFGIiD9jOHRPyWcBQNMmOtt+3xhAYzh0T8lnAUDTJjrbft8YQCaZZ3hqfiK/LaSFmlaVP7+xBcKEikoaP7xElYvWIEA/9YWr5yDE +PD/jcsT3+7hhPxDV2c9nyks97cZE9XNyM70tfnPV/v/vP+u/+NagVJ2+uqnjKpfk6D8aHqtd8cvcv6/EKh3IqKK+67/41qBUnb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAMKpWjL6Ute+9Np+geRU0r5O5ZP1JG6UPslljAdwpNA+Y1XWvjR5Dz+Xu5hHw6/yvjiLlbMdFo5BAAAAAAAAAACicBDuOKPbP5X0alMxBYA/onAQ7jij +2z+V9GpTMQWAP+wt+wt3VABAx7dxPXdZEkDsLfsLd1QAQMe3cT13WRJAFhK54nsFIb+pSC65KTw3v681VXEAGxg/omZ+t5kCOD8+uCVWSohHP0I0Jq+TmWU/3vEoOgRJ +QD07qgitWvwsvWd8Rev+/+8/l4BgNSv9or45xpGDlGjlP2HtNr3EIeC/L42KOahLob6XgGA1K/2ivgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl7IRUJKe +1b5nFRn/dbzXvgZIC7EpNKA+PN7KJepp1D5fh6FFUBoNP8c87n5vpvW+P8Tj3THwkkEAAAAAAAAAAKsgmX+VkNs/LE5iUTbDcj+rIJl/lZDbPyxOYlE2w3I//UL4/Lwj +/T8GAm1EdJcKQP1C+Py8I/0/BgJtRHSXCkAIfUOGulIdv6P9i4jzxjC/A+dsSglBFD+begG+jpoxP2VJQT/6aFI/b5I6mf7kaT9xuvxXC78yPcsktHHiiiS9hfBNBP// +7z/cJzAfdvuovtxvIrAgbuE/JHlwY7oN4b9hk1bvQXafvtwnMB92+6i+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADz3kU66anTvojVaqRTOt++Suw/E9EN +pz4GisvIb+rYPlxg2eGnYgo/BrTRR/B6974OAAAAhNeXQQAAAAAAAAAAk1Xj2Ip62z/yS9wCZeZhP5NV49iKets/8kvcAmXmYT9/mXdLk/z4P9vKwGdaBwNAf5l3S5P8 ++D/bysBnWgcDQLcoE4qyyhe/OmibCnHrJ79rLY0GjDsPP6F/XrO7jik/NVidAVayWz/bAx5W+lVuPybCBMawTyU9BpGHMN77G73qki8e///vP7l9JTVlhrC+Zn6SfPqp +2j8JXexAsADhvyICuaINOpy+uX0lNWWGsL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG+XXYhIpNG+Nv6Ogf6n5L4TZIe+qSWuPouPdXYBV94+ocIH/fqT +Bz9vr1RXyfv3vha5t/TeA55BAAAAAAAAAADQwhydLWPbP8j8i8ITMkI/0MIcnS1j2z/I/IvCEzJCP2hrT2ZW4/Q/RL7E6x4n+z9oa09mVuP0P0S+xOseJ/s/ACQLwNNZ +Er+WURKZsAIhv6uoMIy+AAY/m17mGpuFIj+zspvzjQFkP+Ej2D6jOXE/InYDlMsnGD3e3kafDJUSvQgWQDb//+8/kou5tenMtb6k0uighRDTPxYoYVhsCuC/iYsGP/03 +mb6Si7m16cy1vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3ifNkfyFz74PRpMiJEDrvoVVHeN5YrI+B03ynrx94j4qy5Lns/cEP/IQ3K3zRPe+WgJ+zrXk +okEAAAAAAAAAAAGXko5hTNs/cLPk6B5eOr8Bl5KOYUzbP3Cz5OgeXjq/p+ZUpvJU8T8OzdPJ0oXzP6fmVKbyVPE/Ds3TydKF8z/kBx/aMkgLv2CqN+oVbhi/Eo0hjvTt ++z5he1s8rggbP2DeLMV6n2s/I3VzzlXMcj8zZYCQXJcLPYSX4Catfgi9Nox3Sv//7z/9i2wMV4q8viDvvTx6W8k/oSGFtGDZ3L/2rkJ5DrGWvv2LbAxXiry+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/0EwZUl3MviTakmd21vG+tlOdexgttT78sIWoo6DmPjaDMHosxAI/JFOJoda29b4oaP6uDsmnQQAAAAAAAAAASpyFsMg3 +2z9R3HGWDrlJv0qchbDIN9s/Udxxlg65Sb8nC15g7xHtPzZJ3qgLhew/JwteYO8R7T82Sd6oC4XsP/TZ2UJ84wO/NX5p4rTjEb9kyMFjXojuPmBbOPLA+hM/M1egx94h +cj9OT+9HyZFzPz9rbBYiAgA9wvA35DRRAL1K9udZ///vPxK7PFP7gsK+4vJ3G6P6vj+9Nb1p8ffYv4FoxjYBw5S+Ers8U/uCwr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAMYkeIXB88m+a0frJ7oj976RrxnTbEu3PvNstgRS1+s+LzjjSg4PAT/qApKyaMzzvnFKTUar8a1BAAAAAAAAAAD6kBD94CbbP5gHrSVQvUa/+pAQ/eAm +2z+YB60lUL1Gv+KgovRq++g/WR0Ajyk75T/ioKL0avvoP1kdAI8pO+U/wtR7bnP8/L70lTXSEdwKvzj8UVSiCdg+44so2UjwDT8ZcJLeZ5N2P4OGplKPXHM/hIbg9q3u +8jyHZ2VW8Ub2vBf/kWT//+8/VDmx4LjPx76kvNn5+LOwP9kR1e/bAdW/YZ4XHcBtk75UObHguM/HvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAafv0JDBJ +yL65QMcYp8P9vk5/ZoLpsbg+UDb4mus58T5Dn/Jq46P/PknVodyP8vG+ik8EtkDZskEAAAAAAAAAAFHy8/P6Gts/52NJQF4eML9R8vPz+hrbP+djSUBeHjC/JjbknXIl +5j9HQvBaFhfgPyY25J1yJeY/R0LwWhYX4D9mDJd3gn/1vjlq5H95swS/AM6FCOMCmr4d5DGHt6sGP4D6jtIatXo/9qBWIUs7cj9G9ojHT8vmPIDdBNWTX++8Nibyav// +7z+XWYGWcGvOvsuAEjY6bJs/Kt2G0gdV0b/yokw5u6GSvpdZgZZwa86+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADx+PoHKkrHvhoACV4mAwO/M40PhUZj +uT4KBq0ILW31PhWQ3EdQ7/0+ULoBYkB28L4Pso0iorq3QQAAAAAAAAAAZg2mAPkU2z+rxfjxeqk7P2YNpgD5FNs/q8X48XqpOz8jDiOlEz/kP8w+S/2zvdg/Iw4jpRM/ +5D/MPkv9s73YP9qikvh2dfC+lCxC/iliAL/Amf3PcMfSvkILD54gQAE/ZV+774Y1fj+baghmqnBwP/EhKmZD19s869Hi8GfI5rzvyKVt///vP44a7AfnVNO+UG2ikWdS +UT+WlezvqTzMv0PhLOJGS5K+jhrsB+dU074AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvI75oY3sa+Fm/hySAqCL8Xc+OZzme5PqJXDj5Mw/o+frzpP6HP +/D72SfNzqw3vvv+UoKGC371BAAAAAAAAAAAbzLKHDRXbP1PoxqHqClM/G8yyhw0V2z9T6Mah6gpTP11Lu84pAOM/X+f5b2440z9dS7vOKQDjP1/n+W9uONM/mNY6f905 +6r66u7AOV636vqjm83uc+d2+1QtZxHks+j7glbBUwnqAP/p9e5t7pGw/PnsVTyou0TwH/0mAyfvgvKjNSG3//+8/qtnSUf962L53fsedODuQvxstxueh0ca/+mz2SuZW +kr6q2dJR/3rYvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjmTW3Z/sxr4kUUMmv5kOv6nKVvUAzbg+OR0i1b7EAD+iXzOFAhr8PkGmtW6+ge6+Bnc9kNLN +wkEAAAAAAAAAAAcD3ZOYGts/5/IuTv4IXj8HA92TmBrbP+fyLk7+CF4/xIj3LYYx4j+wBJbLPBPOP8SI9y2GMeI/sASWyzwTzj9sa594p8flvi1sXtvVc/a+xIAtjeCV +4r6uFHRuBZbzPr3Z4jwlgIE/Hl25mKVRaD+otmhjplrFPAJ5wyS21dm85bF/av//7z/wOBcGAuzevqKbClp+ipu/3bR08vRZwr9Ac2vDCbCSvvA4FwYC7N6+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5qls0DFzHvjzmzEOBUxO/fiihvUertz7j9qANMBAFPzgkQIgerfs+QG8M+tJx775StVxVPqzHQQAAAAAAAAAABPIfIisk +2z+D2vW9dgZjPwTyHyIrJNs/g9r1vXYGYz9uTd0vXazhP/5zoB/do8c/bk3dL12s4T/+c6Af3aPHP4w1vjyty+K+i72pMc6w876agR5n29/kvgT76zRxbew+Gr39vC47 +gj92C6SozEVkP1xD6GCLqro8jZuUhkLv07xvGg5m///vP9yIsQIHf+O+NW4kaAd4ob8fOQvWt229v3pxEbI8PpO+3IixAgd/474AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAB8jo97LDci+IKxcw8heGL9l7NwWzCu2PmIOiYVLgAo/l72VoEhw+z5vBkJFOgPxvhUAAABlzc1BAAAAAAAAAABGjUARyC/bP9CuZ7yLDmU/Ro1AEcgv +2z/Qrme8iw5lPx8gZC64VuE/ncDku8ujwj8fIGQuuFbhP53A5LvLo8I/uAWElbTE4L7C1flXsSfyvvyic7MYUua+4C+660td4z7r/2Sw5b2CP7ugtXXGrWA/YJ2s3bGz +sDwJ21a52xHPvG9D1WD//+8/CP44+R+P6L5OTS2E9OWjvw2DMGYljLe/F/MRklflk74I/jj5H4/ovgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMmedq3e +yL78RIb357Iev1qak4QuhrQ+ts/DJRWwED+3MQOxjFH7PnqSLjSzOPO+sNPyWGvC0kEAAAAAAAAAAKDUYMFsO9s/KmpsiFAnZT+g1GDBbDvbPypqbIhQJ2U/kXcU+q4f +4T97D+N0L3W9P5F3FPquH+E/ew/jdC91vT8YSA/QOMTevhTTbpU1tvG+aDPTDQI7575QCIQSwtLWPsv+JV21F4M/713qpr4tWz+d3zuGqfekPM75VS6jX8i8A4SrW/// +7z+rKKJBWevuvgiKblGnf6W/mLDCbJbPsr8P1JB/j4qUvqsookFZ6+6+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+RnpfM63Jvu73BMkXUyO/UJdBE/zy +sj5jpB99sgYVP247VpMxRPs+9yjqmEp69r7zgh1C453XQQAAAAAAAAAA5Y/7zaFF2z+KpCj2vcVjP+WP+82hRds/iqQo9r3FYz/fbVBjXvzgP1O8oUUgULc/321QY178 +4D9TvKFFIFC3P3i1jfKY4dy+EE4FlK9M8r5I1t8oN83nvuBdN+IjacA+500bEXlUgz/HlTMyW/tVPywvZrUbXZo87iF1cGQ0w7z71ydX///vP6WsY2ZrdfO+/kSQfiSN +pr8M6jTwIAOuv5NOqAAFG5W+paxjZmt1874AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANyt1UDGYcq+/0r8P8ZSKL9mGLKpH5uxPh2D1N6dfho/JgPa18g/ ++z5+Yzy9bvT6vjUCvlpSu91BAAAAAAAAAAB+P7Rzuk3bP38F26/ehmE/fj+0c7pN2z9/Bduv3oZhP3nzRcHD5eA/m1sj2nd4sj9580XBw+XgP5tbI9p3eLI/IAReNP+c +275oV11Fj+vzvjw8e4n3KOi+QA0l1ATGt77NgGza9nyDP6j//S8crlE/p0WkFveXkDxCNbuQ21m+vFdMilP//+8/Lkiuq559+L7Ph2pKaT2nv0hwby3e6ae/CNwSdbaO +lb4uSK6rnn34vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKZZEmTyyr6FnZlWBp0uvz6ldHxNkLA+BqImMtawID+Ub3qCTz/7Pj/zM0FucQC/iU7wCwu3 +4kEAAAAAAAAAAC6owwSyU9s/ZQrU8pXpXT8uqMMEslPbP2UK1PKV6V0/rGBmNFfX4D/6Ql7Xd0qtP6xgZjRX1+A/+kJe13dKrT+Qd7DO6cXavuQXa4FAo/a+rHFpPJpi +6L7A25J092TUvtdlSlCRl4M//0VIivhSTD9Q379Q/ueEPM1Qu+E8B7i8L+HKUP//7z/njptqKdP+vootlerTr6e/WodYy0MJo78H5yrao+aVvueOm2op0/6+AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABH77bQTGDLvkkhoeL5QzO/TfTxqlGirz7t9JXMigYlP9SlSZoqQPs+pATBv3FKBL9vY4XjkI/nQQAAAAAAAAAAXkpOrd5X +2z/J9/eoP9lYP15KTq3eV9s/yff3qD/ZWD8RHKTwKc7gPxhdPaqlPKc/ERyk8CnO4D8YXT2qpTynP2BQ2vV0Odq+3J5kPPSU+r60DT5K4YbovpAzTh1t9uG+LBfUF9eo +gz8kaakaH59GP9nuFxwtW3o8Jn45o7MLs7xk7LhO///vP3ZM/4NOZgO/HVpeVIn5p7++i4YkJUmev+zXiHPiKJa+dkz/g05mA78AAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAMPgaxAbs8u+iAz/JOI/OL8ImO64XqWuPkX1oo9Eeyo/yG9AZi9B+z6DFregFDkJv5YeMatKqe1BAAAAAAAAAADZHUQGsFrbP6Ek4Zr5P1Q/2R1EBrBa +2z+hJOGa+T9UP6l2wgRXyOA/rQstKo5woj+pdsIEV8jgP60LLSqOcKI/yB3UCu7e2b6A6dVPCvT/vnhvYubKnei+EE9OruOu6r7Wbh/y87ODP3yldW2fB0I/dXyF3Quf +cDwZpXZYVDeuvLNvFE3//+8/jCAZPGprCL+LIRLnuCiov/BU95lOFJi/uCaiCXJdlr6MIBk8amsIvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXDULjM70 +y76PWR/LRIY+vx5MJGG2EK4+212CU52sMD99RyjU7EH7Pl0LHL4mgA+/Il0EpbGr8kEAAAAAAAAAAJdh72+LXNs/KorWMYNDUD+XYe9vi1zbPyqK1jGDQ1A/U8rJnKbE +4D+IHlYu2USdP1PKyZymxOA/iB5WLtlEnT9QS3rTWaXZvmBPsfAshAO/7LDWm1ys6L7gISRKemnyvix5RUsOu4M/LpZ9WZKyPD+n48MY6/hkPEM4zF0d+6e8uqOZS/// +7z+t8k9gYr0OvyHM8k3JRqi/RG+eJE4jk7+AIrqIy4yWvq3yT2BivQ6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/+hq/i/Mvq3xMXxdNkO/DjM1XbzR +rT5x13UH+f40P/703nQ+Qvs+t2/gX326E7/L1Ew0R4H3QQAAAAAAAAAA40Wn5L9d2z8Ir7Sqr8tJP+NFp+S/Xds/CK+0qq/LST9yYxUwUcLgPxhQ5ilBOpc/cmMVMFHC +4D8YUOYpQTqXP5C0eltngdm+yEOIFdEYCL/4Sf4OxLXovmDdXzd7dvi+lbeCT5O/gz8mwN1qD9A2P3R6pxbzeFo8RQyFM9IJo7ygxABK///vP3OE300zWRO/l4J6qeBZ +qL9GexB0y2mOv55F82vnv5a+c4TfTTNZE78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZL8Ebhb8y+zWBXIYAvSL8re+CoteCtPtGDtz6Zbzo/68I1PhRC ++z6zrNaB8cEYv6vis+pNl/1BAAAAAAAAAAD3pmUBhl7bPyMLiKrSLkQ/96ZlAYZe2z8jC4iq0i5EP0U1V5rXwOA/VPatZqttkj9FNVea18DgP1T2rWarbZI/+OMIPsxr +2b6A+DXpL/YNv6BJKIwMvOi+cJqGUPfQ/74PVLNQccKDPymu0GDeHTI/D/WxHAS3UDwB+gZmKjyevBbI9Uf//+8/rPGhVXpbGL/oA3Y4+WWovzZPsFU5KYi/W681/UYB +l76s8aFVelsYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoTyDvJjBzL5OagrrWHJOv72p32ZWQ64+KSRm4FGkQD/2M77hVkH7PslNzF71Gh+/EAAAIF+g +AkIAAAAAAAAAAFPjlmsEX9s/0ZlrRHwHPz9T45ZrBF/bP9GZa0R8Bz8/AA88Gum/4D/gX7yTADqNPwAPPBrpv+A/4F+8kwA6jT8YcHAcEGDZvji7/yIRthK/CG6CyJLA +6L5Q7AtsmG4Ev/NougxCxIM/tUQ1Uoi+LD8NIQk81R5FPKl6PYjlApi8pYgJRf//7z9eQIZT0Kkev2A/Vjugbai/WQWt/NMwg78SKl7rzl6Xvl5AhlPQqR6/AAAAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4yTWmgjbNvrrmMzQiKlO/Vmqo1O0Prz53fXHTuPNEPxVP1KLXP/s+12afqgaOI79UaXRsZTogKiogc2NoX3BhdGg6IC9o +b21lL3NjaGlwcGVzL3hzY2hlbS1yZXBvL3RydW5rL3hzY2hlbV9saWJyYXJ5L2V4YW1wbGVzL3Rlc3RfYWMuc2NoCkRhdGU6IFdlZCBGZWIgIDIgMTg6MTc6MjQgIDIw +MjIKUGxvdG5hbWU6IEFDIEFuYWx5c2lzCkZsYWdzOiBjb21wbGV4Ck5vLiBWYXJpYWJsZXM6IDE3Ck5vLiBQb2ludHM6IDcxClZhcmlhYmxlczoKCTAJZnJlcXVlbmN5 +CWZyZXF1ZW5jeSBncmlkPTMKCTEJdihkKQl2b2x0YWdlCgkyCXYoZF9sKQl2b2x0YWdlCgkzCXYoZGlmZm91dCkJdm9sdGFnZQoJNAl2KGRpZmZvdXRfbCkJdm9sdGFn +ZQoJNQlpKGUxKQljdXJyZW50Cgk2CWkoZTIpCWN1cnJlbnQKCTcJdihnbikJdm9sdGFnZQoJOAlpKGwxKQljdXJyZW50Cgk5CXYobWludXMpCXZvbHRhZ2UKCTEwCXYo +bmV0MSkJdm9sdGFnZQoJMTEJdihuZXQyKQl2b2x0YWdlCgkxMgl2KHBsdXMpCXZvbHRhZ2UKCTEzCXYodmNjKQl2b2x0YWdlCgkxNAlpKHZsb29wKQljdXJyZW50Cgkx +NQlpKHZwbHVzKQljdXJyZW50CgkxNglpKHZ2Y2MpCWN1cnJlbnQKQmluYXJ5OgoAAAAAAECPQAAAAAAAAAAAbwLkquWmwD+XNPInhfQgv28C5KrlpsA/lzTyJ4X0IL9L +a/j/yP5fwFY/Q+z4M62/S2v4/8j+X8BWP0Ps+DOtvxNoBw4KaKk/gBv3XC8X9z7gmdcMCmipv9OaD0trHfe+wXJILiV6lT0YROK71Q41PnvJ8Wjl89i9lz2ynqtWiz45 +xP7////vPwMW1fhmm1U+5PL784CA4z/f5Nc471xEvzFau1hyvKO9AxbV+GabVT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8v5oGeFXI93oT46bkaJb5s +/AiV7rolPfae4zssMcU9AMQpVLJ8jL7x3m3pGSiHviA9Jp+zq5NAAAAAAAAAAAC4jQhs5abAP21I3cAozhe/uI0IbOWmwD9tSN3AKM4Xv/AEFjbJ/l/ADib4ZwCCpL/w +BBY2yf5fwA4m+GcAgqS/shvUOApoqT9/GvJcDDbwPuHtpjcKaKm/s925heU98L7cKg+HigGTPavOH1Oogjo+RL4R8Y3Wy73l43H3PbeFPglR/////+8/anusjl8KUT7Y +wCiqgIDjP3JlxC5PJz2/7wrNquvelb1qe6yOXwpRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbyZc5Nb5bz3pZ5JGoZEqvp5LCTm1TyM9im3K5+Ktyj0A +gmP0BH6MvmwIjsWEd4C+EWYLoZLDmEAAAAAAAAAAAFe9AkflpsA/gfF7l6DvDb9XvQJH5abAP4Hxe5eg7w2/56f3Vcn+X8CJEpZWOc+Zv+en91XJ/l/AiRKWVjnPmb+X +RApSCmipP0N4PCrVY+Q+b0DhUApoqb/Wg6Hul3fkviC0JW3cLY49V3VdfvKvQD7WanhlQNS7vQvsIvrcP4E+e6n/////7z9qlk/+T8NKPnXEd36AgOM/7/i+hjIiM7+I +qjotSaGFvWqWT/5Pw0o+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvteKdnVRpPTLBJWZfuTC+ZoynQ5v0Hj2/Tu19KMvQPQCYBz/Nfoy+wleKz9pOdb5c +kkucDC2fQAAAAAAAAAAATsfUM+WmwD8BpSp7Grb7vk7H1DPlpsA/AaUqexq2+75MBX9myf5fwHxEqCWb9Ie/TAV/Zsn+X8B8RKglm/SHv6oEG18KaKk/aX6mQRbj0j55 +mfhdCmipv8VRwnvXFNO+8rbNf8zDgT00FcAEEAJFPpsmCQt+hKS91pU0M0pnez6n4P/////vP5uJ3US83kQ+Y7V6Z4CA4z9Iew4n3UMkv3jdNe0mWW+9m4ndRLzeRD4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOG79i2mF09Up360e0NNb54V906w80SPX+jXrBRJNU9AKa7bzZ/jL5PmHNJU6JlvpXPWdrFn6NAAAAAAAAAAAB8 +2lou5abAP8kZ5jwXysc+fNpaLuWmwD/JGeY8F8rHPpZ0PWvJ/l/A9Ps6oTh1Uz+WdD1ryf5fwPT7OqE4dVM/F1PYYgpoqT9Tj9DcCwCgvrxcwGEKaKm/JDwtJ+QVnD7K +ykmec5FOvQtE11qUcko+wIeKLLZ5aj3iY2teccR1PjsBAAAAAPA/mxYcqK0WQD7aSDtggIDjP2Bj/9nXvPq+7ct3sDqqMz2bFhyorRZAPgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAc41M/8xOLr0TeoTEhIE6vnA5G9H0Jb28jb2GtrSd2j0AuhE7V3+MvoTq+NAH3iy+Lz15KY60qEAAAAAAAAAAALJbZjXlpsA/EatKQZXoAD+y +W2Y15abAPxGrSkGV6AA/pRg5Zcn+X8DdocnhEfOMP6UYOWXJ/l/A3aHJ4RHzjD9x0hBeCmipP05r8Ftd/ta+lW4JXQpoqb+V9rE0gq/WPo1LheYCjJC90i9I0dOlUD7x +XOuQ90mfPRqwekBZSnE+GQsAAAAA8D+LbOxh6VM4PlUAKWeAgOM/R+peji3OGj/OR7UoNjJmPYts7GHpUzg+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5 +GUbwnllsvRViNxo7r0C+SuhSIq76Hr2acBFP+cDgPQD+LLU2f4y+tNN6kvntYT5Nf5a2JBqvQAAAAAAAAAAAhZR8SuWmwD+bD/Mihp0QP4WUfErlpsA/mw/zIoadED/B +dCVTyf5fwAlUMJgTgZw/wXQlU8n+X8AJVDCYE4GcP8JqvE8KaKk/Vmmixxib5r7NSs9OCmipv5Vy/rd1aeY+tU61cwehpL2+5S7AUvVUPhrK4N2teKg9xLN+efJ3az4Q +EAAAAADwP3m2HCQgxjE+aLfCfYCA4z8CQVdFgNwuPxEgeo8pEHA9ebYcJCDGMT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWIIKrnkYG9rj5rMSkBRb7Y +P2wTy9YzvQ9VOKN/F+U9AHbn2M1+jL6ARD4vIU9zPnYSblHfk7NAAAAAAAAAAAAzuipy5abAP5Ff6ZFFqRk/M7oqcuWmwD+RX+mRRakZPzGoGzHJ/l/A3X6oVJsGpj8x +qBsxyf5fwN1+qFSbBqY/cUjDNApoqT8UXmbvmHXxvifJ/zMKaKm/RJZlUFpW8T6cf1qcChu0vd3mAvKKYlo+u2lcSXMKrj3/9c1/rNFlPjIRAAAAAPA/w8IA7ExVKD5I +R+mogIDjP2oKpUpS+zg/0k700ioycT3DwgDsTFUoPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbQ5Wg3sXkb0X8TWxcXFKvkBe1p7ogEO9SZsAIpGN6j0A +1ugDBn6MvmAvQ9WCrn4+XU5HzZKluEAAAAAAAAAAAHJwAbXlpsA/Z9arom0JIj9ycAG15abAP2fWq6JtCSI/odLC98j+X8Cl4nl28/iuP6HSwvfI/l/ApeJ5dvP4rj/N +8VIHCmipPyipdxWri/i+MWzRBgpoqb9UishqVWT4Pt5SoR/Pz8G9rnYk2rubYD5oT012BsewPb3a9KLbVGE+vg4AAAAA8D8Q6/h8KtQcPmsX7fGAgOM/1AtXn3vuQT9O +3zTab3ttPRDr+Hwq1Bw+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+JnMIzkGevY8izrccpVC+ZXjiM7tYUb0d3yvd0LbwPQAG8BO0fIy+JCpLJBbYhT4D +ruhHSAe/QAAAAAAAAAAA6RBuIeamwD+oKDFmHTQoP+kQbiHmpsA/qCgxZh00KD+tF7qayP5fwHiIIxPFyLQ/rRe6msj+X8B4iCMTxci0PyePnL0JaKk/Zh8W6S54AL/g +mYO9CWipv1PEhm5sXwA/HMAC8twbzr3eNLoqnuhkPrHSn1LU4rE9vF7KUaSIWz4rCAAAAADwP4Asjk2BDQU+YsmQaIGA4z81pnumw1NIP/Ow/aJUVmA9gCyOTYENBT4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMoWYb+zj6m91fCN6Wv0VL4+M3CfM2JdvSMvg0u2CvU9ABRdF496jL4wdNsut4KNPgEAAAAAiMNAAAAAAAAAAABN +4NfO5qbAPysqqgbEqC8/TeDXzuamwD8rKqoGxKgvP+yf7AXI/l/ALvHKz2kwuz/sn+wFyP5fwC7xys9pMLs/QvS2RwloqT/fyCv7DosFv+i3Q0gJaKm/qdOsT+NrBT89 +bdpWmMzYvbCsjQaNUmo+r+pzmeWVsj2A9TsH795VPh/4/////+8/Zde6fZ3c/L1FGHAmgoDjP5DWef1YAlA/AAbeXF6FT71l17p9ndz8vQAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAJ0O1+FAMtb0oJ+GiZ2Favmkwux0AO2i9TpH2DXl9+j0AtoCOIHeMvkrYJ1rUX5M+aczvhqCWyEAAAAAAAAAAAKVCreLnpsA/xQ+q1YJmND+l +Qq3i56bAP8UPqtWCZjQ/ovQ7Gcf+X8AfpqlkXIXBP6L0OxnH/l/AH6apZFyFwT9ScC+MCGipP9zsvv2gwwu/5trCjQhoqb/vja8vY5wLPzEKTgovH+S9ZRietauRcD69 +aPUn4QazPWxrSaBjX1E+ms//////7z8d8K+nbFcZvofjhlSDgOM/2vonQxC1VD++KIuk4zJ4vR3wr6dsVxm+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ +MWa3VxPBvb+wi8QDm2C+JqQM65Ksc73kUQ87sKwAPgA+tdeqcYy+IS48r20GmT6XP05Jd/TOQAAAAAAAAAAADhB4mOmmwD+cbY8WwQ46Pw4QeJjppsA/nG2PFsEOOj9j +NJGhxf5fwIJjDOVfYcY/YzSRocX+X8CCYwzlX2HGP9Cgi2IHaKk/QXZQ7lm7Eb/MUb9lB2ipvwBTyXmmohE/K4NNtiou8L2K4vii9Nt0PlEjaygqTrM9y5IgXl6ZSz4K +jv/////vP8saIGqVaCa+19IJNIWA4z85rsvLE4JaP8CCMA13fYy9yxogapVoJr4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDjc3x/dcu9cjXc+bTnZL7O +fLiddKd/vTjHbvT3/QQ+ABLvQABpjL6FKgtDGAGgPns7r+EnfNNAAAAAAAAAAADpdLdO7KbAP5nex+4djUA/6XS3TuymwD+Z3sfuHY1APzYQ1k3D/l/Ap9klW35uzD82 +ENZNw/5fwKfZJVt+bsw/JsaMigVoqT+OglQSn4YWvzY3VJAFaKm/j31qUoZnFj8cpeAwBOH5vQxrs3KfQno+051fqSN7sz01d9EuN+xFPkgl/////+8/dvDynXirML6c +XHksiIDjP3n7xfM73GA/6ZHF9QxXm7128PKdeKswvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAp2LzAzH11b1hCiSRZFFqvuH5pzYQUom9pH8hLnFtCj4A ++ifpQVuMvp8ksTIoWaQ+fUPwULeH2EAAAAAAAAAAABlpRZvwpsA/KW+XO370RD8ZaUWb8KbAPylvlzt+9EQ/Ekl0nb/+X8DUvk7Mmv/RPxJJdJ2//l/A1L5OzJr/0T+Q +3lGeAmipP/9roj76hBy/HvEuqAJoqb9XD6tF1F0cPzvOXDkHoAS+TUZ6SKiHgD6TwvzcgpezPcddjPXuaUE+tn7+////7z9FljTz5gU3vvPQ+OGMgOM/0ByjYEddZT/Q +jzfxoRSovUWWNPPmBTe+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzUmKS1X/hvaNpsjbukHC+SRfu9u8ulL1SZCsnnKIQPgBgrWN4RYy+9Cnna57GqT5/ +jNezseHeQAAAAAAAAAAAcZuua/emwD9ZITB5iXlKP3Gbrmv3psA/WSEweYl5Sj/YuJTEuf5fwAZl5SZTvdY/2LiUxLn+X8AGZeUmU73WPyxpWvz9Z6k/iLqNpg8EIr9y +sLAM/mepv6bszDVr6yE/00G2XilnEL6dlTr4X8+EPox4WYdnqbM9qbED5BqqOz5hdv3////vP1HFQAMxmj6+MKi7WJSA4z+CRdP/kQFrP08VUTD4TLS9UcVAAzGaPr4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALWJUC1j1eu9brZIUADbdL49anClow2gveBM4SBO8RQ+AFS9zu8ijL7mhOfJu0mwPpMPHvJWcONAAAAAAAAAAAB5 +jnc4AqfAP5bL3WG+s1A/eY53OAKnwD+Wy91hvrNQP2m1IICw/l/Az9TyYQix3D9ptSCAsP5fwM/U8mEIsdw/GxOrpPZnqT8xs9RAOrsmvz/UQ7/2Z6m/EZekbjScJj+a +T0ziOQ4avn0Ct9PVMoo+dVStZa60sz3JJN+6ffk1PjvT+////+8/zXLimtPnQ76FKS4toIDjP6jUf1IBC3E/7zwTrhOzwL3NcuKa0+dDvgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAdOHyfyMb9r3MAUldYEF6vnEcqXpwgKm9QJhfh4xdGj4ADof+M+yLvvRd23kyjrQ+F5fJJdd46EAAAAAAAAAAAMW/XlYTp8A/0+BVT2UOVT/F +v15WE6fAP9PgVU9lDlU/Ls4H0KH+X8Bjt+ch7RXiPy7OB9Ch/l/AY7fnIe0V4j9EB48B62epP+an1lFCqCy/v2tqLOtnqb/69qM6NIEsP4Fl/QVHrSS+6Q8GKcV9kD6p +6M6ZxruzPQAAC4R0dDE+zDr5////7z9/0I/o5pFJvndJ9+yygOM/44p//4t9dT++u35MzhTLvX/Qj+jmkUm+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACd +rJ0k34oBvlA6evXThoC+7zcpz/c8tL0ojM2fp5ggPgA4/ax0lYu+HHTQLt3quT75IZmA987uQAAAAAAAAAAA3PIidy6nwD9qfW7gD4haP9zyIncup8A/an1u4A+IWj+V +hr+Iiv5fwDlv+OHbyeY/lYa/iIr+X8A5b/jh28nmP/U/C5DYZ6k/PSAf5vQNMr8L3avU2Gepv5MgFYtf9TE/lbbB91lmML4udhxEB8OUPmXlFys4wLM9EA036MK6Kz6u +HfX////vP9XrdS9CTFC+DrsGpNCA4z/4PIuDBBV7P5RFrvKkxNW91et1L0JMUL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSWsvDP0wu+/0L0xj3OhL5J +la+mYA3AvRHLOrve5CQ+AKgh2vgLi759epIgZ1TAPsVs8SyNZPNAAAAAAAAAAAARvpF1WafAPxbKn9irtWA/Eb6RdVmnwD8Wyp/Yq7VgP4aZKaRl/l/A/gcg9GO07D+G +mSmkZf5fwP4HIPRjtOw/4EcjVbtnqT96a5ku3L02v7Z+m8K7Z6m/8sGadOmeNj/Bf2WAlAE6vuu29DF+I5o+Z5QOpfjCsz0wbIy5pQYmPpaY7v///+8/B8qSYrOtVL5N +JRm8/4DjP754ntjMDoE/rHd5zWln4b0HypJis61UvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6w9sI1AQFr45rh3SOjGKvpTXdemXdMm9Yk4QxRZOKj4A +6DelFDKKvqZ+cI7wkcQ+BQAAAABq+EAAAAAAAAAAAMPJ1pidp8A/8I0ciQYLZT/DydaYnafAP/CNHIkGC2U/0aclLCv+X8Cyrf/TDBPyP9GnJSwr/l/Asq3/0wwT8j+o +iQoCjWepP5nL9QCuozy/eAg9sI1nqb8YAasouHw8P0jM2leCnUS+zL0cMlB0oD6yQMQXoMSzPZJlNNnPfiE+V0Pk////7z+GCewC8ihavkRP3F5KgeM/EqkJFot7hT9U +aCZzqbzrvYYJ7ALyKFq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1iScoc30hvr7uheGUfJC+7xdJFc0t1L1D508kHo8wPgCO1sfC2Ii+edopvcvnyT6I +v6uoSLz+QAAAAAAAAAAAaLSklAmowD8bqGdxFX9qP2i0pJQJqMA/G6hncRV/aj+YphWDzv1fwAx9xo0pwvY/mKYVg879X8AMfcaNKcL2P/4H8ZdDZ6k/B8xMpdkHQr9D +0resRGepv5dMLsJT70E/78HCSeZWUL5yVNvdhbekPne7vuqJxbM9JjTCo/rKGz4s49P////vP+lB3KVOhGC+3RnvpsCB4z/XsUUQ9wyLP3Fjx+ppDva96UHcpU6EYL4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMe5TnmPuSu+mBT3SS3BlL4U4WLdxvzfvaCfsGZA2TQ+AIql+4C1hr5UA5V+TE/QPsHn0I3KWANBAAAAAAAAAADN +1Uq0tKjAP2cdmzUCrnA/zdVKtLSowD9nHZs1Aq5wPwiK4Ks7/V/AA4sGXz2n/D8IiuCrO/1fwAOLBl89p/w/NV+VQM9mqT/uRkEvb7NGv1hT6/fQZqm/ouQLWJCURj/d +tVMS7eVZvlQQ03jOFao+G0hxmOjFsz3G10yhOxMWPsLvuf///+8/W3j/TRrVZL7nQE8YfILjP4lEdURkB5E/I7Kycw+EAb5beP9NGtVkvgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAA8883Odn4Nb5HoyAddCCavourrEmqWem9Ur6WcDxAOj4AaJVwQVKDvpaHeRHUiNQ+XQob2jFbCEEAAAAAAAAAAPBxmd7DqcA/EMMNaYX/dD/w +cZnew6nAPxDDDWmF/3Q/ajU+/FL8X8BwGUieLAkCQGo1PvxS/F/AcBlIniwJAkCGxGTlFmapPx2pYZEGlEy/8cJSnhlmqb+yM4yUKm1MPwRJAFXAhWS+0UHehH5ssD7I +dD6V0MWzPXacioZviBE+ftCQ////7z9Y09qke0FqvikKqh6lg+M/IOpndRJwlT/kbph+4MsLvljT2qR7QWq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJ +5Gk3T2lBvmUJzH6xcaC+s50CWZ8W9L3WPQN6K4dAPgCcbjoA6Hu+ry+yrtzZ2T5gVCwlpakOQQAAAAAAAAAA63m3hHGrwD8D+7snm256P+t5t4Rxq8A/A/u7J5tuej8F +KxBO4vpfwC9P2s4DtAZABSsQTuL6X8AvT9rOA7QGQPiKyMryZKk/JTBLsqP8Ub/0y9sb92Spvw7T1+cu5FE/plR6rNJCcL6AVvReRK+0Pp6W/L08xbM9sfM+BVTZCz6G +qE/////vPxS0yGV7iXC+6vHTvXuF4z8uoDUFQPyaP6WVmzvvCha+FLTIZXuJcL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFd54aiNl0u+1DA8lNCypL5M +vhW1kNX/vW4TFBLJ0EQ+APgEfDrKZb7vYo9wOEXgPtK3ZhAPTRNBAAAAAAAAAAAKZMQqGq7AP3aGBrxTooA/CmTEKhquwD92hga8U6KAP50PED6a+F/Ai5Wx8y2TDECd +DxA+mvhfwIuVsfMtkwxAm9G0CiRjqT8B6i8biqNWv30+XeIqY6m/5NOVbMKEVj9fdGyYCMR5vhuyc0yUDro+9G25Rg3Esz34XSDTch0GPi1w6P7//+8/YV95qdTSdL7e +JE9MZYjjP6bEqxBm+6A/fYx+Mf14Ib5hX3mp1NJ0vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+N0vgS3cVb5Tf4wwEQ2qvg3c/DOOOAm+R3Nj9KU4Sj4A +3Iuh4Q1wPhC29BNyeuQ+e5OlrmxMGEEAAAAAAAAAAHNADixQssA/GKV0Z77uhD9zQA4sULLAPxildGe+7oQ/ozqoNf30X8D+PYbZxPoRQKM6qDX99F/A/j2G2cT6EUAY +P2MkR2CpPwA7ysgyfVy/5KoY/FFgqb/5RVU2d1ZcP14gi93SaIS+QDXV1hlrwD52nmj4AMKzPeUDViIQjwE+k/VE/v//7z9d/Un/YzZ6vqCw0hkCjeM/JOtnAqxepT9Z +mXPSprArvl39Sf9jNnq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrTKeD4FBhvhqJkmEwZLC+d76XSV36E77wSTk7dIVQPgASlNo3Xo0+6gwi0BnF6T7h +/DvvDJceQQAAAAAAAAAA10YN0Pq4wD8uMncnyVWKP9dGDdD6uMA/LjJ3J8lVij/lZxW/RO9fwHj0NHq0nhZA5WcVv0TvX8B49DR6tJ4WQGP1odq+W6k/1Hi/bsHrYb/U +3o8H0Fupv8SyZEtk02E/olSdwZEpkL4LeLEnzbPEPmEZJWCnvrM9qhBmFh7g+z0DJkL9///vP9+7B6L7fYC++Sh1ek+U4z9k1sFXQuKqP68jqOnP7jW+37sHovt9gL4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwx/rj7bGu+ORFrjDiftL5RlPgFP6QfvlERJy251FQ+AJ0JRLCTnz7EYseMyzXwPj61X7BaQSNBAAAAAAAAAABy +GSfwhsPAPxdKX/swj5A/chkn8IbDwD8XSl/7MI+QPzmq2cY35l/AcPYL5VJyHEA5qtnGN+ZfwHD2C+VSchxAr7/qIJNUqT/ExuYWgolmvw4D0lKuVKm/DMvNpt5qZj/w +99xPb5aZvqtaR6DOIMo+K53pMEm5sz2Ea+btJB72PWytqPv//+8/RhQUx0i+hL6UTX4O3Z/jP7ktn50r57A/9pjUT0pdQb5GFBTHSL6EvgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAzM1ceNi1db689yfbPO+5vurqlRcPDCm+I6cXC79JWj6AGsdd2yatPid0jNWPYvQ++ccteLA9KEEAAAAAAAAAAFSB8Iky1MA/dbsF283PlD9U +gfCJMtTAP3W7BdvNz5Q/K7+7wunXX8Ck7inUNeAhQCu/u8Lp11/ApO4p1DXgIUCpo3u6PUmpP40xWjIdU2y/NdZcwmhJqb++esEcnCxsPx89Vi3YPaS+tOmScwWD0D63 +YLhUwrCzPfDx/vy4ifE9wIAh+f//7z+9qpGGxRKKvtGmm4UfsuM/AdUPLaw9tT9FF5oB/XlLvr2qkYbFEoq+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABM +9BKn2yyBvq7y4sFHTMC+yLmV7HXQM756Cs1PSZxgPkAKWg3oIrk+nCzYPFae+T4KAAAAgIQuQQAAAAAAAAAAGoYIuoDuwD+ghe60WSGaPxqGCLqA7sA/oIXutFkhmj9K +DQwsV8FfwIzly+GycSZASg0MLFfBX8CM5cvhsnEmQF1qcWBbN6k/yRxc/RjIcb97uGBlnzepv69aBm3tr3E/1ENj3w3+r775KtIdnerUPktOg/BGo7M9nzipbODI6z3g +RyT1///vP3l974HNXpC+wPEwn+/O4z+OU+Io5Km6P8JHcz9wt1W+eX3vgc1ekL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2dh2npJYu+ew/tBfB2xL4F +ce8oX1E/vgIhVA1rCWU+wBTA+XTmxD7WXVGQ1hQAP7dXa2mtNTNBAAAAAAAAAABpwW846BfBP8bMxwnkYKA/acFvOOgXwT/GzMcJ5GCgPym1ocXPnV/AT47uZtkiLEAp +taHFz51fwE+O7mbZIixAY5cUITUbqT/XJLyIikp2v0QIxnqgG6m/AHtEvj4sdj8bc/gy8z25vkDuGXOqlto+rJfBLgqOsz21pm8QRPnlPQ/p3O7//+8/90TA1W2GlL44 +V50xSfzjPyT5Q6kTtcA/dCg+8RYjYb73RMDVbYaUvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmW225Spslb71l0AwYajJvj3x95H0tUi+xr43uXW7aj4w +emED3gHRPlM0BfQzKAQ/tCFFMf0uOEEAAAAAAAAAAGmjyjbRWME/rUrLH2J7pD9po8o20VjBP61Kyx9ie6Q/gX9OwxxmX8DitHfcwpcxQIF/TsMcZl/A4rR33MKXMUCM +Wa/GE++oP1pLJfBP4Hu/rQsYybzvqL9fb//cbrp7P91l9+mq3cO+e9HBmUj94D7ZylMsvGyzPb6B79OOVeE9hgwF5f//7z9vbHfDWayZvkpLAAFhQ+Q/t8OPn+PhxD9q +ETR68/pqvm9sd8NZrJm+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJ49gF/9ygvqNLSMXaC9C+z8I8ivNyU74mFpbMexJxPuDhaGJ0Sds+mhGTdbYzCT/3 +zKFQ/nE+QQAAAAAAAAAAmCRcs/G9wT/4nA5PEoSpP5gkXLPxvcE/+JwOTxKEqT/OyQzjVQ9fwCjKB+m66jVAzskM41UPX8Aoygfpuuo1QFF9EQZTqqg/F2KvqSldgb/T +v7oXXKuov87Ghk+TRYE/E9qIeZolz771/G8GZ+LlPl4gaVbXOLM9JjkI8qU92z3sUa/V///vP5Lk1WFt/p++mHW+tCGy5D8WDni2S/7JP0IryQlXKHW+kuTVYW3+n74A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOci6j2Tcqq+5KDLmh//0772jQVIEX9evgxtbew++XU+2MKjzJ6m5T7iZtPMvWIPP760OzcHKkNBAAAAAAAAAAC/ +EU7B+FnCP3yyPF1xma8/vxFOwfhZwj98sjxdcZmvP5xUJcNyiV7AeA42Ho4kO0CcVCXDcolewHgONh6OJDtA048u/T5AqD8MxFCuEIGFv0WT9kLcQai/tFaSQd5jhT+B +33jzuETYvmEub9+kg+w+WBEeM8Xosj3YtH6OF0bVPduXBr7//+8/Yodygj/So77Gi1d6/lzlP8AgaMMHE9A/TIshCVp+gL5ih3KCP9KjvgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAPCEvdAOetL64tyap5MbYviDqh5/tw2e+FeuVDO6YfD5U2OceoADxPrd+hhyabBM/yGWA1FIgSEEAAAAAAAAAAEVr6d0hR8M/wrMTPddjsz9F +a+ndIUfDP8KzEz3XY7M/qYOwwPC9XcDp+MK54qdAQKmDsMDwvV3A6fjCueKnQECi2YP2AZ+nP6Nppxk1ZIq//4VsfYChp78XGP4pZ0CKP33FCZamu+K+rY4wEtPe8j4h +4WplD2+yPTq60k5eddA9Kf8Qmv//7z8Q5rZXcViovqhbvpOpYOY/kmgWqqyv0z9Hi7k1wHuJvhDmtldxWKi+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACE +Uzeywtq/vmjuAiOebt6+3AnpH2pZcr49MZ0UEuWCPhztz6EOZPo+ymwkPIrRFz9c+E7ah19OQQAAAAAAAAAAGXVSiounxD/8wXCnWHm3Pxl1UoqLp8Q//MFwp1h5tz8V +7HyViI9cwKZlzKAvKkRAFex8lYiPXMCmZcygLypEQCkG3Xppr6Y/yQ0A05Dzj7+b0bCxNrOmv2d+4bBFyI8/2pdLMBSE7L6PtmZyEHv5PnTeligzurE9+ug67L0byT12 +LqNk///vP9gS2yT0gq2+WkYi/Gvi5z8y/IrnGMHXP8AJPDGaa5O+2BLbJPSCrb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHygpJqJRsi+1mb43d5x4r5o +F86xZfF7vsrlwZSJdYk+wlvtTI0rBD9MicOiLMwcPw5+hRVoHlNBAAAAAAAAAAAkeRKZ/KHGP8JPGmCM27s/JHkSmfyhxj/CTxpgjNu7P683tZTz3FrAr8xR/JruR0Cv +N7WU89xawK/MUfya7kdAainNPxhXpT8x8+pG1vWSv/wkX1rGXKW/TJvVbzLckj8zaI+9sEL1vhPmsF5LmQE/3MAjXkm2sD2hKqM/Q8LCPXuE3hf//+8/zW3U1BuMsb49 +v53QjAzqP+ak8wX6Ctw/hcKTcC8Enb7NbdTUG4yxvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHLHu06Ei0r4qWZp6J+/lvgi9erC32IS+ZEvCL7CJkT52 +CR0ACDEOP66BxERbDSE/kKJ3XLERWEEAAAAAAAAAAKMLu0DZV8k/wTgBavISwD+jC7tA2VfJP8E4AWryEsA/sQsefYmJWMA9IrBX8Z5LQLELHn2JiVjAPSKwV/GeS0CT +MF/UWX+jP/g+gm/34ZW/MLjpmpqHo78CL1Oud8SVP5CrqQfwyv6+27bB2GnYCD+DG60QW6SuPaj+5PuaOLs9u4u4rv7/7z+ua3TDzlC0vkIGl6M0A+0/SHVA/dAL4D+h +SFdEdxSlvq5rdMPOULS+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgfPjpmFnavhnmZNsFZem+hxCYg0Y5jr6WFTN5zq+YPg4Z5Th09RU/crH8wBCdIz/6 +OTmWHE1eQQAAAAAAAAAAt3ZTV8vSzD+Y4ywYqN/BP7d2U1fL0sw/mOMsGKjfwT8X4Pds/YxVwM7LZWz0t05AF+D3bP2MVcDOy2Vs9LdOQKvAWcWaIaE/11s4KC9WmL+O +Wh3nKC2hv7zfwG+KNZg/VDJFTptyBb8vUwEeFNARP9P41OLNEas9f95586H9sj3gs8Un/v/vP+kcSWjVtLa+eJhWNRNo8D9t7OQl7prhPwpD+sGkg62+6RxJaNW0tr4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJIWapIcuK+kaIPIg1i7L7eOfPI3hWVvqL3OIqEpaE+ZutcsU3EHj8ZdzGc87ElPwgAAADQEmNBAAAAAAAAAAAn +UT64FHjQP+BkkE82/MI/J1E+uBR40D/gZJBPNvzCP1lHRt0JBVLA5LTyh6NRUEBZR0bdCQVSwOS08oejUVBAIk4t8tGqnD9IVGxHWtuZv9W9Bm+7yZy/wizcF/K4mT9C +aV/O83QMv7zVAti0qBk/JiraaHPYpj3gS7Ed/DmpPe6eXIj9/+8/yryVz35QuL4npbqE9qXyP+7N6kDbTOI/JWmTCBu9s77KvJXPflC4vgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAA/Hk/OGOs6L7X7RoXoGTuvqDSsPmGDJy+ty8K6KlZqT5prRlA6pUkP0h+XjkQ2iY/qC3GwxgDaEEAAAAAAAAAANBJs9VCrdI/2f9Dxl4mwz/Q +SbPVQq3SP9n/Q8ZeJsM/CzaZBe51TMBVJE02sXdQQAs2mQXudUzAVSRNNrF3UECEf/mlqKmWP4YE+P+EF5q/KtbQ5u3Qlr+RLYR+PfWZP8pmBdXD1xG/nyHTwpdVIj84 +1ObR50+iPatMf8cMpp896JqU3fz/7z9IJNwj8Na4vq6pwaU+C/U/++KVqdnR4T/FI8EoWxO5vkgk3CPw1ri+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADR +6e8XM1jvvpWTAyqtDO++cHhn0j6pob6h4+KzcBKyPkHwb0ueKCo/HqN3IAO+Jj8lapZ9vDpuQQAAAAAAAAAAlitBrP7P1D/6fAmxHVLCP5YrQaz+z9Q/+nwJsR1Swj8j ++AV56SBFwLyHQ/rYh09AI/gFeekgRcC8h0P62IdPQMMzH7OF2pA/FMgeRX76mL98NSJT2gmRv4GxqyBY2pg/0ZTVekcPFb/nteH1g7wpP+zLairk2Zs9iY4F7LWpkj1m +jOg4/P/vP+mlhJo2Pri+gCCy36RX9z9O44qULRTgP41m05y7OL6+6aWEmjY+uL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKwa7F14/K+w35z1sRN7r4g +Rg+1Pf2kvp5+jJxPUrk+qrHR/C2ILz85EGxScUolPx0gZfI+B3NBAAAAAAAAAABpuQkcOa7WP//+3y0gsMA/abkJHDmu1j///t8tILDAP9VoJmd3bT3ACQ36IW/ATEDV +aCZnd209wAkN+iFvwExAxtn8a+uKhz/ELPdhosaWv/N54Y6W94e/eeelkEiqlj+Ms0VRUl0Xv0JBMOlYqDE/C1+IplIslD3To6c+uqWEPbQd16n7/+8/SkWMfXvHtr62 +4qUUflH5PzXtEkkCfto/sY4xiaNYwb5KRYx9e8e2vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9zwvvMyu9b6XP4avWnnsvm5jSopXjqe+8s3IDQdZwT4A +r22jihkyPxQAc/UfuCI/8KEKBYn0d0EAAAAAAAAAAAOFkdniLNg/ZsMuRwYovT8DhZHZ4izYP2bDLkcGKL0/20qxoDUoM8CY48ia6ShJQNtKsaA1KDPAmOPImukoSUCn +mv1vu89+Pws8HTHX7ZO/+/OYtym/f78lmW66XdaTP0I8d5vGURi/MnAHu0awNz9B5zQFYwuMPWmEbox+WnU9C08MOfv/7z/wGdDwQOC0vhvz3ebs1vo/Hy3dX/9D0z8y +FNPDzhvDvvAZ0PBA4LS+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHn96swuL3voIduVdRGOq+aK4wyQADqb6v04dAsT7HPmyX6Khk8DM/HoB9VXbWHj8+ +f6CJZyh+QQAAAAAAAAAAp9GZD4pJ2T8BBwJBPKG4P6fRmQ+KSdk/AQcCQTyhuD/sd1SBpwQnwHTsMqXFT0VA7HdUgacEJ8B07DKlxU9FQKu69rSYsXI/kjOCyf7gkL8+ +G4vG67Bzv0956VLlzpA/iklnWiuGF78YmFmcMSs/P9e3AaCL3oI9Uq6IMFxhZD1RLvnn+v/vP/A6JePR97K+F7eRVebe+z/y/mrtVCnGP19aukYbYMS+8Dol49H3sr4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcIJj4iePm+3uVPcMa1574vwTJBWhepvrWpgdXtjM4+ap8Xzo1CNT+ITlkVR4wXPzxbcei0+4JBAAAAAAAAAADB +xKqwfBHaP5qGS1mlQ7Q/wcSqsHwR2j+ahktZpUO0P5tpGrrffhjAj/wgkCCcQUCbaRq6334YwI/8IJAgnEFAYsGscRpTZD/c7rCpkeOLv852cdBQZma/fha6e03Kiz+u +WqbpenkUv15LpdzDMUQ/JBMlPR/FeD2mMb8ETDpRPQLPorP6/+8/H/iQNJ1lsb4ROUawZW78P+5STJT+s6I/0Nn3w3Qxxb4f+JA0nWWxvgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAge+6DdJ9+r4qXFKKBL/lvt0hS8zQgqe+IGNqufzE0z6+XIemXhw2P17D2tVuGxA/ld3mGgLmh0EAAAAAAAAAAGm5VT6Dl9o/n78lvxxRsD9p +uVU+g5faP5+/Jb8cUbA/7koudWDyA8C2MDmRp408QO5KLnVg8gPAtjA5kaeNPEDPF82COKZRP4767/l6moa/K3OWi5fiVb8IbPT654uGPwhtjxtwvgy/r+2zfL7dST+b +5/V0FOdvPSCcMcdZSTY9Ywnml/r/7z+OWRPTgmawvtPUwoDQi/w/CEAm6usfu78dknLaZ6DFvo5ZE9OCZrC+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg +wALhgQj7vitboYojgOS+iNh0KIPYo76aWnBcf0jZPp5M68H4jjY/zg8hpWCVAT84i5WzHRaOQQAAAAAAAAAAm9QwPkDt2j/ErTtyO8SpP5vUMD5A7do/xK07cjvEqT9/ +be9uaq7Bv2EhVLo/yjZAf23vbmquwb9hIVS6P8o2QJPgCh/Q6SU/7BlBXmQIgr8+k7yXcPs7v8FRlK4eBII/KIgMk1k5777m41mV0WpQPy3+lDjqOWQ9Ki5PN0Ri7zxH +G6CR+v/vP/mRJELuJ7C+M2/JZFo2/D9eh5N8/zjQvxIZ4pJ/ucW++ZEkQu4nsL4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHKUt4HfJ/u+uRjN0ukx5L5I +XXqKG9yaviXOqYTMA+A+vZ2WuD6nNj/8V91fNiLbPj/E490x8JJBAAAAAAAAAADLJnbhfSDbPypZbI0t7aM/yyZ24X0g2z8qWWyNLe2jP5xOP/doH/U/Hkx1m+rtMUCc +Tj/3aB/1Px5MdZvq7TFAa/Ifl5DoOb/bnup0clp8vyxTqcMeFyI/WRrs+KJlfD9+uiTj2woKP0xi0DKorlQ/sCHeKH9HWT3bFJlPIMgdvZIwj5/6/+8/mJhoKXnXsL5P +ECuyh2L7P1OTTSyD7Nm/5AO4PcOBxb6YmGgpedewvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqeR3EzTi+r68fdRyVw3lvuDFmw+5iXq+FrXV2Eof5D5U +ihNrKWo2P4WGxNbdnvS+DgAAAITXl0EAAAAAAAAAAJuOTzbqOts/7yhfaLwNnj+bjk826jrbP+8oX2i8DZ4/tJrWMJ02AUCyyQsrT8krQLSa1jCdNgFAsskLK0/JK0AU +NzdluWpHv/DOZk9f8nW/cdb7+sdhPj9hjOuHNxB2PyRaiwB/yiM/Nmo55qPcWT/OJcY8kx5PPZG9fTY1RyO9ntouwvr/7z+wGX24sbKyvmpDuU/i+/k/jE+2IZfU4b+T +VIeVRPfEvrAZfbixsrK+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg/My+FTX6vsrsZyVeX+e+do6/ZDRKlz4otagTUBXpPiZy+1hj1TU/sZFDWPxiB78W +ubf03gOeQQAAAAAAAAAAoaCjLfFC2z/+7IdCHu2VP6Ggoy3xQts//uyHQh7tlT+wbBJZXFAEQFDjuMYnKiVAsGwSWVxQBEBQ47jGJyolQF5Cg1/oOEy/ih7SwpSwcL+D +vIr1WFVEP93w1ZNo33A/xoCCgwcaND93VnS6LQhgP/N5lIIM1EI91Yjp2kwSIr3h0a36+v/vP/lPePnpFLa+ehl5lwXt9z8L9WDgfnTmv4PwfbhIFcS++U94+ekUtr4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbu9+iaGvm+KD+1diSa677U8K7tnkSwPsMfCNnIAu8+QINV37bjND+qR6rMyLcRv1oCfs615KJBAAAAAAAAAACd +nh+g/DzbP/eCaf1RmI4/nZ4foPw82z/3gmn9UZiOP8wUjO8E3gRAGCEY1uKfH0DMFIzvBN4EQBghGNbinx9Ahqi9ppz1TL/f4Vk0W+Fov7/wXgPDiUU/uTWX6nRbaT8e +sVW/o7tBP79gs+0oqWM/ksAkleZYNj0idMQpzn0dvc3oBEn7/+8/jZD8CFd/u75vUhc86i71P7tWCI0TZuq/iJfMXOzbwr6NkPwIV3+7vgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAA1EtldeeS974g4ydlli/xvg9DpMBe6L0+kB0peCEC8z42q0K3MpUzP5c6f52t2xa/KGj+rg7Jp0EAAAAAAAAAAOUNEhOyLNs/Szam9ccWhD/l +DRITsizbP0s2pvXHFoQ/xmVlFLClA0CjhgvUgykXQMZlZRSwpQNAo4YL1IMpF0CFZaxf7NtKv87g6XAuKmK/nFLwPLIDRD/dfMKUb7hiPzdJDr8RAk0/BKuYmRLCZz+O +LSkGjQAqPVwLjVdlDha9K+Wzqfv/7z+GMtWvvMrBvpBQUPVl2/E/6KCXx7sf7b9/E1NrMFnBvoYy1a+8ysG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADE +3PeGfK/1vpNFcttrPfa+b+TQbXgpxz6yTrPNqx/3Pg6omBDO+DE/aymAeEWkGr9xSk1Gq/GtQQAAAAAAAAAAuyj8ccMV2z+wuWMcyUB4P7so/HHDFds/sLljHMlAeD+3 +t9F1o1kBQD8SCwN6rhBAt7fRdaNZAUA/EgsDeq4QQFQmmT2wCUe/6lKDuBQPWr9DniIZX9RAP8buUWrNPls/KcjcgMqBVj9ZXyUBpCJsP5ZTzjgrwB09xx1BtG3xDr2N +zpwU/P/vP1P2iOXjhce+MmP9o1Rs7D+OKRwL0DDuv5bUlosZW7++U/aI5eOFx74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItFtffvmPO+DVGt3lxn/b56 +AVFjhxLQPmdIfpMi+/s+xJO32z8xMD8lv/FdD7Acv4pPBLZA2bJBAAAAAAAAAACyZm2L+PvaP/zu6N4Cxmk/smZti/j72j/87ujeAsZpP4DaNwW7Pv0/04MaRXXOB0CA +2jcFuz79P9ODGkV1zgdAJP8+eOyJQr/L1jnM9YFSv4wr9wcE6zk/la/SCOSuUz+Qrh+rHa9gP8+ftiLSNXA/yd4oD9bcED1FX93QArcEvTGPkH78/+8/zE2aPRZKz76H +s1o9Aj3lP2OvD0Wqe+2/w7p1hnsLvL7MTZo9FkrPvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAhNNC2H8b6cuWvmTY4Dv8Rn/yVFgtQ+upOed7TnAD8e +VhZolNwsPwJjhW0b7hy/D7KNIqK6t0EAAAAAAAAAAL+OPneX4to/eqwbL29tVT+/jj53l+LaP3qsGy9vbVU/0sq/olj49z/cZd8AEQIBQNLKv6JY+Pc/3GXfABECAUCu +csFAmWg8v0VdEf8NUkq/ChGSpJFdMj+roXXLhIFMP0VjnDVZn2c/OMF2tPkFcj9D3TUwjCMDPQorS5Qa+fq868Qh3fz/7z/8hWFLZbfUvrpHbO5Dtd0/PuAOu9FJ678I +IqvY8Ra5vvyFYUtlt9S+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7eCJPrlzvvu5qLJ4+5Qm/PYPlUZl42D4NP5ii0HsEP+h9zcOAuCk/wQriNz6yG7// +lKChgt+9QQAAAAAAAAAAMzKdx9jL2j+rrrVGd8IqPzMyncfYy9o/q661RnfCKj+ut4UXx4HzP013K6x4k/g/rreFF8eB8z9NdyuseJP4P8ChJHvdFjW/GMVYVFjxQr+C +v49cruUnP6ykCNeX3kQ/QkPXhiLTbz9Df+huFi1zP9GEiiKY9/U8vAFfBqVv8bzl+QEq/f/vP7fU0BfbK9u+cKgRmb5c0z+BF9eB6ifov5rX2zDwr7a+t9TQF9sr274A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALG8Pj3sW+y+Cine7mj7EL8AHYXhTLPbPvRiwHsc9wg/S3SC8PgqJz+QA6hJOZIZvwZ3PZDSzcJBAAAAAAAAAADm +WOzW4bjaP8GP2MpnXje/5ljs1uG42j/Bj9jKZ143v0i7Ep6hEvA/JdXfplwR8j9IuxKeoRLwPyXV36ZcEfI//LJmAKnuLr9wP+3Kn8s7v6BXnE/mABw/B2yKA9sMPz9a +vOzxkFR0P7CSUjCiaHM/8mXWLhao6TygydINztLmvAxvuGP9/+8/Jox7g12i4b6aO5oQ8S3HPxo/3AssqeS/mo2ghzzitL4mjHuDXaLhvgAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAAE1miqcsa6r7VlFfk9AoWv39vnknUIN4+6Bi7sMykDj9k+62ebD4lP38KIXcTKxe/UrVcVT6sx0EAAAAAAAAAAAgqkAkaqto/2j6GCW+TQb8I +KpAJGqraP9o+hglvk0G/F+JsdJU06z85HdWVehLrPxfibHSVNOs/OR3VlXoS6z+yLqoYOtomvxl9iYtj1jS/tKWl9U6CCz/Wy4OLhX03P7QXIZG/oXg/zJDgziqpcj+i +Qpe3VYnePNxVO+K2r968LpAejP3/7z8un+Wd9K7mvqsvdLvbTbg/fYlGfOw84b+5VYx+C5+zvi6f5Z30rua+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ +rz5ezobovvwbXcWxWhy/BWVPBenQ3z7bTkScRe8SP63ZcXsJ4CM/X16iDlb4FL8VAAAAZc3NQQAAAAAAAAAA0x2/mHmf2j8HeaOxFo0+v9Mdv5h5n9o/B3mjsRaNPr/B +E1lWN9DnP5PuhMwIoOQ/wRNZVjfQ5z+T7oTMCKDkPwcAtNnITiG/7mTdwUHjL7+AbbjAY73vPqpldjkHCTI/Db9oIZdsfD/FtgFzeRtxP+rbYq3QetI8zPu1if1V1byU +iGCm/f/vP/ZvWzbL+ey+hppbmjiRoj8zSC7tNEfcv2lKX7v7zLK+9m9bNsv57L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxaQKo6gOe+S3v4AR8cIr/R +ov/iQXDgPvwr5IQQiBc/8ql9hSnxIj/4hLAZFUoTv7DT8lhrwtJBAAAAAAAAAACQ79zRtJjaPwlH3tZuYzC/kO/c0bSY2j8JR97WbmMwv3l0vSQIjuU/3X/Y+K3X3z95 +dL0kCI7lP91/2Pit198/FE5uHjU6G7+otd/leNgovwDE6dGXYeS+yvL2EpMELD/bPjq0fXx/Pzp3T7+jIm4/gDLMNqmpxjyn/kl0QK7OvOVRorX9/+8/wmIPDQxq8r7A +4cbwnoBlvzHajEde79a/2c/bcO1Ssr7CYg8NDGryvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOG4Yzajn5r67wFIQjwQnvz2GnX9QtuA+uSzrXtNeHT8k +OXeuZVMiP6CGabpvThK/84IdQuOd10EAAAAAAAAAAOKBSEFWldo/nC6hreUaAD/igUhBVpXaP5wuoa3lGgA/gzruF4cU5D+qtdpqZ9DYP4M67heHFOQ/qrXaamfQ2D+Q +fVb3xmMWv6ORW4fpriO/kFR23fow+75OnkQ46PMlP72WbDcl5YA/7TBC3vq7aT/BGQLsng68PFcHV3UJtMa8bdFzvP3/7z+yLnUv5FL3vgNPf3oZpJy/8Do3Y8d30r9n +Uph0YRyyvrIudS/kUve+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV6MHReaPmvpAfUjudJy2/6/FTL7PG4D7GrxvX3mIiP0q8jTrl7SE/I8PDOEogEr81 +Ar5aUrvdQQAAAAAAAAAAbX+ol86U2j+Jyqjnk4k0P21/qJfOlNo/icqo55OJND/dSPzV+CDjPzvvSg9WdtM/3Uj81fgg4z8770oPVnbTP57zAJFgPxO/CP3Tmq65H7+o +5Aye4hEDvxNc9FcbUCE/Y3ZTV9m3gT/img2vrH1lPz614hwAe7E8T43kGe4twbx9QtS8/f/vP/TeygI0ef2+85l5qhizpr8BT30DgJvNv6+eF+xdGbK+9N7KAjR5/b4A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL21H2e1n+a+/ai+gcBrMr/cp97usqvgPl4xrfXxESc/fXeMmEiuIT9VC0hD09MSv4lO8AsLt+JBAAAAAAAAAABs +HAIedpbaP7EYNluXB0I/bBwCHnaW2j+xGDZblwdCP1oDRxLnhOI/oKBgTuSozj9aA0cS54TiP6CgYE7kqM4/JnrR5W81Eb+wLCEe2hYav+S2Zn72kAa/HB8MNHhzGz// ++yv0S0mCP0ExwexBrGE/4Lsc8g7gpTw521yLIGy6vOvveLj9/+8/LXPbBfWXAr+mwYO74hasvx4o0tuQqse/tySkgDg8sr4tc9sF9ZcCvwAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAA54vOoEbL5r6ONVJH8j03v1EnvE3/b+A+Y0AvoG39LD8SAPCYpYchP4hDCfglfxS/b2OF45CP50EAAAAAAAAAANOu6DiKmdo/M90Z939BRz/T +rug4ipnaPzPdGfd/QUc/X2X4lT8h4j/0tbfLgDfIP19l+JU/IeI/9LW3y4A3yD+MbRAQPMMPv5mR8VZlBRa/2BCrRJjJCL+6jukhmd4VP+l9+82aq4I/nxYxWI/DXD9g +NZ1fo3ObPPJ14XH/i7S8lOsNsf3/7z86a+0oxm8Hv2XOPMkrjq+/+jln5iTiwr+wCl+jkHeyvjpr7SjGbwe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5 +qDfMdBXnvnyxKLO3Sz2/U/Zk5XYg4D7xMRGpWzsyP92MfrATcSE/Avm3a9Y/F7+WHjGrSqntQQAAAAAAAAAAUa5oVj2d2j/SJ7QMupJJP1GuaFY9ndo/0ie0DLqSST9n +04GMuuHhP8aUgoCPKcM/Z9OBjLrh4T/GlIKAjynDP8xsp+7PBg6/giZ478o7E7/QVtXCkzEKv2wxysyghBE/jJLZWzbtgj+htrcFTT1XPzAQRO/BQZE8zfg5qvsYsLyT +STWo/f/vP80RV9LxhQ2//7uwPbDksL8FI8cy+Ri+v1M1abNVvrK+zRFX0vGFDb8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALUMRCDrbee+E2N2I7dzQr9o +O8HHOpffPn59fkH98TY/yn/HtXZkIT+us2lszT4bvyJdBKWxq/JBAAAAAAAAAACYUkyv3aDaP/qtTj2zR0k/mFJMr92g2j/6rU49s0dJPya5vpZJueE/kLIEL41cvj8m +ub6WSbnhP5CyBC+NXL4/KN9/uq/jDL8AcRpK7YkRv8zAV9H4FAu/8G89xnxDDD/8TfGymRiDP62TpUzxrVI/VO5dQUK5hTwFtd1h/VipvMoaQZ/9/+8/UqmBN8KWEr/S +bUlBoZyxv6orxhrc9re/up+xKfcFs75SqYE3wpYSvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj14e9HTH575QDWLFcjxHv2HgbBlv/d4++NQHxMTiPD/6 +DAl/sV0hP6cMNDzdWSC/y9RMNEeB90EAAAAAAAAAACOo4R75o9o/ZdWWeFAdRz8jqOEe+aPaP2XVlnhQHUc/8LW/KpKf4T84pQytRRK4P/C1vyqSn+E/OKUMrUUSuD+w +02wFdSUMv0Dr8mVR0hC/qOyw4W+kC78AH2NwHgcHP65BDJgNNYM/VgqpfQ/qTT8J6GNxA197PNoNhoQsBaS8c3Pmlv3/7z95Vja3h2cXv6RBULXvErK/mZt4XFMRs7/t +8WlkzEizvnlWNreHZxe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmpYR9/xrovhfnA6VpQU2/jH3bhPGF3j6q3ElWNS9CP7ei/a4fWiE/CfmFn3r0I7+r +4rPqTZf9QQAAAAAAAAAABU5zC2Sm2j+m3Vd/tuZDPwVOcwtkpto/pt1Xf7bmQz/hmOTbPY/hP6JnD1vaF7M/4Zjk2z2P4T+iZw9b2hezPyAmRrjqqQu/gHhws+cGEb/4 +JRtw5f4Lv0DPrV6gCAM/ZiUw/o1Hgz963hs1eOJHP1XucTBAQXE8m8F1x6uwn7ztAiWP/f/vPzbHT6YQdx2/LKnqy81esr+qKCDwqVOuv3aVlejXhrO+NsdPphB3Hb8A +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgdu+KNaOi+htrxZ2pqUr/bn51mLTrePnXNgNtQ5UY/uqSCsSpYIT/9yeKqFqAovxAAACBfoAJCAAAAAAAAAACh +rgCRJajaP4ZftoavS0A/oa4AkSWo2j+GX7aGr0tAP495LnrjhOE/ZPP3a6FLrj+PeS5644ThP2Tz92uhS64/aF+QXllaC7/YvX92qCcSv5B8ZT3qNwy/EKPsSooPAD+y +413DfVODP67ZHgNCB0M/ptghZEzEZTxp0HpESB2ZvJLkXof9/+8/y/a+0gyMIr/8zVeyR4+yv+k9mBhsG6i/kvJt2wjFs77L9r7SDIwivwAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAAAAAAAAA/IRJEku26L7tsm4HEC9Xvz9Gjl5wHt4+5rBajszTTD9y9MTD6lYhP70YpfUKnC6/"} diff --git a/xschem_library/examples/test_ac.sym b/xschem_library/examples/test_ac.sym new file mode 100644 index 00000000..4c14e985 --- /dev/null +++ b/xschem_library/examples/test_ac.sym @@ -0,0 +1,11 @@ +v {xschem version=3.0.0 file_version=1.2} +K {type=subcircuit +format="@name @pinlist @symname" +template="name=x1" +} +T {@symname} -49.5 -6 0 0 0.3 0.3 {} +T {@name} 135 -22 0 0 0.2 0.2 {} +L 4 -130 -10 130 -10 {} +L 4 -130 10 130 10 {} +L 4 -130 -10 -130 10 {} +L 4 130 -10 130 10 {}