verilator/src/V3DfgSynthesize.cpp

1968 lines
84 KiB
C++
Raw Normal View History

Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Convert DfgLogic into primitive operations
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
//
// Synthesize DfgLogic vertices in as a graph, as created by V3DfgAstToDfg
// into primitive vertices.
//
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
#include "V3Cfg.h"
#include "V3Const.h"
#include "V3Dfg.h"
#include "V3DfgPasses.h"
#include "V3EmitV.h"
#include "V3Os.h"
#include <algorithm>
#include <iterator>
VL_DEFINE_DEBUG_FUNCTIONS;
namespace {
// Create a DfgVertex out of a AstNodeExpr. For most AstNodeExpr subtypes, this can be done
// automatically. For the few special cases, we provide specializations below
template <typename T_Vertex, typename T_Node>
T_Vertex* makeVertex(const T_Node* nodep, DfgGraph& dfg, const DfgDataType& dtype) {
return new T_Vertex{dfg, nodep->fileline(), dtype};
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
template <>
DfgArraySel* makeVertex<DfgArraySel, AstArraySel>(const AstArraySel* nodep, DfgGraph& dfg,
const DfgDataType& dtype) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Some earlier passes create malformed ArraySels, just bail on those...
// See t_bitsel_wire_array_bad
if (VN_IS(nodep->fromp(), Const)) return nullptr;
if (!VN_IS(nodep->fromp()->dtypep()->skipRefp(), UnpackArrayDType)) return nullptr;
return new DfgArraySel{dfg, nodep->fileline(), dtype};
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
} // namespace
// Visitor that can convert Ast statements and expressions in Dfg vertices
template <bool T_Scoped>
class AstToDfgConverter final : public VNVisitor {
// NODE STATE
// AstNodeExpr/AstVar/AstVarScope::user2p -> DfgVertex* for this Node
// AstVar::user3() -> int temporary counter for variable
const VNUser3InUse m_user3InUse;
// TYPES
using Variable = std::conditional_t<T_Scoped, AstVarScope, AstVar>;
// STATE
DfgGraph& m_dfg; // The graph being built
V3DfgSynthesisContext& m_ctx; // The context for stats
// Current logic vertex we are synthesizing
DfgLogic* m_logicp = nullptr;
// Variable updates produced by currently converted statement. This almost
// always have a single element, so a vector is ok
std::vector<std::pair<Variable*, DfgVertexVar*>>* m_updatesp = nullptr;
bool m_foundUnhandled = false; // Found node not implemented as DFG or not implemented 'visit'
bool m_converting = false; // We are trying to convert some logic at the moment
size_t m_nUnpack = 0; // Sequence numbers for temporaries
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// METHODS
static Variable* getTarget(const AstVarRef* refp) {
// TODO: remove the useless reinterpret_casts when C++17 'if constexpr' actually works
if VL_CONSTEXPR_CXX17 (T_Scoped) {
return reinterpret_cast<Variable*>(refp->varScopep());
} else {
return reinterpret_cast<Variable*>(refp->varp());
}
}
// Allocate a new non-variable vertex, add it to the currently synthesized logic
template <typename Vertex, typename... Args>
Vertex* make(Args&&... args) {
static_assert(!std::is_base_of<DfgVertexVar, Vertex>::value, "Do not use for variables");
static_assert(std::is_base_of<DfgVertex, Vertex>::value, "'Vertex' must be a 'DfgVertex'");
Vertex* const vtxp = new Vertex{m_dfg, std::forward<Args>(args)...};
m_logicp->synth().emplace_back(vtxp);
return vtxp;
}
// Returns true if the expression cannot (or should not) be represented by DFG
bool unhandled(AstNodeExpr* nodep) {
// Short-circuiting if something was already unhandled
if (m_foundUnhandled) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Impure nodes cannot be represented
if (!nodep->isPure()) {
m_foundUnhandled = true;
++m_ctx.m_conv.nonRepImpure;
}
}
return m_foundUnhandled;
}
bool isSupported(const AstVarRef* nodep) {
// Cannot represent cross module references
if (nodep->classOrPackagep()) return false;
// Check target
return V3Dfg::isSupported(getTarget(nodep));
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Given an RValue expression, return the equivalent Vertex, or nullptr if not representable.
DfgVertex* convertRValue(AstNodeExpr* nodep) {
UASSERT_OBJ(!m_converting, nodep, "'convertingRValue' should not be called recursively");
VL_RESTORER(m_converting);
VL_RESTORER(m_foundUnhandled);
m_converting = true;
m_foundUnhandled = false;
// Convert the expression
iterate(nodep);
// If falied to convert, return nullptr
if (m_foundUnhandled) return nullptr;
// Traversal set user2p to the equivalent vertex
DfgVertex* const vtxp = nodep->user2u().to<DfgVertex*>();
UASSERT_OBJ(vtxp, nodep, "Missing Dfg vertex after covnersion");
return vtxp;
}
// Given an LValue expression, return the splice node that writes the
// destination, together with the index to use for splicing in the value.
// Returns {nullptr, 0}, if the given LValue expression is not supported.
std::pair<DfgVertexSplice*, uint32_t> convertLValue(AstNodeExpr* nodep) {
if (const AstVarRef* const vrefp = VN_CAST(nodep, VarRef)) {
if (!isSupported(vrefp)) {
++m_ctx.m_conv.nonRepLValue;
return {nullptr, 0};
}
// Get (or create a new) temporary for this variable
const DfgVertexVar* const vtxp = [&]() -> DfgVertexVar* {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// The variable being assigned
Variable* const tgtp = getTarget(vrefp);
// Find existing one, if any
for (const auto& pair : *m_updatesp) {
if (pair.first == tgtp) return pair.second;
}
// Create new one
DfgVertexVar* const newp = createTmp(*m_logicp, tgtp, "SynthAssign");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
m_updatesp->emplace_back(tgtp, newp);
// Create the Splice driver for the new temporary
if (newp->is<DfgVarPacked>()) {
newp->srcp(make<DfgSplicePacked>(newp->fileline(), newp->dtype()));
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else if (newp->is<DfgVarArray>()) {
newp->srcp(make<DfgSpliceArray>(newp->fileline(), newp->dtype()));
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else {
nodep->v3fatalSrc("Unhandled DfgVertexVar sub-type");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Use new temporary
return newp;
}();
// Return the Splice driver
return {vtxp->srcp()->as<DfgVertexSplice>(), 0};
}
if (const AstSel* selp = VN_CAST(nodep, Sel)) {
// Only handle constant selects
const AstConst* const lsbp = VN_CAST(selp->lsbp(), Const);
if (!lsbp) {
++m_ctx.m_conv.nonRepLValue;
return {nullptr, 0};
}
uint32_t lsb = lsbp->toUInt();
// Convert the 'fromp' sub-expression
const auto pair = convertLValue(selp->fromp());
if (!pair.first) return {nullptr, 0};
DfgSplicePacked* const splicep = pair.first->template as<DfgSplicePacked>();
// Adjust index.
lsb += pair.second;
// Don't optimize if statically out of bounds. TODO: Maybe later ...
if (lsb + static_cast<uint32_t>(selp->widthConst()) > splicep->size()) {
++m_ctx.m_conv.nonRepOOBSel;
return {nullptr, 0};
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// AstSel doesn't change type kind (array vs packed), so we can use
// the existing splice driver with adjusted lsb
return {splicep, lsb};
}
if (const AstArraySel* const aselp = VN_CAST(nodep, ArraySel)) {
// Only handle constant selects
const AstConst* const indexp = VN_CAST(aselp->bitp(), Const);
if (!indexp) {
++m_ctx.m_conv.nonRepLValue;
return {nullptr, 0};
}
uint32_t index = indexp->toUInt();
// Convert the 'fromp' sub-expression
const auto pair = convertLValue(aselp->fromp());
if (!pair.first) return {nullptr, 0};
DfgSpliceArray* const splicep = pair.first->template as<DfgSpliceArray>();
// Adjust index. Note pair.second is always 0, but we might handle array slices later..
index += pair.second;
// Don't optimize if statically out of bounds. TODO: Maybe later ...
if (index + 1U > splicep->size()) {
++m_ctx.m_conv.nonRepOOBSel;
return {nullptr, 0};
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Ensure the Splice driver exists for this element
if (!splicep->driverAt(index)) {
FileLine* const flp = nodep->fileline();
// This should never fail
const DfgDataType& dtype = *DfgDataType::fromAst(nodep->dtypep());
if (dtype.isPacked()) {
DfgSplicePacked* const newp = make<DfgSplicePacked>(flp, dtype);
const DfgDataType& uaDtype = DfgDataType::array(dtype, 1);
DfgUnitArray* const uap = make<DfgUnitArray>(flp, uaDtype);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
uap->srcp(newp);
splicep->addDriver(uap, index, flp);
} else if (dtype.isArray()) {
DfgSpliceArray* const newp = make<DfgSpliceArray>(flp, dtype);
splicep->addDriver(newp, index, flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else {
nodep->v3fatalSrc("Unhandled data type kind");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
}
// Return the splice driver
DfgVertex* driverp = splicep->driverAt(index);
if (const DfgUnitArray* const uap = driverp->cast<DfgUnitArray>()) {
driverp = uap->srcp();
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return {driverp->as<DfgVertexSplice>(), 0};
}
++m_ctx.m_conv.nonRepLValue;
return {nullptr, 0};
}
// Given the LHS of an assignment, and the vertex representing the RHS,
// connect up the RHS to drive the targets.
// Returns true on success, false if the LHS is not representable.
bool convertAssignment(FileLine* flp, AstNodeExpr* lhsp, DfgVertex* vtxp) {
// Represents a DFG assignment contributed by the AST assignment with the above 'lhsp'.
// There might be multiple of these if 'lhsp' is a concatenation.
struct Assignment final {
DfgVertexSplice* m_lhsp;
uint32_t m_idx;
DfgVertex* m_rhsp;
Assignment() = delete;
Assignment(DfgVertexSplice* lhsp, uint32_t idx, DfgVertex* rhsp)
: m_lhsp{lhsp}
, m_idx{idx}
, m_rhsp{rhsp} {}
};
// Simplify the LHS, to get rid of things like SEL(CONCAT(_, _), _)
lhsp = VN_AS(V3Const::constifyExpensiveEdit(lhsp), NodeExpr);
// Assigning compound expressions to a concatenated LHS requires a temporary
// to avoid multiple use of the expression
if (VN_IS(lhsp, Concat) && !vtxp->is<DfgVertexVar>() && !vtxp->is<DfgConst>()) {
const size_t n = ++m_nUnpack;
DfgVertexVar* const tmpp = createTmp(*m_logicp, flp, vtxp->dtype(), "Unpack", n);
tmpp->srcp(vtxp);
vtxp = tmpp;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Convert each concatenation LHS separately, gather all assignments
// we need to do into 'assignments', return true if all LValues
// converted successfully.
std::vector<Assignment> assignments;
const std::function<bool(AstNodeExpr*, uint32_t)> convertAllLValues
= [&](AstNodeExpr* subp, uint32_t lsb) -> bool {
// Concatenation on the LHS, convert each part
if (AstConcat* const concatp = VN_CAST(subp, Concat)) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
AstNodeExpr* const cRhsp = concatp->rhsp();
AstNodeExpr* const cLhsp = concatp->lhsp();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Convert Rigth of concat
if (!convertAllLValues(cRhsp, lsb)) return false;
// Convert Left of concat
return convertAllLValues(cLhsp, lsb + cRhsp->width());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Non-concatenation, convert the LValue
const auto pair = convertLValue(subp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (!pair.first) return false;
// If whole lhs, just use it
if (subp == lhsp) {
assignments.emplace_back(pair.first, pair.second, vtxp);
return true;
}
// Otherwise select the relevant bits
const DfgDataType& dtype = *DfgDataType::fromAst(subp->dtypep());
DfgSel* const selp = make<DfgSel>(subp->fileline(), dtype);
selp->fromp(vtxp);
selp->lsb(lsb);
assignments.emplace_back(pair.first, pair.second, selp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return true;
};
// Convert the given LHS assignment, give up if any LValues failed to convert
if (!convertAllLValues(lhsp, 0)) return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// All successful, connect the drivers
for (const Assignment& item : assignments) {
if (DfgSplicePacked* const spp = item.m_lhsp->template cast<DfgSplicePacked>()) {
spp->addDriver(item.m_rhsp, item.m_idx, flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else if (DfgSpliceArray* const sap = item.m_lhsp->template cast<DfgSpliceArray>()) {
// TODO: multi-dimensional arrays will need changes here
const DfgDataType& rDt = item.m_rhsp->dtype();
if (rDt.isPacked()) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// RHS is assigning an element of this array. Need a DfgUnitArray adapter.
DfgUnitArray* const uap = make<DfgUnitArray>(flp, DfgDataType::array(rDt, 1));
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
uap->srcp(item.m_rhsp);
sap->addDriver(uap, item.m_idx, flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else {
// RHS is assigning an array (or array slice). Should be the same element type.
sap->addDriver(item.m_rhsp, item.m_idx, flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
} else {
item.m_lhsp->v3fatalSrc("Unhandled DfgVertexSplice sub-type");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
}
return true;
}
// VISITORS
// Unhandled node
void visit(AstNode* nodep) override {
if (!m_foundUnhandled && m_converting) ++m_ctx.m_conv.nonRepUnknown;
m_foundUnhandled = true;
}
// Expressions - mostly auto generated, but a few special ones
void visit(AstVarRef* nodep) override {
UASSERT_OBJ(m_converting, nodep, "AstToDfg visit called without m_converting");
UASSERT_OBJ(!nodep->user2p(), nodep, "Already has Dfg vertex");
if (unhandled(nodep)) return;
// This visit method is only called on RValues, where only read refs are supported
if (!nodep->access().isReadOnly() || !isSupported(nodep)) {
m_foundUnhandled = true;
++m_ctx.m_conv.nonRepVarRef;
return;
}
// Variable should have been bound before starting conversion
DfgVertex* const vtxp = getTarget(nodep)->user2u().template to<DfgVertexVar*>();
UASSERT_OBJ(vtxp, nodep, "Referenced variable has no associated DfgVertexVar");
nodep->user2p(vtxp);
}
void visit(AstConst* nodep) override {
UASSERT_OBJ(m_converting, nodep, "AstToDfg visit called without m_converting");
UASSERT_OBJ(!nodep->user2p(), nodep, "Already has Dfg vertex");
if (unhandled(nodep)) return;
if (nodep->width() != nodep->num().width()) {
// Sometimes the width of the AstConst is not the same as the
// V3Number it holds. Truncate it here. TODO: should this be allowed?
V3Number num{nodep, nodep->width()};
num.opSel(nodep->num(), nodep->width() - 1, 0);
DfgVertex* const vtxp = make<DfgConst>(nodep->fileline(), num);
nodep->user2p(vtxp);
} else {
DfgVertex* const vtxp = make<DfgConst>(nodep->fileline(), nodep->num());
nodep->user2p(vtxp);
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
void visit(AstSel* nodep) override {
UASSERT_OBJ(m_converting, nodep, "AstToDfg visit called without m_converting");
UASSERT_OBJ(!nodep->user2p(), nodep, "Already has Dfg vertex");
if (unhandled(nodep)) return;
const DfgDataType* const dtypep = DfgDataType::fromAst(nodep->dtypep());
if (!dtypep) {
m_foundUnhandled = true;
++m_ctx.m_conv.nonRepDType;
return;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
iterate(nodep->fromp());
if (m_foundUnhandled) return;
FileLine* const flp = nodep->fileline();
DfgVertex* vtxp = nullptr;
if (const AstConst* const constp = VN_CAST(nodep->lsbp(), Const)) {
const uint32_t lsb = constp->toUInt();
const uint32_t msb = lsb + nodep->widthConst() - 1;
DfgVertex* const fromp = nodep->fromp()->user2u().to<DfgVertex*>();
// Unfortunately we can still have out of bounds selects due to how
// indices are truncated for speed reasons in V3Width/V3Unknown.
if (msb >= fromp->size()) {
m_foundUnhandled = true;
++m_ctx.m_conv.nonRepOOBSel;
return;
}
DfgSel* const selp = make<DfgSel>(flp, *dtypep);
selp->fromp(fromp);
selp->lsb(lsb);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
vtxp = selp;
} else {
iterate(nodep->lsbp());
if (m_foundUnhandled) return;
DfgMux* const muxp = make<DfgMux>(flp, *dtypep);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
muxp->fromp(nodep->fromp()->user2u().to<DfgVertex*>());
muxp->lsbp(nodep->lsbp()->user2u().to<DfgVertex*>());
vtxp = muxp;
}
nodep->user2p(vtxp);
}
// The rest of the visit methods for expressions are generated by 'astgen'
#include "V3Dfg__gen_ast_to_dfg.h"
public:
// PUBLIC METHODS
// Create temporay variable capable of holding the given type
DfgVertexVar* createTmp(DfgLogic& logic, FileLine* flp, const DfgDataType& dtype,
const std::string& prefix, size_t tmpCount) {
const std::string name = m_dfg.makeUniqueName(prefix, tmpCount);
DfgVertexVar* const vtxp = m_dfg.makeNewVar(flp, name, dtype, logic.scopep());
logic.synth().emplace_back(vtxp);
vtxp->varp()->isInternal(true);
vtxp->tmpForp(vtxp->nodep());
return vtxp;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Create a new temporary variable capable of holding 'varp'
DfgVertexVar* createTmp(DfgLogic& logic, Variable* varp, const std::string& prefix) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
AstVar* const astVarp = T_Scoped ? reinterpret_cast<AstVarScope*>(varp)->varp()
: reinterpret_cast<AstVar*>(varp);
FileLine* const flp = astVarp->fileline();
const DfgDataType& dtype = *DfgDataType::fromAst(astVarp->dtypep());
const std::string prfx = prefix + "_" + astVarp->name();
const size_t tmpCount = astVarp->user3Inc();
DfgVertexVar* const vtxp = createTmp(logic, flp, dtype, prfx, tmpCount);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
vtxp->tmpForp(varp);
return vtxp;
}
// Convert AstAssign to Dfg, return true if successful.
// Fills 'updates' with bindings for assigned variables.
bool convert(std::vector<std::pair<Variable*, DfgVertexVar*>>& updates, DfgLogic& vtx,
AstAssign* nodep) {
UASSERT_OBJ(updates.empty(), nodep, "'updates' should be empty");
VL_RESTORER(m_updatesp);
VL_RESTORER(m_logicp);
m_updatesp = &updates;
m_logicp = &vtx;
// Assignment with timing control shouldn't make it this far
UASSERT_OBJ(!nodep->timingControlp(), nodep, "Shouldn't make it this far");
// Convert it
++m_ctx.m_conv.inputAssignments;
AstNodeExpr* const lhsp = nodep->lhsp();
AstNodeExpr* const rhsp = nodep->rhsp();
// Check data types are compatible.
const DfgDataType* const lDtypep = DfgDataType::fromAst(lhsp->dtypep());
const DfgDataType* const rDtypep = DfgDataType::fromAst(rhsp->dtypep());
if (!lDtypep || !rDtypep) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
++m_ctx.m_conv.nonRepDType;
return false;
}
// For now, only direct array assignment is supported (e.g. a = b, but not a = _ ? b : c)
if (rDtypep->isArray() && !VN_IS(rhsp, VarRef)) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
++m_ctx.m_conv.nonRepDType;
return false;
}
// Widths should match at this point
UASSERT_OBJ(lhsp->width() == rhsp->width(), nodep, "Mismatched width reached DFG");
// Convert the RHS expression
DfgVertex* const rVtxp = convertRValue(rhsp);
if (!rVtxp) return false;
// Connect the RHS vertex to the LHS targets
const bool success = convertAssignment(nodep->fileline(), lhsp, rVtxp);
if (success) ++m_ctx.m_conv.representable;
return success;
}
// Convert RValue expression to Dfg. Returns nullptr if failed.
DfgVertex* convert(DfgLogic& vtx, AstNodeExpr* nodep) {
VL_RESTORER(m_logicp);
m_logicp = &vtx;
// Convert it
++m_ctx.m_conv.inputExpressions;
DfgVertex* const vtxp = convertRValue(nodep);
if (vtxp) ++m_ctx.m_conv.representable;
return vtxp;
}
// CONSTRUCTOR
AstToDfgConverter(DfgGraph& dfg, V3DfgSynthesisContext& ctx)
: m_dfg{dfg}
, m_ctx{ctx} {}
};
// For debugging, we can stop synthesizing after a certain number of vertices.
// for this we need a global counter (inside the template makes multiple copies)
static size_t s_dfgSynthDebugCount = 0;
// The number of vertices we stop after can be passed in through the environment
// you can then use a bisection search over this value and look at the dumps
// produced with the lowest failing value
static const size_t s_dfgSynthDebugLimit
= std::stoull(V3Os::getenvStr("VERILATOR_DFG_SYNTH_DEBUG", "0"));
template <bool T_Scoped>
class AstToDfgSynthesize final {
// NODE STATE
// AstNodeExpr/AstVar/AstVarScope::user2p -> DfgVertex* for this Node
// TYPES
using Variable = std::conditional_t<T_Scoped, AstVarScope, AstVar>;
// SymTab must be ordered in order to yield stable results
struct VariableComparator final {
bool operator()(const Variable* lhs, const Variable* rhs) const {
return lhs->name() < rhs->name();
}
};
using SymTab = std::map<Variable*, DfgVertexVar*, VariableComparator>;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Represents a [potentially partial] driver of a variable
struct Driver final {
DfgVertex* m_vtxp = nullptr; // Driving vertex
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
uint32_t m_lo = 0; // Low index of driven range (internal, not Verilog)
uint32_t m_hi = 0; // High index of driven range (internal, not Verilog)
FileLine* m_flp = nullptr; // Location of driver in source
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
Driver() = default;
Driver(DfgVertex* vtxp, uint32_t lo, FileLine* flp)
: m_vtxp{vtxp}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
, m_lo{lo}
, m_hi{lo + vtxp->size() - 1U}
, m_flp{flp} {}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
operator bool() const { return m_vtxp != nullptr; }
bool operator<(const Driver& other) const {
if (m_lo != other.m_lo) return m_lo < other.m_lo;
if (m_hi != other.m_hi) return m_hi < other.m_hi;
return m_flp->operatorCompare(*other.m_flp) < 0;
}
bool operator<=(const Driver& other) const { return !(other < *this); }
};
// STATE - Persistent
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
DfgGraph& m_dfg; // The graph being built
V3DfgSynthesisContext& m_ctx; // The context for stats
AstToDfgConverter<T_Scoped> m_converter; // The convert instance to use for each construct
size_t m_nBranchCond = 0; // Sequence numbers for temporaries
size_t m_nPathPred = 0; // Sequence numbers for temporaries
DfgWorklist m_toRevert{m_dfg}; // We need a worklist for reverting synthesis
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// STATE - for current DfgLogic being synthesized
DfgLogic* m_logicp = nullptr; // Current logic vertex we are synthesizing
CfgBlockMap<SymTab> m_bbToISymTab; // Map from CfgBlock -> input symbol table
CfgBlockMap<SymTab> m_bbToOSymTab; // Map from CfgBlock -> output symbol table
CfgBlockMap<DfgVertexVar*> m_bbToCondp; // Map from CfgBlock -> terminating branch condition
CfgEdgeMap<DfgVertexVar*> m_edgeToPredicatep; // Map CfgGraphEdge -> path predicate to there
CfgDominatorTree m_domTree; // The dominator tree of the current CFG
// STATE - Some debug aid
// We stop after synthesizing s_dfgSynthDebugLimit vertices (if non-zero).
// This is the problematic logic (last one we synthesize), assuming a
// bisection search over s_dfgSynthDebugLimit.
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
DfgLogic* m_debugLogicp = nullptr;
// Source (upstream) cone of outputs of m_debugLogicp
std::unique_ptr<std::unordered_set<const DfgVertex*>> m_debugOSrcConep{nullptr};
// METHODS
// Dump current graph for debugging ...
void debugDump(const char* name) {
// If we have the debugged logic, compute the vertices feeding its outputs
if (VL_UNLIKELY(m_debugLogicp)) {
std::vector<const DfgVertex*> outputs;
m_debugLogicp->foreachSink([&outputs](const DfgVertex& v) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
outputs.emplace_back(v.singleSink()->as<DfgVertexVar>());
return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
m_debugOSrcConep = m_dfg.sourceCone(outputs);
}
if (VL_UNLIKELY(dumpDfgLevel() >= 9 || m_debugOSrcConep)) {
const auto label = m_ctx.prefix() + name;
m_dfg.dumpDotFilePrefixed(label);
if (m_debugOSrcConep) {
// Dump only the subgraph involving the inputs and outputs of the bad vertex
m_dfg.dumpDotFilePrefixed(label + "-min", [&](const DfgVertex& v) -> bool {
return m_debugOSrcConep->count(&v);
});
}
}
}
static AstVar* getAstVar(Variable* vp) {
// TODO: remove the useless reinterpret_casts when C++17 'if constexpr' actually works
if VL_CONSTEXPR_CXX17 (T_Scoped) {
return reinterpret_cast<AstVarScope*>(vp)->varp();
} else {
return reinterpret_cast<AstVar*>(vp);
}
}
// Allocate a new non-variable vertex, add it to the currently synthesized logic
template <typename Vertex, typename... Args>
Vertex* make(Args&&... args) {
static_assert(!std::is_base_of<DfgVertexVar, Vertex>::value, "Do not use for variables");
static_assert(std::is_base_of<DfgVertex, Vertex>::value, "'Vertex' must be a 'DfgVertex'");
Vertex* const vtxp = new Vertex{m_dfg, std::forward<Args>(args)...};
if (m_logicp) m_logicp->synth().emplace_back(vtxp);
return vtxp;
}
// Gather all drivers of a resolved variable
static std::vector<Driver> gatherDrivers(DfgVertexSplice* vtxp) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Collect them all, check if they are sorted
std::vector<Driver> drivers;
drivers.reserve(vtxp->nInputs());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
bool sorted = true;
vtxp->foreachDriver([&](DfgVertex& src, uint32_t lo, FileLine* flp) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Collect the driver
drivers.emplace_back(&src, lo, flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Check if drivers are sorted - most often they are
const size_t n = drivers.size();
if (n >= 2 && drivers[n - 1] < drivers[n - 2]) sorted = false;
return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
// Sort if unsorted
if (!sorted) std::stable_sort(drivers.begin(), drivers.end());
// Done
return drivers;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Gather all synthesized drivers of an unresolved variable
static std::vector<Driver> gatherDriversUnresolved(DfgUnresolved* vtxp) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
std::vector<Driver> drivers;
drivers.reserve(vtxp->nInputs());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// For better locations in error reporting, we unpick concatenations
// which are sometimes introduced by combinint assignments in V3Const.
const std::function<void(DfgVertex*, uint32_t, FileLine*)> gather
= [&](DfgVertex* vtxp, uint32_t lo, FileLine* flp) -> void {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (DfgConcat* const concatp = vtxp->cast<DfgConcat>()) {
DfgVertex* const rhsp = concatp->rhsp();
gather(rhsp, lo, rhsp->fileline());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
DfgVertex* const lhsp = concatp->lhsp();
gather(lhsp, lo + rhsp->width(), lhsp->fileline());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return;
}
drivers.emplace_back(vtxp, lo, flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
};
// Gather all synthesized drivers
vtxp->foreachSource([&](DfgVertex& src) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Can ignore the original DfgLogic
if (src.is<DfgLogic>()) return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Synthesized drivers must be a splice at this point
DfgVertexSplice* const splicep = src.as<DfgVertexSplice>();
// Collect the driver
splicep->foreachDriver([&](DfgVertex& src, uint32_t lo, FileLine* flp) {
gather(&src, lo, flp);
return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
// Sort the drivers
std::stable_sort(drivers.begin(), drivers.end());
// Done
return drivers;
}
// Given two drivers, combine the driven sub-ranges into the first one if
// possible. First bool returned indicates successfully combined and there
// are no multi-driven bits. Second bool returned indicates we warned
// already about multi-driven bits.
std::pair<bool, bool> combineDrivers(DfgVertexVar& var, const std::string& sub, //
Driver& a, const Driver& b) {
// We can only combine array drivers ...
if (a.m_vtxp->isPacked()) return {false, false};
// ... that both drive a single element ...
if (a.m_lo != b.m_lo) return {false, false};
const DfgUnitArray* const aUap = a.m_vtxp->template cast<DfgUnitArray>();
if (!aUap) return {false, false};
const DfgUnitArray* const bUap = b.m_vtxp->template cast<DfgUnitArray>();
if (!bUap) return {false, false};
// ... and are themeselves partial
DfgSplicePacked* const aSp = aUap->srcp()->template cast<DfgSplicePacked>();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (!aSp) return {false, false};
DfgSplicePacked* const bSp = bUap->srcp()->template cast<DfgSplicePacked>();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (!bSp) return {false, false};
UASSERT_OBJ(aSp->dtype() == bSp->dtype(), &var, "DTypes should match");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Gather drivers of a
std::vector<Driver> aDrivers = gatherDrivers(aSp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Gather drivers of b
std::vector<Driver> bDrivers = gatherDrivers(bSp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Merge them
std::vector<Driver> abDrivers;
abDrivers.reserve(aDrivers.size() + bDrivers.size());
std::merge( //
aDrivers.begin(), aDrivers.end(), //
bDrivers.begin(), bDrivers.end(), //
std::back_inserter(abDrivers) //
);
// Attempt to resolve them
if (!normalizeDrivers(var, abDrivers, sub + "[" + std::to_string(a.m_lo) + "]")) {
return {false, true};
}
// Successfully resolved. Needs a new splice and unit.
FileLine* const flp = var.fileline();
DfgSplicePacked* const splicep = make<DfgSplicePacked>(flp, aSp->dtype());
for (const Driver& d : abDrivers) splicep->addDriver(d.m_vtxp, d.m_lo, d.m_flp);
DfgUnitArray* const uap = make<DfgUnitArray>(flp, aUap->dtype());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
uap->srcp(splicep);
a.m_vtxp = uap;
return {true, false};
}
// Combine and coalesce the given drivers.
// Returns true iff no multi-driven bits are present.
bool normalizeDrivers(DfgVertexVar& var, std::vector<Driver>& drivers,
const std::string& sub = "") {
if (drivers.empty()) return true;
// What type of values are we combining
const bool isPacked = drivers[0].m_vtxp->isPacked();
// Found a multidriven part ?
bool multiDriven = false;
// Iterate through the sorted drivers. Index 'i' is the driver we are
// resolving driver 'j' agains, and if required, we merge 'j' into 'i'.
size_t i = 0;
for (size_t j = 1; j < drivers.size();) {
UASSERT_OBJ(i < j, &var, "Invalid iteration");
Driver& iD = drivers[i];
Driver& jD = drivers[j];
// If 'j' was moved, step forward
if (!jD) {
++j;
continue;
}
// If 'i' was moved, move 'j' in it's place
if (!iD) {
iD = jD;
jD = Driver{};
++j;
continue;
}
// We have 2 valid drivers now
UASSERT_OBJ(iD <= jD, &var, "Should always be sorted");
UASSERT_OBJ(jD.m_vtxp->isPacked() == isPacked, &var, "Mixed type drivers");
// If no overlap, consider next pair
if (iD.m_hi < jD.m_lo) {
++i;
if (i == j) ++j;
continue;
}
// There is an overlap. Attempt to combine them.
bool combined = false;
bool warned = false;
std::tie(combined, warned) = combineDrivers(var, sub, iD, jD);
// If sucessfully combined, 'j' is no longer needed, it was combined into 'i'
if (combined) {
jD = Driver{};
++j;
continue;
}
// Found overlap that cannot be resolved
multiDriven = true;
// Compare next driver
++j;
// Do not warn again if we warned during 'combineDrivers'
if (warned) continue;
// The variable to warn on
AstNode* const nodep = var.tmpForp() ? var.tmpForp() : var.nodep();
Variable* const varp = reinterpret_cast<Variable*>(nodep);
// Loop index often abused, so suppress
if (getAstVar(varp)->isUsedLoopIdx()) continue;
// Warn the user now
const std::string lo = std::to_string(jD.m_lo);
const std::string hi = std::to_string(std::min(iD.m_hi, jD.m_hi));
const std::string kind = isPacked ? "Bit" : "Element";
const std::string part = hi == lo ? (" [" + lo + "]") : ("s [" + hi + ":" + lo + "]");
varp->v3warn( //
MULTIDRIVEN, //
kind << part << " of signal '" << varp->prettyName() << sub << "'"
<< " have multiple combinational drivers."
<< " This can cause performance degradation.\n"
<< iD.m_flp->warnOther() << "... Location of offending driver\n"
<< iD.m_flp->warnContextPrimary() << '\n'
<< jD.m_flp->warnOther() << "... Location of offending driver\n"
<< jD.m_flp->warnContextSecondary());
}
// Rightsize vector
drivers.resize(i + 1);
// Coalesce adjacent drivers
if (!multiDriven && isPacked) coalesceDrivers(drivers);
return !multiDriven;
}
// Coalesce adjacent drivers into single ones
void coalesceDrivers(std::vector<Driver>& drivers) {
UASSERT(!drivers.empty(), "Can't coalesce 0 drivers");
UASSERT_OBJ(drivers[0].m_vtxp->isPacked(), drivers[0].m_vtxp, "Can only coalesce packed");
size_t i = 0;
for (size_t j = 1; j < drivers.size();) {
UASSERT(i < j, "Invalid iteration");
Driver& iD = drivers[i];
Driver& jD = drivers[j];
// If 'j' was moved, step forward
if (!jD) {
++j;
continue;
}
// If 'i' was moved, move 'j' in it's place
if (!iD) {
iD = jD;
jD = Driver{};
++j;
continue;
}
// We have 2 valid drivers now
UASSERT(iD <= jD, "Should always be sorted");
// If not adjacent, move on
if (iD.m_hi + 1 != jD.m_lo) {
++i;
if (i == j) ++j;
continue;
}
// Coalesce Adjacent ranges,
const DfgDataType& dt = DfgDataType::packed(iD.m_vtxp->width() + jD.m_vtxp->width());
DfgConcat* const concatp = make<DfgConcat>(iD.m_flp, dt);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
concatp->rhsp(iD.m_vtxp);
concatp->lhsp(jD.m_vtxp);
iD.m_vtxp = concatp;
iD.m_hi = jD.m_hi;
jD = Driver{};
// Consider next driver
++j;
}
// Rightsize vector
drivers.resize(i + 1);
}
// Make a new splice with the given drivers
DfgVertexSplice* makeSplice(DfgVertexVar& var, const std::vector<Driver>& newDrivers) {
UASSERT_OBJ(!newDrivers.empty(), &var, "'makeSplice' called with no new drivers");
// Create new driver
DfgVertexSplice* splicep = nullptr;
if (var.is<DfgVarPacked>()) {
splicep = make<DfgSplicePacked>(var.fileline(), var.dtype());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else if (var.is<DfgVarArray>()) {
splicep = make<DfgSpliceArray>(var.fileline(), var.dtype());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else {
var.v3fatalSrc("Unhandled DfgVertexVar sub-type");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
for (const Driver& d : newDrivers) splicep->addDriver(d.m_vtxp, d.m_lo, d.m_flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return splicep;
}
// Initialzie input symbol table of entry CfgBlock
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
void initializeEntrySymbolTable(SymTab& iSymTab) {
m_logicp->foreachSource([&](DfgVertex& src) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
DfgVertexVar* const vvp = src.as<DfgVertexVar>();
Variable* const varp = reinterpret_cast<Variable*>(vvp->nodep());
iSymTab[varp] = vvp;
return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
}
// Join variable drivers across a control flow confluence (insert muxes ...)
DfgVertexVar* joinDrivers(Variable* varp, DfgVertexVar* predicatep, //
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
DfgVertexVar* thenp, DfgVertexVar* elsep) {
AstNode* const thenVarp = thenp->tmpForp() ? thenp->tmpForp() : thenp->nodep();
AstNode* const elseVarp = elsep->tmpForp() ? elsep->tmpForp() : elsep->nodep();
UASSERT_OBJ(thenVarp == elseVarp, varp, "Attempting to join unrelated variables");
// If both bindings are the the same (variable not updated through either path),
2025-08-26 00:47:08 +02:00
// then there is nothing to do, can use the same binding
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (thenp == elsep) return thenp;
// We can't join the input variable just yet, so bail
if (thenp->nodep() == varp) {
++m_ctx.m_synt.nonSynJoinInput;
return nullptr;
}
if (elsep->nodep() == varp) {
++m_ctx.m_synt.nonSynJoinInput;
return nullptr;
}
// Can't do arrays yet
if (!thenp->isPacked()) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
++m_ctx.m_synt.nonSynArray;
return nullptr;
}
// Gather drivers of 'thenp' - only if 'thenp' is not an input to the synthesized block
DfgVertex* const tDefaultp = thenp->defaultp();
std::vector<Driver> tDrivers = gatherDrivers(thenp->srcp()->as<DfgVertexSplice>());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Gather drivers of 'elsep' - only if 'thenp' is not an input to the synthesized block
DfgVertex* const eDefaultp = elsep->defaultp();
std::vector<Driver> eDrivers = gatherDrivers(elsep->srcp()->as<DfgVertexSplice>());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Default drivers should be the same or not present on either
UASSERT_OBJ(tDefaultp == eDefaultp, varp, "Different default drivers");
// Location to use for the join vertices
FileLine* const flp = predicatep->fileline();
// Create a fresh temporary for the joined value
DfgVertexVar* const joinp = m_converter.createTmp(*m_logicp, varp, "SynthJoin");
DfgVertexSplice* const joinSplicep = make<DfgSplicePacked>(flp, joinp->dtype());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
joinp->srcp(joinSplicep);
// If both paths are fully driven, just create a simple conditional
if (tDrivers.size() == 1 //
&& tDrivers[0].m_lo == 0 //
&& tDrivers[0].m_hi == thenp->width() - 1 //
&& eDrivers.size() == 1 //
&& eDrivers[0].m_lo == 0 //
&& eDrivers[0].m_hi == elsep->width() - 1) {
UASSERT_OBJ(!tDefaultp, varp, "Fully driven variable have default driver");
DfgCond* const condp = make<DfgCond>(flp, joinp->dtype());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
condp->condp(predicatep);
condp->thenp(thenp);
condp->elsep(elsep);
joinSplicep->addDriver(condp, 0, tDrivers[0].m_flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Done
return joinp;
}
// Otherwise we need to merge them part by part
// If different bits are driven, then some might not have been assigned.. Latch?
if (tDrivers.size() != eDrivers.size()) {
++m_ctx.m_synt.nonSynLatch;
return nullptr;
}
for (size_t i = 0; i < tDrivers.size(); ++i) {
const Driver& tDriver = tDrivers[i];
const Driver& eDriver = eDrivers[i];
// If different bits are driven, then some might not have been assigned.. Latch?
if (tDriver.m_lo != eDriver.m_lo || tDriver.m_hi != eDriver.m_hi) {
++m_ctx.m_synt.nonSynLatch;
return nullptr;
}
const DfgDataType& dtype = DfgDataType::packed(tDriver.m_hi - tDriver.m_lo + 1);
DfgCond* const condp = make<DfgCond>(flp, dtype);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
condp->condp(predicatep);
// We actally need to select the bits from the joined variables, not use the drivers
DfgSel* const thenSelp = make<DfgSel>(flp, tDriver.m_vtxp->dtype());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
thenSelp->lsb(tDriver.m_lo);
thenSelp->fromp(thenp);
condp->thenp(thenSelp);
// Same for the 'else' part
DfgSel* const elseSelp = make<DfgSel>(flp, eDriver.m_vtxp->dtype());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
elseSelp->lsb(eDriver.m_lo);
elseSelp->fromp(elsep);
condp->elsep(elseSelp);
// Add it as a driver to the join
joinSplicep->addDriver(condp, tDriver.m_lo, tDriver.m_flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// If there was a default driver, add it to te join
if (tDefaultp) joinp->defaultp(tDefaultp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Done
return joinp;
}
// Merge 'thenSymTab' into 'elseSymTab' using the given predicate to join values
bool joinSymbolTables(SymTab& elseSymTab, DfgVertexVar* predicatep, const SymTab& thenSymTab) {
// Give up if something is not assigned on all paths ... Latch?
if (thenSymTab.size() != elseSymTab.size()) {
++m_ctx.m_synt.nonSynLatch;
return false;
}
// Join each symbol
for (std::pair<Variable* const, DfgVertexVar*>& pair : elseSymTab) {
Variable* const varp = pair.first;
// Find same variable on the else path
auto it = thenSymTab.find(varp);
// Give up if something is not assigned on all paths ... Latch?
if (it == thenSymTab.end()) {
++m_ctx.m_synt.nonSynLatch;
return false;
}
// Join paths with the predicate
DfgVertexVar* const thenp = it->second;
DfgVertexVar* const elsep = pair.second;
DfgVertexVar* const newp = joinDrivers(varp, predicatep, thenp, elsep);
if (!newp) return false;
pair.second = newp;
}
// Done
return true;
}
// Given two joining control flow edges, compute how to join their symbols.
// Returns the predicaete to join over, and the 'then' and 'else' blocks.
std::tuple<DfgVertexVar*, const CfgBlock*, const CfgBlock*> //
howToJoin(const CfgEdge* const ap, const CfgEdge* const bp) {
// Find the closest common dominator of the two paths
const CfgBlock* const domp = m_domTree.closestCommonDominator(ap->srcp(), bp->srcp());
// These paths join here, so 'domp' must be a branch, otherwise it's not the closest
UASSERT_OBJ(domp->isBranch(), domp, "closestCommonDominator is not a branch");
// The branches of the common dominator
const CfgEdge* const takenEdgep = domp->takenEdgep();
const CfgEdge* const untknEdgep = domp->untknEdgep();
// We check if the taken branch dominates the path to either blocks,
// and if the untaken branch dominates the path to the other block.
// If so, we can use the branch condition as predicate, otherwise
// we must use the path predicate as there are ways to get from one
// branch of the dominator to the other. We need to be careful if
// either branches are directly to the join block. This is fine,
// it's as if there was an empty block on that critical edge which
// is dominated by that path.
if (takenEdgep == ap || m_domTree.dominates(takenEdgep->dstp(), ap->srcp())) {
if (untknEdgep == bp || m_domTree.dominates(untknEdgep->dstp(), bp->srcp())) {
// Taken path dominates 'ap' and untaken dominates 'bp', use the branch condition
++m_ctx.m_synt.joinUsingBranchCondition;
return std::make_tuple(m_bbToCondp[domp], ap->srcp(), bp->srcp());
}
} else if (takenEdgep == bp || m_domTree.dominates(takenEdgep->dstp(), bp->srcp())) {
if (untknEdgep == ap || m_domTree.dominates(untknEdgep->dstp(), ap->srcp())) {
// Taken path dominates 'bp' and untaken dominates 'ap', use the branch condition
++m_ctx.m_synt.joinUsingBranchCondition;
return std::make_tuple(m_bbToCondp[domp], bp->srcp(), ap->srcp());
}
}
// The branches don't dominate the joined blocks, must use the path predicate
++m_ctx.m_synt.joinUsingPathPredicate;
// TODO: We could do better here: use the path predicate of the closest
// cominating blocks, pick the one from the lower rank, etc, but this
// generic case is very rare, most synthesizable logic has
// series-parallel CFGs which are covered by the earlier cases.
return std::make_tuple(m_edgeToPredicatep[ap], ap->srcp(), bp->srcp());
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Combine the output symbol tables of the predecessors of the given
// block to compute the input symtol table for the given block.
bool createInputSymbolTable(const CfgBlock& bb) {
// The input symbol table of the given block, we are computing it now
SymTab& joined = m_bbToISymTab[bb];
// Input symbol table of entry block is special
if (bb.isEnter()) {
initializeEntrySymbolTable(joined);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return true;
}
// Current input symbol table should be empty, we will fill it in here
UASSERT(joined.empty(), "Unprocessed input symbol table should be empty");
// Fast path if there is only one predecessor - TODO: use less copying
if (!bb.isJoin()) {
joined = m_bbToOSymTab[bb.firstPredecessorp()];
return true;
}
// We also have a simpler job if there are 2 predecessors
if (bb.isTwoWayJoin()) {
DfgVertexVar* predicatep = nullptr;
const CfgBlock* thenp = nullptr;
const CfgBlock* elsep = nullptr;
std::tie(predicatep, thenp, elsep)
= howToJoin(bb.firstPredecessorEdgep(), bb.lastPredecessorEdgep());
// Copy from else
joined = m_bbToOSymTab[elsep];
// Join with then
return joinSymbolTables(joined, predicatep, m_bbToOSymTab[*thenp]);
}
// General hard way
// Gather predecessors
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
struct Predecessor final {
const CfgBlock* m_bbp; // Predeccessor block
DfgVertexVar* m_predicatep; // Predicate predecessor reached this block with
const SymTab* m_oSymTabp; // Output symbol table or predecessor
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
Predecessor() = delete;
Predecessor(const CfgBlock* bbp, DfgVertexVar* predicatep, const SymTab* oSymTabp)
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
: m_bbp{bbp}
, m_predicatep{predicatep}
, m_oSymTabp{oSymTabp} {}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
};
const std::vector<Predecessor> predecessors = [&]() {
std::vector<Predecessor> res;
for (const V3GraphEdge& edge : bb.inEdges()) {
const CfgEdge& cfgEdge = static_cast<const CfgEdge&>(edge);
const CfgBlock* const predecessorp = cfgEdge.srcp();
DfgVertexVar* const predicatep = m_edgeToPredicatep[cfgEdge];
const SymTab* const oSymTabp = &m_bbToOSymTab[predecessorp];
res.emplace_back(predecessorp, predicatep, oSymTabp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Sort predecessors reverse topologically. This way earlier blocks
// will come after later blocks, and the entry block is last if present.
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
std::sort(res.begin(), res.end(), [](const Predecessor& a, const Predecessor& b) { //
return *a.m_bbp > *b.m_bbp;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
return res;
}();
// Start by copying the bindings from the frist predecessor
joined = *predecessors[0].m_oSymTabp;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Join over all other predecessors
for (size_t i = 1; i < predecessors.size(); ++i) {
DfgVertexVar* const predicatep = predecessors[i].m_predicatep;
const SymTab& oSymTab = *predecessors[i].m_oSymTabp;
if (!joinSymbolTables(joined, predicatep, oSymTab)) return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
return true;
}
std::vector<Driver> computePropagatedDrivers(const std::vector<Driver>& newDrivers,
DfgVertexVar* oldp) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Gather drivers of 'oldp' - they are in incresing range order with no overlaps
std::vector<Driver> oldDrivers = gatherDrivers(oldp->srcp()->as<DfgVertexSplice>());
UASSERT_OBJ(!oldDrivers.empty(), oldp, "Should have a proper driver");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Additional drivers of 'newp' propagated from 'oldp'
std::vector<Driver> propagatedDrivers;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Add bits between 'msb' and 'lsb' from 'oldp' to 'pDrivers'
const auto addOldDriver = [&](FileLine* const flp, uint32_t msb, uint32_t lsb) {
UASSERT_OBJ(propagatedDrivers.empty() || lsb > propagatedDrivers.back().m_hi, flp,
"Drivers should be in ascending order");
DfgSel* const selp = make<DfgSel>(flp, DfgDataType::packed(msb - lsb + 1));
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
selp->lsb(lsb);
selp->fromp(oldp);
propagatedDrivers.emplace_back(selp, lsb, flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
};
// Incorporate old drivers
for (const Driver& oDriver : oldDrivers) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
FileLine* const flp = oDriver.m_flp;
// Range to consider inserting, we will adjust oldLo as we process drivers
uint32_t oldLo = oDriver.m_lo;
const uint32_t oldHi = oDriver.m_hi;
// Loop for now, can move to bisection search if this is a problem, shouldn't be ...
for (const Driver& nDriver : newDrivers) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
UASSERT_OBJ(oldHi >= oldLo, flp, "Should have stopped iteration");
// If new driver is entirely below old driver, move on to
if (nDriver.m_hi < oldLo) continue;
// If new driver is entirely above old driver, we can stop
if (oldHi < nDriver.m_lo) break;
// There is an overlap between 'oDriver' and 'nDriver'.
// Insert the low bits and adjust the insertion range.
// The rest will take care of itself on subsequent iterations.
if (oldLo < nDriver.m_lo) addOldDriver(flp, nDriver.m_lo - 1, oldLo);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
oldLo = nDriver.m_hi + 1;
// Stop if no more bits remaining in the old driver
if (oldLo > oldHi) break;
}
// Insert remaining bits if any
if (oldHi >= oldLo) addOldDriver(flp, oldHi, oldLo);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
return propagatedDrivers;
}
// Given the drivers of a variable after converting a single statement
// 'newp', add drivers from 'oldp' that were not reassigned be drivers
// in newp. This computes the total result of all previous assignments.
bool incorporatePreviousValue(Variable* varp, DfgVertexVar* newp, DfgVertexVar* oldp) {
UASSERT_OBJ(newp->srcp(), varp, "Assigned variable has no driver");
// Easy if there is no old value...
if (!oldp) return true;
// New driver was not yet coalesced, so should always be a splice
DfgVertexSplice* const nSplicep = newp->srcp()->as<DfgVertexSplice>();
// If the old value is the real variable we just computed the new value for,
// then it is the circular feedback into the synthesized block, add it as default driver.
if (oldp->nodep() == varp) {
if (!nSplicep->wholep()) newp->defaultp(oldp);
return true;
}
UASSERT_OBJ(oldp->srcp(), varp, "Previously assigned variable has no driver");
// Can't do arrays yet
if (!newp->isPacked()) {
++m_ctx.m_synt.nonSynArray;
return false;
}
// Gather drivers of 'newp' - they are in incresing range order with no overlaps
UASSERT_OBJ(!newp->defaultp(), newp, "Converted value should not have default");
std::vector<Driver> nDrivers = gatherDrivers(newp->srcp()->as<DfgVertexSplice>());
UASSERT_OBJ(!nDrivers.empty(), newp, "Should have a proper driver");
// Additional drivers of 'newp' propagated from 'oldp'
std::vector<Driver> pDrivers = computePropagatedDrivers(nDrivers, oldp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (!pDrivers.empty()) {
// Need to merge propagated sources, so reset the splice
nSplicep->resetDrivers();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Merge drivers - they are both sorted and non-overlapping
std::vector<Driver> drivers;
drivers.reserve(nDrivers.size() + pDrivers.size());
std::merge(nDrivers.begin(), nDrivers.end(), pDrivers.begin(), pDrivers.end(),
std::back_inserter(drivers));
// Coalesce adjacent ranges
coalesceDrivers(drivers);
// Reinsert drivers in order
for (const Driver& d : drivers) nSplicep->addDriver(d.m_vtxp, d.m_lo, d.m_flp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// If the old had a default, add to the new one too, unless redundant
if (oldp->defaultp() && !nSplicep->wholep()) newp->defaultp(oldp->defaultp());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Done
return true;
}
// Synthesize the given statements with the given input symbol table.
// Returns true if successfolly synthesized.
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Populates the given output symbol table.
// Populates the given reference with the condition of the terminator branch, if any.
bool synthesizeBasicBlock(SymTab& oSymTab, DfgVertex*& condpr,
const std::vector<AstNodeStmt*>& stmtps, const SymTab& iSymTab) {
// Use fresh set of vertices in m_converter
const VNUser2InUse user2InUse;
// Initialize Variable -> Vertex bindings available in this block
for (const auto& pair : iSymTab) {
Variable* const varp = pair.first;
DfgVertexVar* const vtxp = pair.second;
varp->user2p(vtxp);
oSymTab[varp] = vtxp;
}
// Synthesize each statement one after the other
std::vector<std::pair<Variable*, DfgVertexVar*>> updates;
for (AstNodeStmt* const stmtp : stmtps) {
// Regular statements
if (AstAssign* const ap = VN_CAST(stmtp, Assign)) {
// Convert this assignment
if (!m_converter.convert(updates, *m_logicp, ap)) {
++m_ctx.m_synt.nonSynConv;
return false;
}
// Apply variable updates from this statement
for (const auto& pair : updates) {
// The target variable that was assigned to
Variable* const varp = pair.first;
// The new, potentially partially assigned value
DfgVertexVar* const newp = pair.second;
// Normalize drivers within this statement, bail if multidriven
DfgVertexSplice* const srcp = newp->srcp()->as<DfgVertexSplice>();
std::vector<Driver> drivers = gatherDrivers(srcp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
const bool single = drivers.size() == 1;
if (!normalizeDrivers(*newp, drivers)) {
getAstVar(varp)->setDfgMultidriven();
++m_ctx.m_synt.nonSynMultidrive;
return false;
}
// If there were more than one driver (often not), re-add in case coalesced
if (!single) {
srcp->resetDrivers();
for (const Driver& d : drivers) srcp->addDriver(d.m_vtxp, d.m_lo, d.m_flp);
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// The old value, if any
DfgVertexVar* const oldp = varp->user2u().template to<DfgVertexVar*>();
// Inncorporate old value into the new value
if (!incorporatePreviousValue(varp, newp, oldp)) return false;
// Update binding of target variable
varp->user2p(newp);
// Update output symbol table of this block
oSymTab[varp] = newp;
}
updates.clear();
continue;
}
// Terminator branches
if (AstIf* const ifp = VN_CAST(stmtp, If)) {
UASSERT_OBJ(ifp == stmtps.back(), ifp, "Branch should be last statement");
// Convert condition, give up if failed
DfgVertex* condp = m_converter.convert(*m_logicp, ifp->condp());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (!condp) {
++m_ctx.m_synt.nonSynConv;
return false;
}
// Single bit condition can be use directly, otherwise: use 'condp != 0'
if (condp->width() != 1) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
FileLine* const flp = condp->fileline();
DfgNeq* const neqp = make<DfgNeq>(flp, DfgDataType::packed(1));
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
neqp->lhsp(make<DfgConst>(flp, condp->width(), 0U));
neqp->rhsp(condp);
condp = neqp;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
condpr = condp;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
continue;
}
// Unhandled
++m_ctx.m_synt.nonSynStmt;
return false;
}
return true;
}
2025-08-26 00:47:08 +02:00
// Assign path predicates to the outgoing control flow edges of the given block
void assignPathPredicates(const CfgBlock& bb) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Nothing to do for the exit block
if (bb.isExit()) return;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Get the predicate of this block
DfgVertex* const predp = [&]() -> DfgVertex* {
// Entry block has no predecessors, use constant true
if (bb.isEnter()) return make<DfgConst>(m_logicp->fileline(), 1U, 1U);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// For any other block, 'or' together all the incoming predicates
const auto& inEdges = bb.inEdges();
auto it = inEdges.begin();
DfgVertex* resp = m_edgeToPredicatep[static_cast<const CfgEdge&>(*it)];
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
while (++it != inEdges.end()) {
DfgOr* const orp = make<DfgOr>(resp->fileline(), resp->dtype());
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
orp->rhsp(resp);
orp->lhsp(m_edgeToPredicatep[static_cast<const CfgEdge&>(*it)]);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
resp = orp;
}
return resp;
}();
size_t n = m_nPathPred++; // Sequence number for temporaries
const DfgDataType& dtype = predp->dtype();
const auto mkTmp = [&](FileLine* flp, const char* name, DfgVertex* srcp) {
const std::string prefix = "_BB" + std::to_string(bb.id()) + "_" + name;
DfgVertexVar* const tmpp = m_converter.createTmp(*m_logicp, flp, dtype, prefix, n);
tmpp->srcp(srcp);
return tmpp;
};
// Assign it to a variable in case it's used multiple times
DfgVertexVar* const pInp = mkTmp(predp->fileline(), "PathIn", predp);
// For uncondional branches, the successor predicate edge is the same
if (!bb.isBranch()) {
m_edgeToPredicatep[bb.takenEdgep()] = mkTmp(pInp->fileline(), "Goto", pInp);
return;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// For branches, we need to factor in the branch condition
DfgVertex* const condp = m_bbToCondp[bb];
FileLine* const flp = condp->fileline();
// Predicate for taken branch: 'predp & condp'
{
DfgAnd* const takenPredp = make<DfgAnd>(flp, dtype);
takenPredp->lhsp(pInp);
takenPredp->rhsp(condp);
m_edgeToPredicatep[bb.takenEdgep()] = mkTmp(flp, "Taken", takenPredp);
}
// Predicate for untaken branch: 'predp & ~condp'
{
DfgAnd* const untknPredp = make<DfgAnd>(flp, dtype);
untknPredp->lhsp(pInp);
DfgNot* const notp = make<DfgNot>(flp, dtype);
notp->srcp(condp);
untknPredp->rhsp(notp);
m_edgeToPredicatep[bb.untknEdgep()] = mkTmp(flp, "Untkn", untknPredp);
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Returns true if all external updates to volatile variables are observed correctly
bool checkExtWrites() {
for (const DfgVertex* const vtxp : m_logicp->synth()) {
const DfgVertexVar* const varp = vtxp->cast<DfgVertexVar>();
if (!varp) continue;
// If the variable we synthesized this vertex for is volatile, and
// the value of the synthesized temporary is observed, we might be
// missing an external update, so we mut give up.
if (!varp->hasSinks()) continue;
if (!DfgVertexVar::isVolatile(varp->tmpForp())) continue;
++m_ctx.m_synt.nonSynExtWrite;
return false;
}
return true;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Add the synthesized values as drivers to the output variables of the current DfgLogic
bool addSynthesizedOutput(SymTab& oSymTab) {
// It's possible we think a variable is written by the DfgLogic when
// it actauly isn't, e.g.: '{a[0], b[0]}[1] = ...' does not write 'b'.
// These LHS forms can happen after some earlier tranforms. We
2025-08-26 00:47:08 +02:00
// should just run V3Const on them earlier, but we will do belt and
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// braces and check here too. We can't touch any output variables if so.
const bool missing = m_logicp->foreachSink([&](const DfgVertex& sink) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
const DfgUnresolved* const unresolvedp = sink.as<DfgUnresolved>();
AstNode* const tgtp = unresolvedp->singleSink()->as<DfgVertexVar>()->nodep();
// cppcheck-suppress constVariablePointer
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
Variable* const varp = reinterpret_cast<Variable*>(tgtp);
return !oSymTab.count(varp);
});
if (missing) {
++m_ctx.m_synt.nonSynFalseWrite;
return false;
}
// Add sinks to read the computed values for the target variables
return !m_logicp->foreachSink([&](DfgVertex& sink) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
DfgUnresolved* const unresolvedp = sink.as<DfgUnresolved>();
const DfgVertexVar* const varp = unresolvedp->singleSink()->as<DfgVertexVar>();
DfgVertexVar* const resp = oSymTab.at(reinterpret_cast<Variable*>(varp->nodep()));
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
UASSERT_OBJ(resp->srcp(), resp, "Undriven result");
// If the output is not used further in the synthesized logic itself,
// then resp will be deleted before we return, so we can just use
// its splice directly without ending up with a multi-use operation.
if (!resp->hasSinks()) {
unresolvedp->addDriver(resp->srcp()->as<DfgVertexSplice>());
return false; // OK, continue.
}
// TODO: computePropagatedDrivers cannot handle arrays, should
// never happen with simple continous assignments
if (!resp->isPacked()) {
++m_ctx.m_synt.nonSynArray;
return true; // Not OK, give up
}
// We need to add a new splice to avoid multi-use of the original splice
DfgSplicePacked* const splicep
= new DfgSplicePacked{m_dfg, resp->fileline(), resp->dtype()};
// Drivers are the same
const std::vector<Driver> drivers = computePropagatedDrivers({}, resp);
for (const Driver& d : drivers) splicep->addDriver(d.m_vtxp, d.m_lo, d.m_flp);
unresolvedp->addDriver(splicep);
return false; // OK, continue
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
}
// Synthesize the given AstAssignW. Returns true on success.
bool synthesizeAssignW(AstAssignW* nodep) {
++m_ctx.m_synt.inputAssign;
// Construct an equivalent AstAssign
AstNodeExpr* const lhsp = nodep->lhsp()->cloneTree(false);
AstNodeExpr* const rhsp = nodep->rhsp()->cloneTree(false);
AstAssign* const assignp = new AstAssign{nodep->fileline(), lhsp, rhsp};
// The input and output symbol tables
SymTab iSymTab;
SymTab oSymTab;
// Initialzie input symbol table
initializeEntrySymbolTable(iSymTab);
// Synthesize as if it was in a single CfgBlock CFG
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
DfgVertex* condp = nullptr;
const bool success = synthesizeBasicBlock(oSymTab, condp, {assignp}, iSymTab);
UASSERT_OBJ(!condp, nodep, "Conditional AstAssignW ???");
// Delete auxiliary AstAssign
VL_DO_DANGLING(assignp->deleteTree(), assignp);
if (!success) return false;
// Check exernal writes are observed correctly
if (!checkExtWrites()) return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Add resolved output variable drivers
return addSynthesizedOutput(oSymTab);
}
// Synthesize the given AstAlways. Returns true on success.
bool synthesizeCfg(CfgGraph& cfg) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
++m_ctx.m_synt.inputAlways;
// If there is a backward edge (loop), we can't synthesize it
if (cfg.containsLoop()) {
++m_ctx.m_synt.nonSynLoop;
++m_ctx.m_synt.cfgCyclic;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return false;
}
// If it's a trivial CFG we can save on some work
if (cfg.nBlocks() == 1) {
++m_ctx.m_synt.cfgTrivial;
} else {
// Insert two-way join blocks to aid multiplexer ordering
if (cfg.insertTwoWayJoins()) {
++m_ctx.m_synt.cfgSp;
} else {
++m_ctx.m_synt.cfgDag;
}
// Initialize maps needed for non-trivial CFGs
m_domTree = CfgDominatorTree{cfg};
m_edgeToPredicatep = cfg.makeEdgeMap<DfgVertexVar*>();
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Initialize CfgMaps
m_bbToISymTab = cfg.makeBlockMap<SymTab>();
m_bbToOSymTab = cfg.makeBlockMap<SymTab>();
m_bbToCondp = cfg.makeBlockMap<DfgVertexVar*>();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Synthesize all blocks
for (const V3GraphVertex& vtx : cfg.vertices()) {
const CfgBlock& bb = static_cast<const CfgBlock&>(vtx);
// Prepare the input symbol table of this block (enter, or join predecessor blocks)
if (!createInputSymbolTable(bb)) return false;
// Synthesize this block
DfgVertex* condp = nullptr;
if (!synthesizeBasicBlock(m_bbToOSymTab[bb], condp, bb.stmtps(), m_bbToISymTab[bb])) {
return false;
}
// Create a temporary for the branch condition as it might be used multiple times
if (condp) {
FileLine* const flp = condp->fileline();
const DfgDataType& dtype = condp->dtype();
const std::string prefix = "_BB" + std::to_string(bb.id()) + "_Cond";
const size_t n = m_nBranchCond++;
DfgVertexVar* const vp = m_converter.createTmp(*m_logicp, flp, dtype, prefix, n);
vp->srcp(condp);
m_bbToCondp[bb] = vp;
}
// Set the path predicates on the successor edges
assignPathPredicates(bb);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Check exernal writes are observed correctly
if (!checkExtWrites()) return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Add resolved output variable drivers
return addSynthesizedOutput(m_bbToOSymTab[cfg.exit()]);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Synthesize a DfgLogic into regular vertices. Returns ture on success.
bool synthesize(DfgLogic& vtx) {
VL_RESTORER(m_logicp);
m_logicp = &vtx;
if (AstAssignW* const ap = VN_CAST(vtx.nodep()->stmtsp(), AssignW)) {
if (ap->nextp()) return false;
if (!synthesizeAssignW(ap)) return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
++m_ctx.m_synt.synthAssign;
return true;
}
if (!synthesizeCfg(vtx.cfg())) return false;
++m_ctx.m_synt.synthAlways;
return true;
}
// Revert all DfgLogic in m_toRevert, or DfgLogic driving the DfgUnresolved
// vertices in m_toRevert, and transitively the same for any DfgUnresolved
// driven by the reverted DfgLogic. Delete all DfgUnresolved involed.
void revert(VDouble0& statCountr) {
m_toRevert.foreach([&](DfgVertex& vtx) {
// Process DfgLogic
if (DfgLogic* const vtxp = vtx.cast<DfgLogic>()) {
UASSERT_OBJ(vtxp->selectedForSynthesis(), vtxp, "Shouldn't reach here unselected");
// Revert this logic
UASSERT_OBJ(!vtxp->reverted(), vtxp, "Should be reverting now");
++statCountr;
for (DfgVertex* const p : vtxp->synth()) VL_DO_DANGLING(p->unlinkDelete(m_dfg), p);
vtxp->synth().clear();
vtxp->setReverted();
// Add all DfgUnresolved it drives to the work list
vtxp->foreachSink([&](DfgVertex& snk) {
m_toRevert.push_front(*snk.as<DfgUnresolved>());
return false;
});
return;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Process DfgUnresolved
if (DfgUnresolved* const vtxp = vtx.cast<DfgUnresolved>()) {
// The result variable will be driven from Ast code, mark as such
vtxp->singleSink()->as<DfgVertexVar>()->setHasModWrRefs();
// Add all driving DfgLogic to the work list
vtxp->foreachSource([&](DfgVertex& src) {
DfgLogic* const lp = src.cast<DfgLogic>();
if (lp && !lp->reverted()) m_toRevert.push_front(*lp);
return false;
});
// Delete the DfgUnresolved driver
VL_DO_DANGLING(vtxp->unlinkDelete(m_dfg), vtxp);
return;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// There should be nothing else on the worklist
vtx.v3fatalSrc("Unexpected vertex type");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Synthesize all of the given vertices
void main() {
//-------------------------------------------------------------------
UINFO(5, "Step 0: Remove all DfgLogic not selected for synthesis");
for (DfgVertex* const vtxp : m_dfg.opVertices().unlinkable()) {
// Only processing DfgUnresolved
if (!vtxp->is<DfgUnresolved>()) continue;
bool anySelected = false;
bool anyUnselected = false;
vtxp->foreachSource([&](DfgVertex& src) {
const DfgLogic& logic = *src.as<DfgLogic>();
if (logic.selectedForSynthesis()) {
anySelected = true;
} else {
anyUnselected = true;
}
return false;
});
// There should be a driver
UASSERT_OBJ(anySelected || anyUnselected, vtxp, "'DfgUnresolved' with no driver");
// All drivers should be selected or all should be unselected
UASSERT_OBJ(!(anySelected && anyUnselected), vtxp, "Invalid 'DfgLogic' selection");
// If all drivers are unselected, delete this DfgUnresolved here
if (anyUnselected) {
// The result variable will be driven from Ast code, mark as such
vtxp->singleSink()->as<DfgVertexVar>()->setHasModWrRefs();
VL_DO_DANGLING(vtxp->unlinkDelete(m_dfg), vtxp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
}
for (DfgVertex* const vtxp : m_dfg.opVertices().unlinkable()) {
// Only processing DfgLogic
DfgLogic* const logicp = vtxp->cast<DfgLogic>();
if (!logicp) continue;
if (logicp->selectedForSynthesis()) continue;
// There should be no sinks left for unselected DfgLogic, delete them here
UASSERT_OBJ(!logicp->hasSinks(), vtxp, "Unselected 'DfgLogic' with sinks remaining");
// Input variables will be read in Ast code, mark as such
logicp->foreachSource([](DfgVertex& src) {
src.as<DfgVertexVar>()->setHasModRdRefs();
return false;
});
VL_DO_DANGLING(logicp->unlinkDelete(m_dfg), logicp);
}
debugDump("synth-selected");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
//-------------------------------------------------------------------
UINFO(5, "Step 1: Attempting to synthesize each of the selected DfgLogic");
for (DfgVertex& vtx : m_dfg.opVertices()) {
DfgLogic* const logicp = vtx.cast<DfgLogic>();
if (!logicp) continue;
// We should only have DfgLogic remaining that was selected for synthesis
UASSERT_OBJ(logicp->selectedForSynthesis(), logicp, "Unselected DfgLogic remains");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Debug aid
if (VL_UNLIKELY(s_dfgSynthDebugLimit)) {
if (s_dfgSynthDebugCount == s_dfgSynthDebugLimit) break;
++s_dfgSynthDebugCount;
if (s_dfgSynthDebugCount == s_dfgSynthDebugLimit) {
// This is the breaking logic
m_debugLogicp = logicp;
// Dump it
UINFOTREE(0, logicp->nodep(), "Problematic DfgLogic: " << logicp, " ");
V3EmitV::debugVerilogForTree(logicp->nodep(), std::cout);
debugDump("synth-lastok");
}
}
// Synthesize it, if failed, enqueue for reversion
if (!synthesize(*logicp)) {
logicp->setNonSynthesizable();
m_toRevert.push_front(*logicp);
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
debugDump("synth-converted");
//-------------------------------------------------------------------
UINFO(5, "Step 2: Revert drivers of variables with unsynthesizeable drivers");
// We do this as the variables might be multi-driven, we can't know if synthesis failed
revert(m_ctx.m_synt.revertNonSyn);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
debugDump("synth-reverted");
//-------------------------------------------------------------------
UINFO(5, "Step 3: Resolve synthesized drivers of original (non-temporary) variables");
// List of multi-driven variables
std::vector<DfgVertexVar*> multidrivenps;
// Map from variable to its resolved driver
std::unordered_map<const DfgVertexVar*, DfgVertexSplice*> resolvedDrivers;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Compute resolved drivers of all variablees
for (DfgVertexVar& var : m_dfg.varVertices()) {
if (!var.srcp()) continue;
DfgUnresolved* const unresolvedp = var.srcp()->cast<DfgUnresolved>();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (!unresolvedp) break; // Stop when reached the synthesized temporaries
// Resolve the synthesized drivers
DfgVertexSplice* const resolvedp = [&]() -> DfgVertexSplice* {
// All synthesized drivers were normalized already,
// so if there is only one, it can be used directly
if (unresolvedp->nInputs() == 1) {
return unresolvedp->inputp(0)->as<DfgVertexSplice>();
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Otherwise gather the synthesized drivers
std::vector<Driver> drivers = gatherDriversUnresolved(unresolvedp);
// Normalize them, make resolved driver if all good
if (normalizeDrivers(var, drivers)) return makeSplice(var, drivers);
// If mutlidriven, record and ignore
multidrivenps.emplace_back(&var);
m_toRevert.push_front(*unresolvedp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return nullptr;
}();
// Bail if multidriven
if (!resolvedp) continue;
// Add to map for next loop
const bool newEntry = resolvedDrivers.emplace(&var, resolvedp).second;
UASSERT_OBJ(newEntry, &var, "Dupliacte driver");
}
// Mark as multidriven for future DFG runs - here, so we get all warnings above
for (const DfgVertexVar* const vtxp : multidrivenps) vtxp->varp()->setDfgMultidriven();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Revert and remove drivers of multi-driven variables
revert(m_ctx.m_synt.revertMultidrive);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Replace all DfgUnresolved with the resolved drivers
for (const DfgVertexVar& var : m_dfg.varVertices()) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (!var.srcp()) continue;
DfgUnresolved* const srcp = var.srcp()->cast<DfgUnresolved>();
if (!srcp) break; // Stop when reached the synthesized temporaries
// Replace it
srcp->replaceWith(resolvedDrivers.at(&var));
VL_DO_DANGLING(srcp->unlinkDelete(m_dfg), srcp);
}
debugDump("synth-resolved");
//-------------------------------------------------------------------
UINFO(5, "Step 4: Remove all remaining DfgLogic and DfgUnresolved");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
for (DfgVertex* const vtxp : m_dfg.opVertices().unlinkable()) {
// Previous step should have removed all DfgUnresolved
UASSERT_OBJ(!vtxp->is<DfgUnresolved>(), vtxp, "DfgUnresolved remains");
// Process only DfgLogic
DfgLogic* const logicp = vtxp->cast<DfgLogic>();
if (!logicp) continue;
// Earlier pass should have removed all sinks
UASSERT_OBJ(!logicp->hasSinks(), logicp, "DfgLogic sink remains");
if (!logicp->synth().empty()) {
// If synthesized, delete the corresponding AstNode. It is now in Dfg.
logicp->nodep()->unlinkFrBack()->deleteTree();
} else {
// Not synthesized. Logic stays in Ast. Mark source variables
//as read in module. Outputs already marked by revertTransivelyAndRemove.
logicp->foreachSource([](DfgVertex& src) { //
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
src.as<DfgVertexVar>()->setHasModRdRefs();
return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
}
// Delete this DfgLogic
VL_DO_DANGLING(logicp->unlinkDelete(m_dfg), logicp);
}
// Reset the debug pointer, we have deleted it in the loop above ...
m_debugLogicp = nullptr;
debugDump("synth-rmlogics");
//-------------------------------------------------------------------
UINFO(5, "Step 5: Remove unnecessary splices");
for (DfgVertex* const vtxp : m_dfg.opVertices().unlinkable()) {
DfgVertexSplice* const splicep = vtxp->cast<DfgVertexSplice>();
if (!splicep) continue;
// Might not have a sink if the driving logic was revered, remove
if (!splicep->hasSinks()) {
VL_DO_DANGLING(splicep->unlinkDelete(m_dfg), splicep);
continue;
}
// It should alway have drivers
UASSERT_OBJ(splicep->nInputs(), splicep, "Splice with no drivers");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// If redundant, remove it
if (DfgVertex* const wholep = splicep->wholep()) {
if (DfgVertexVar* const varp = splicep->singleSink()->cast<DfgVertexVar>()) {
varp->driverFileLine(splicep->driverFileLine(0));
}
splicep->replaceWith(wholep);
VL_DO_DANGLING(splicep->unlinkDelete(m_dfg), splicep);
}
}
debugDump("synth-rmsplice");
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// CONSTRUCTOR
AstToDfgSynthesize(DfgGraph& dfg, V3DfgSynthesisContext& ctx)
: m_dfg{dfg}
, m_ctx{ctx}
, m_converter{dfg, ctx} {
main();
}
public:
static void apply(DfgGraph& dfg, V3DfgSynthesisContext& ctx) {
AstToDfgSynthesize{dfg, ctx};
// Final step outside, as both AstToDfgSynthesize and removeUnused used DfgUserMap
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
UINFO(5, "Step 6: Remove all unused vertices");
V3DfgPasses::removeUnused(dfg);
if (dumpDfgLevel() >= 9) dfg.dumpDotFilePrefixed(ctx.prefix() + "synth-rmunused");
// No operation vertex should have multiple sinks. Cyclic decomoposition
// depends on this and it can easily be ensured by using temporaries.
// Also, all sources should be connected at this point
if (v3Global.opt.debugCheck()) {
for (DfgVertex& vtx : dfg.opVertices()) {
UASSERT_OBJ(!vtx.hasMultipleSinks(), &vtx, "Operation has multiple sinks");
for (size_t i = 0; i < vtx.nInputs(); ++i) {
UASSERT_OBJ(vtx.inputp(i), &vtx, "Unconnected source operand");
}
}
V3DfgPasses::typeCheck(dfg);
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
};
// Decide which DfgLogic to attempt to synthesize
static void dfgSelectLogicForSynthesis(DfgGraph& dfg) {
// If we are told to synthesize everything, we will do so ...
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (v3Global.opt.fDfgSynthesizeAll()) {
for (DfgVertex& vtx : dfg.opVertices()) {
if (DfgLogic* const logicp = vtx.cast<DfgLogic>()) logicp->setSelectedForSynthesis();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
return;
}
// Otherwise figure out which vertices are likely worth synthesizing.
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Bather circular variables
std::vector<DfgVertexVar*> circularVarps;
{
DfgUserMap<uint64_t> scc = dfg.makeUserMap<uint64_t>();
V3DfgPasses::colorStronglyConnectedComponents(dfg, scc);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
for (DfgVertexVar& var : dfg.varVertices()) {
if (!scc.at(var)) continue;
// This is a circular variable
circularVarps.emplace_back(&var);
}
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// We need to expand the selection to cover all drivers, use a work list
DfgWorklist worklist{dfg};
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Synthesize all drivers of circular variables
for (const DfgVertexVar* const varp : circularVarps) {
varp->srcp()->as<DfgUnresolved>()->foreachSource([&](DfgVertex& driver) {
worklist.push_front(*driver.as<DfgLogic>());
return false;
});
}
// Synthesize all continuous assignments and simple blocks driving exactly
// one variable. This is approximately the old default behaviour of Dfg.
for (DfgVertex& vtx : dfg.opVertices()) {
DfgLogic* const logicp = vtx.cast<DfgLogic>();
if (!logicp) continue;
if (logicp->nodep()->keyword() == VAlwaysKwd::CONT_ASSIGN) {
worklist.push_front(*logicp);
continue;
}
const CfgGraph& cfg = logicp->cfg();
if (!logicp->hasMultipleSinks() && cfg.nBlocks() <= 4 && cfg.nEdges() <= 4) {
worklist.push_front(*logicp);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Now expand to cover all logic driving the same set of variables and mark
worklist.foreach([&](DfgVertex& vtx) {
DfgLogic& logic = *vtx.as<DfgLogic>();
UASSERT_OBJ(!logic.selectedForSynthesis(), &vtx, "Should not be visited twice");
// Mark as selected for synthesis
logic.setSelectedForSynthesis();
// Enqueue all other logic driving the same variables as this one
logic.foreachSink([&](DfgVertex& sink) {
sink.as<DfgUnresolved>()->foreachSource([&](DfgVertex& sibling) {
DfgLogic& siblingLogic = *sibling.as<DfgLogic>();
if (!siblingLogic.selectedForSynthesis()) worklist.push_front(siblingLogic);
return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
return false;
});
});
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
void V3DfgPasses::synthesize(DfgGraph& dfg, V3DfgContext& ctx) {
// Select which DfgLogic to attempt to synthesize
dfgSelectLogicForSynthesis(dfg);
// Synthesize them - also removes un-synthesized DfgLogic, so must run even if nothing selected
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (dfg.modulep()) {
AstToDfgSynthesize</* T_Scoped: */ false>::apply(dfg, ctx.m_synthContext);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else {
AstToDfgSynthesize</* T_Scoped: */ true>::apply(dfg, ctx.m_synthContext);
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
}