add working example for macOS bug

This commit is contained in:
Fischer Moseley 2023-03-07 09:18:40 -05:00
parent a70ba2d0a8
commit e022696b31
22 changed files with 886 additions and 1239 deletions

View File

@ -0,0 +1,43 @@
import serial
from time import sleep
import random
usb_device = "/dev/tty.usbserial-2102926963071"
def write_block(data, base_addr = 0):
msg = b''
for addr, data in enumerate(data):
addr_str = '{:04X}'.format(base_addr + addr)
data_str = '{:04X}'.format(data)
msg += f"M{addr_str}{data_str}\r\n".encode('ascii')
with serial.Serial(usb_device, 115200) as ser:
ser.write(msg)
def read_block(addrs, base_addr):
msg = b''
for addr in range(addrs):
addr_str = '{:04X}'.format(base_addr + addr)
msg += f"M{addr_str}\r\n".encode('ascii')
with serial.Serial(usb_device, 115200) as ser:
ser.write(msg)
response = ser.read(7*addrs)
response = response.decode('ascii').replace('\r\n', '').split('M')
return [int(i, 16) for i in response if i]
if __name__ == "__main__":
for i in range(1000):
test_data = [random.randint(0, 65535) for i in range(32)]
write_block(test_data, 0)
received = read_block(32, 0)
print(i)
if(received != test_data):
exit()

View File

@ -1,12 +0,0 @@
import serial
from time import sleep
with serial.Serial("/dev/tty.usbserial-210292AE39A41", 115200) as ser:
for i in range(8):
req = '{:04X}'.format(i)
req = f"M{req}\r\n "
req = req.encode('ascii')
ser.write(req)
resp = ser.read(7)
print(f"req --> {req} resp (bytes) --> {resp}")

View File

@ -3,85 +3,70 @@
module bridge_tx(
input wire clk,
output reg [7:0] axiod,
output reg axiov,
input wire axior,
input wire [15:0] res_data,
input wire res_valid,
output reg res_ready
);
input wire [15:0] rdata_i,
input wire rw_i,
input wire valid_i,
input wire ready_i,
parameter ADDR_WIDTH = 0;
parameter DATA_WDITH = 0;
output reg [7:0] data_o,
output reg valid_o);
localparam PREAMBLE = 8'h4D;
localparam CR = 8'h0D;
localparam LF = 8'h0A;
reg [3:0] bytes_transmitted;
reg [15:0] buffer;
logic busy;
logic [15:0] buffer;
logic [3:0] byte_counter;
initial begin
axiod = 0;
axiov = 0;
res_ready = 1;
bytes_transmitted = 0;
busy = 0;
buffer = 0;
byte_counter = 0;
valid_o = 0;
end
always @(posedge clk) begin
if (res_ready) begin
if(res_valid) begin
buffer <= res_data;
res_ready <= 0;
bytes_transmitted <= 0;
axiod <= PREAMBLE;
axiov <= 1;
if (!busy) begin
if (valid_i && !rw_i) begin
busy <= 1;
buffer <= rdata_i;
byte_counter <= 0;
valid_o <= 1;
end
end
else begin
if (bytes_transmitted == 0) begin
if(axior) bytes_transmitted <= 1;
end
if (busy) begin
if (bytes_transmitted == 1) begin
axiod <= (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
if (axior) bytes_transmitted <= 2;
end
if(ready_i) begin
byte_counter <= byte_counter + 1;
if (byte_counter > 5) begin
byte_counter <= 0;
else if(bytes_transmitted == 2) begin
axiod <= (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
if (axior) bytes_transmitted <= 3;
end
else if(bytes_transmitted == 3) begin
axiod <= (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
if (axior) bytes_transmitted <= 4;
end
else if(bytes_transmitted == 4) begin
axiod <= (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
if (axior) bytes_transmitted <= 5;
end
else if(bytes_transmitted == 5) begin
axiod <= 8'h0D;
if (axior) bytes_transmitted <= 6;
end
else if(bytes_transmitted == 6) begin
axiod <= 8'h0A;
if (axior) begin
axiov <= 0;
res_ready <= 1;
bytes_transmitted <= 0;
// stop transmitting if we don't have both valid and read
if ( !(valid_i && !rw_i) ) begin
busy <= 0;
valid_o <= 0;
end
end
end
end
end
always @(*) begin
case (byte_counter)
0: data_o = PREAMBLE;
1: data_o = (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
2: data_o = (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
3: data_o = (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
4: data_o = (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
5: data_o = CR;
6: data_o = LF;
default: data_o = 0;
endcase
end
endmodule
`default_nettype wire

View File

@ -5,99 +5,81 @@ module manta(
input wire clk,
input wire rst,
input wire rxd,
output reg txd
);
output reg txd);
// tb --> uart_rx signals
// uart_rx #(
// .DATA_WIDTH(8),
// .CLK_FREQ_HZ(100_000_000),
// .BAUDRATE(115200)
// ) urx (
// .clk(clk),
// .rst(rst),
// .rxd(rxd),
// .axiod(urx_brx_axid),
// .axiov(urx_brx_axiv));
rxuart urx(
rx_uart #(.CLOCKS_PER_BAUD(868)) urx (
.i_clk(clk),
.i_uart_rx(rxd),
.o_wr(urx_brx_axiv),
.o_data(urx_brx_axid));
// uart_rx --> bridge_rx signals
reg [7:0] urx_brx_axid;
reg urx_brx_axiv;
logic [7:0] urx_brx_axid;
logic urx_brx_axiv;
bridge_rx brx (
.clk(clk),
.axiid(urx_brx_axid),
.axiiv(urx_brx_axiv),
.req_addr(brx_mem_1_addr),
.req_data(brx_mem_1_wdata),
.req_rw(brx_mem_1_rw),
.req_valid(brx_mem_1_valid),
.req_addr(brx_mem_addr),
.req_data(brx_mem_wdata),
.req_rw(brx_mem_rw),
.req_valid(brx_mem_valid),
.req_ready(1'b1));
// bridge_rx --> mem_1 signals
reg [15:0] brx_mem_1_addr;
reg [15:0] brx_mem_1_wdata;
reg brx_mem_1_rw;
reg brx_mem_1_valid;
// bridge_rx --> mem signals
logic [15:0] brx_mem_addr;
logic [15:0] brx_mem_wdata;
logic brx_mem_rw;
logic brx_mem_valid;
lut_mem #(
.DEPTH(8),
.DEPTH(32),
.BASE_ADDR(0)
) mem_1 (
) mem (
.clk(clk),
.addr_i(brx_mem_1_addr),
.wdata_i(brx_mem_1_wdata),
.rdata_i(0),
.rw_i(brx_mem_1_rw),
.valid_i(brx_mem_1_valid),
.addr_i(brx_mem_addr),
.wdata_i(brx_mem_wdata),
.rdata_i(16'h0),
.rw_i(brx_mem_rw),
.valid_i(brx_mem_valid),
.addr_o(),
.wdata_o(),
.rdata_o(mem_1_btx_rdata),
.rw_o(),
.valid_o(mem_1_btx_valid));
reg [15:0] mem_1_btx_rdata;
reg mem_1_btx_valid;
.rdata_o(mem_btx_rdata),
.rw_o(mem_btx_rw),
.valid_o(mem_btx_valid));
// mem --> frizzle signals, it's frizzle because that's a bus you wanna get off of
logic [15:0] mem_btx_rdata;
logic mem_btx_rw;
logic mem_btx_valid;
bridge_tx btx (
.clk(clk),
.res_data(mem_1_btx_rdata),
.res_valid(mem_1_btx_valid),
.res_ready(),
.axiod(btx_utx_axid),
.axiov(btx_utx_axiv),
.axior(btx_utx_axir));
// bridge_tx --> uart_tx signals
reg [7:0] btx_utx_axid;
reg btx_utx_axiv;
reg btx_utx_axir;
uart_tx #(
.DATA_WIDTH(8),
.CLK_FREQ_HZ(100_000_000),
.BAUDRATE(115200)
) utx (
.clk(clk),
.rst(rst),
.axiid(btx_utx_axid),
.axiiv(btx_utx_axiv),
.axiir(btx_utx_axir),
.txd(txd));
.rdata_i(mem_btx_rdata),
.rw_i(mem_btx_rw),
.valid_i(mem_btx_valid),
.ready_i(utx_btx_ready),
.data_o(btx_utx_data),
.valid_o(btx_utx_valid));
logic utx_btx_ready;
logic btx_utx_valid;
logic [7:0] btx_utx_data;
uart_tx #(.CLOCKS_PER_BAUD(868)) utx (
.clk(clk),
.data(btx_utx_data),
.valid(btx_utx_valid),
.ready(utx_btx_ready),
.tx(txd));
endmodule
`default_nettype wire

View File

@ -49,7 +49,7 @@
//
`default_nettype none
module rxuart(
module rx_uart(
input wire i_clk,
input wire i_uart_rx,
output reg o_wr,

View File

@ -24,14 +24,14 @@ module top_level (
.txd(uart_rxd_out)
);
assign led = manta.brx_mem_1_addr;
assign led = manta.brx_mem_addr;
logic [6:0] cat;
assign {cg,cf,ce,cd,cc,cb,ca} = cat;
ssd ssd (
.clk_in(clk),
.rst_in(btnc),
.val_in( (manta.mem_1_btx_rdata << 16) | (manta.brx_mem_1_wdata) ),
.val_in( (manta.mem_btx_rdata << 16) | (manta.brx_mem_wdata) ),
.cat_out(cat),
.an_out(an));

View File

@ -0,0 +1,180 @@
////////////////////////////////////////////////////////////////////////////////
//
// Filename: txuart.v
//
// Project: Verilog Tutorial Example file
//
// Purpose: Transmit outputs over a single UART line. This particular UART
// implementation has been extremely simplified: it does not handle
// generating break conditions, nor does it handle anything other than the
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
//
// To interface with this module, connect it to your system clock, and
// pass it the byte of data you wish to transmit. Strobe the i_wr line
// high for one cycle, and your data will be off. Wait until the 'o_busy'
// line is low before strobing the i_wr line again--this implementation
// has NO BUFFER, so strobing i_wr while the core is busy will just
// get ignored. The output will be placed on the o_txuart output line.
//
// There are known deficiencies in the formal proof found within this
// module. These have been left behind for you (the student) to fix.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Written and distributed by Gisselquist Technology, LLC
//
// This program is hereby granted to the public domain.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
//
//
module tx_uart(
input wire i_clk,
input wire i_wr,
input wire [7:0] i_data,
output reg o_uart_tx,
output reg o_busy);
parameter [23:0] CLOCKS_PER_BAUD = 24'd868;
// A line to tell others when we are ready to accept data. If
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
// for transmission.
// Define several states
localparam [3:0] START = 4'h0,
BIT_ZERO = 4'h1,
BIT_ONE = 4'h2,
BIT_TWO = 4'h3,
BIT_THREE = 4'h4,
BIT_FOUR = 4'h5,
BIT_FIVE = 4'h6,
BIT_SIX = 4'h7,
BIT_SEVEN = 4'h8,
LAST = 4'h8,
IDLE = 4'hf;
reg [23:0] counter;
reg [3:0] state;
reg [8:0] lcl_data;
reg baud_stb;
// o_busy
//
// This is a register, designed to be true is we are ever busy above.
// originally, this was going to be true if we were ever not in the
// idle state. The logic has since become more complex, hence we have
// a register dedicated to this and just copy out that registers value.
initial o_busy = 1'b0;
initial state = IDLE;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
// Immediately start us off with a start bit
{ o_busy, state } <= { 1'b1, START };
else if (baud_stb)
begin
if (state == IDLE) // Stay in IDLE
{ o_busy, state } <= { 1'b0, IDLE };
else if (state < LAST) begin
o_busy <= 1'b1;
state <= state + 1'b1;
end else // Wait for IDLE
{ o_busy, state } <= { 1'b1, IDLE };
end
// lcl_data
//
// This is our working copy of the i_data register which we use
// when transmitting. It is only of interest during transmit, and is
// allowed to be whatever at any other time. Hence, if o_busy isn't
// true, we can always set it. On the one clock where o_busy isn't
// true and i_wr is, we set it and o_busy is true thereafter.
// Then, on any baud_stb (i.e. change between baud intervals)
// we simple logically shift the register right to grab the next bit.
initial lcl_data = 9'h1ff;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
lcl_data <= { i_data, 1'b0 };
else if (baud_stb)
lcl_data <= { 1'b1, lcl_data[8:1] };
// o_uart_tx
//
// This is the final result/output desired of this core. It's all
// centered about o_uart_tx. This is what finally needs to follow
// the UART protocol.
//
assign o_uart_tx = lcl_data[0];
// All of the above logic is driven by the baud counter. Bits must last
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
// make certain of that.
//
// The basic logic is this: at the beginning of a bit interval, start
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
// to zero, restart it.
//
// However, comparing a 28'bit number to zero can be rather complex--
// especially if we wish to do anything else on that same clock. For
// that reason, we create "baud_stb". baud_stb is
// nothing more than a flag that is true anytime baud_counter is zero.
// It's true when the logic (above) needs to step to the next bit.
// Simple enough?
//
// I wish we could stop there, but there are some other (ugly)
// conditions to deal with that offer exceptions to this basic logic.
//
// 1. When the user has commanded a BREAK across the line, we need to
// wait several baud intervals following the break before we start
// transmitting, to give any receiver a chance to recognize that we are
// out of the break condition, and to know that the next bit will be
// a stop bit.
//
// 2. A reset is similar to a break condition--on both we wait several
// baud intervals before allowing a start bit.
//
// 3. In the idle state, we stop our counter--so that upon a request
// to transmit when idle we can start transmitting immediately, rather
// than waiting for the end of the next (fictitious and arbitrary) baud
// interval.
//
// When (i_wr)&&(!o_busy)&&(state == IDLE) then we're not only in
// the idle state, but we also just accepted a command to start writing
// the next word. At this point, the baud counter needs to be reset
// to the number of CLOCKS_PER_BAUD, and baud_stb set to zero.
//
// The logic is a bit twisted here, in that it will only check for the
// above condition when baud_stb is false--so as to make
// certain the STOP bit is complete.
initial baud_stb = 1'b1;
initial counter = 0;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end else if (!baud_stb)
begin
baud_stb <= (counter == 24'h01);
counter <= counter - 1'b1;
end else if (state != IDLE)
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end
endmodule

View File

@ -3,80 +3,73 @@
module uart_tx(
input wire clk,
input wire rst,
input wire [DATA_WIDTH-1:0] axiid,
input wire axiiv,
output reg axiir,
input wire [7:0] data,
input wire valid,
output reg busy,
output reg ready,
output reg txd
);
parameter DATA_WIDTH = 0;
parameter CLK_FREQ_HZ = 0;
parameter BAUDRATE = 0;
output reg tx);
localparam BAUD_PERIOD = CLK_FREQ_HZ / BAUDRATE;
// this transmitter only works with 8N1 serial, at configurable baudrate
parameter CLOCKS_PER_BAUD = 868;
reg busy;
assign axiir = ~busy;
reg [9:0] baud_counter;
reg [8:0] data_buf;
reg [3:0] bit_index;
reg [$clog2(BAUD_PERIOD) - 1:0] baud_counter;
reg [$clog2(DATA_WIDTH + 2):0] bit_index;
reg [DATA_WIDTH - 1:0] data_buf;
// make secondary logic for baudrate
always @(posedge clk) begin
if(rst) baud_counter <= 0;
else begin
baud_counter <= (baud_counter == BAUD_PERIOD - 1) ? 0 : baud_counter + 1;
end
initial begin
baud_counter = CLOCKS_PER_BAUD;
data_buf = 0;
bit_index = 0;
busy = 0;
ready = 1;
tx = 1;
end
always @(posedge clk) begin
// reset logic
if(rst) begin
if (valid && !busy) begin
data_buf <= {1'b1, data};
bit_index <= 0;
busy <= 0;
txd <= 1; // idle high
end
// enter transmitting state logic
// don't allow new requests to interrupt current
// transfers
if(axiiv && ~busy) begin
tx <= 0; //wafflestomp that start bit
baud_counter <= CLOCKS_PER_BAUD - 1;
busy <= 1;
baud_counter <= 0;
data_buf <= axiid;
ready <= 0;
end
else if (busy) begin
baud_counter <= baud_counter - 1;
// transmitting state logic
else if(baud_counter == 0 && busy) begin
ready <= (baud_counter == 1) && (bit_index == 9);
if (bit_index == 0) begin
txd <= 0;
bit_index <= bit_index + 1;
end
if (baud_counter == 0) begin
baud_counter <= CLOCKS_PER_BAUD - 1;
else if ((bit_index < DATA_WIDTH + 1) && (bit_index > 0)) begin
txd <= data_buf[bit_index - 1];
bit_index <= bit_index + 1;
end
else if (bit_index == DATA_WIDTH + 1) begin
txd <= 1;
bit_index <= bit_index + 1;
end
else if (bit_index >= DATA_WIDTH + 1) begin
busy <= 0;
bit_index <= 0;
if (bit_index == 9) begin
if(valid) begin
data_buf <= {1'b1, data};
bit_index <= 0;
tx <= 0;
end
else begin
busy <= 0;
ready <= 1;
end
// if valid happens here then we should bool
end
else begin
tx <= data_buf[bit_index];
bit_index <= bit_index + 1;
end
end
end
end
endmodule
`default_nettype wire

View File

@ -1,11 +0,0 @@
import serial
from time import sleep
with serial.Serial("/dev/tty.usbserial-210292AE39A41", 115200) as ser:
for i in range(8):
req = '{:04X}'.format(i)
req = f"M{req}5678\r\n"
req = req.encode('ascii')
ser.write(req)
print(f"req --> {req}")

90
src/manta/bit_fifo.v Normal file
View File

@ -0,0 +1,90 @@
`default_nettype none
`timescale 1ns/1ps
module bit_fifo(
input wire clk,
input wire en,
input wire [IWIDTH-1:0] in,
input wire in_valid,
output reg [OWIDTH-1:0] out,
output reg out_valid);
parameter IWIDTH = 0;
parameter OWIDTH = 0;
localparam BWIDTH = OWIDTH-1 + IWIDTH;
reg [OWIDTH-1:0] buffer;
reg [$clog2(OWIDTH)-1:0] buffer_size;
initial begin
buffer = 0;
buffer_size = 0;
out = 0;
out_valid = 0;
end
reg [OWIDTH-1:0] mask;
reg [OWIDTH-1:0] top_half;
reg [OWIDTH-1:0] bottom_half;
reg [OWIDTH-1:0] joined_halves;
always @(*) begin
mask = (1 << buffer_size) - 1;
top_half = (buffer & mask) << (OWIDTH - buffer_size);
bottom_half = in >> (IWIDTH- (OWIDTH - buffer_size));
joined_halves = top_half | bottom_half;
end
always @(posedge clk) begin
out_valid <= 0;
// RUN state
if(en && in_valid) begin
// this module should spit out values as soon as it's able,
// so if we'll have enough once the present value's clocked in,
// then we'll need to immediately assign the output as a combination
// of what's in the buffer and what's on the line.
if(buffer_size + IWIDTH >= OWIDTH) begin
// compute buffer size
// -> everything that was in the buffer is now in the output,
// so what we put back in the buffer is purely what's left over
// from our input data once we've sliced out what we need
buffer_size <= buffer_size + IWIDTH - OWIDTH;
// compute buffer contents
buffer <= ( (1 << (buffer_size + IWIDTH - OWIDTH)) - 1 ) & in;
/*
$display("buffer_size: %h in: %b ", buffer_size, in);
$display(" buffer: %b", buffer);
$display(" mask: %b", mask);
$display(" top_half: %b", top_half);
$display(" bottom_half: %b", bottom_half);
$display(" out: %b \n", joined_halves);
*/
// compute output
out <= joined_halves;
out_valid <= 1;
end
else begin
// shift into the right side of the buffer
buffer <= {buffer[BWIDTH-1-IWIDTH:0], in};
buffer_size <= buffer_size + IWIDTH;
end
end
// FLUSH state
else if(buffer_size > 0) begin
out <= (buffer) & ((1 << buffer_size) - 1);
out_valid <= 1;
buffer_size <= 0;
end
end
endmodule
`default_nettype wire

View File

@ -3,85 +3,70 @@
module bridge_tx(
input wire clk,
output reg [7:0] axiod,
output reg axiov,
input wire axior,
input wire [15:0] res_data,
input wire res_valid,
output reg res_ready
);
input wire [15:0] rdata_i,
input wire rw_i,
input wire valid_i,
input wire ready_i,
parameter ADDR_WIDTH = 0;
parameter DATA_WDITH = 0;
output reg [7:0] data_o,
output reg valid_o);
localparam PREAMBLE = 8'h4D;
localparam CR = 8'h0D;
localparam LF = 8'h0A;
reg [3:0] bytes_transmitted;
reg [15:0] buffer;
logic busy;
logic [15:0] buffer;
logic [3:0] byte_counter;
initial begin
axiod = 0;
axiov = 0;
res_ready = 1;
bytes_transmitted = 0;
busy = 0;
buffer = 0;
byte_counter = 0;
valid_o = 0;
end
always @(posedge clk) begin
if (res_ready) begin
if(res_valid) begin
buffer <= res_data;
res_ready <= 0;
bytes_transmitted <= 0;
axiod <= PREAMBLE;
axiov <= 1;
if (!busy) begin
if (valid_i && !rw_i) begin
busy <= 1;
buffer <= rdata_i;
byte_counter <= 0;
valid_o <= 1;
end
end
else begin
if (bytes_transmitted == 0) begin
if(axior) bytes_transmitted <= 1;
end
if (busy) begin
if (bytes_transmitted == 1) begin
axiod <= (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
if (axior) bytes_transmitted <= 2;
end
if(ready_i) begin
byte_counter <= byte_counter + 1;
if (byte_counter > 5) begin
byte_counter <= 0;
else if(bytes_transmitted == 2) begin
axiod <= (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
if (axior) bytes_transmitted <= 3;
end
else if(bytes_transmitted == 3) begin
axiod <= (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
if (axior) bytes_transmitted <= 4;
end
else if(bytes_transmitted == 4) begin
axiod <= (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
if (axior) bytes_transmitted <= 5;
end
else if(bytes_transmitted == 5) begin
axiod <= 8'h0D;
if (axior) bytes_transmitted <= 6;
end
else if(bytes_transmitted == 6) begin
axiod <= 8'h0A;
if (axior) begin
axiov <= 0;
res_ready <= 1;
bytes_transmitted <= 0;
// stop transmitting if we don't have both valid and read
if ( !(valid_i && !rw_i) ) begin
busy <= 0;
valid_o <= 0;
end
end
end
end
end
always @(*) begin
case (byte_counter)
0: data_o = PREAMBLE;
1: data_o = (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
2: data_o = (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
3: data_o = (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
4: data_o = (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
5: data_o = CR;
6: data_o = LF;
default: data_o = 0;
endcase
end
endmodule
`default_nettype wire

View File

@ -1,84 +0,0 @@
`default_nettype none
`timescale 1ns / 1ps
module fifo (
input wire clk,
input wire rst,
input wire [WIDTH - 1:0] data_in,
input wire input_ready,
input wire request_output,
output reg [WIDTH - 1:0] data_out,
output reg output_valid,
output reg [AW:0] size,
output reg empty,
output reg full
);
parameter WIDTH = 8;
parameter DEPTH = 4096;
localparam AW = $clog2(DEPTH);
reg [AW:0] write_pointer;
reg [AW:0] read_pointer;
reg empty_int;
assign empty_int = (write_pointer[AW] == read_pointer[AW]);
reg full_or_empty;
assign full_or_empty = (write_pointer[AW-1:0] == read_pointer[AW-1:0]);
assign full = full_or_empty & !empty_int;
assign empty = full_or_empty & empty_int;
assign size = write_pointer - read_pointer;
reg output_valid_pip_0;
reg output_valid_pip_1;
always @(posedge clk) begin
if (input_ready && ~full)
write_pointer <= write_pointer + 1'd1;
if (request_output && ~empty)
read_pointer <= read_pointer + 1'd1;
output_valid_pip_0 <= request_output;
output_valid_pip_1 <= output_valid_pip_0;
output_valid <= output_valid_pip_1;
if (rst) begin
read_pointer <= 0;
write_pointer <= 0;
end
end
xilinx_true_dual_port_read_first_2_clock_ram #(
.RAM_WIDTH(WIDTH),
.RAM_DEPTH(DEPTH),
.RAM_PERFORMANCE("HIGH_PERFORMANCE")
) buffer (
// write port
.clka(clk),
.rsta(rst),
.ena(1),
.addra(write_pointer),
.dina(data_in),
.wea(input_ready),
.regcea(1),
.douta(),
// read port
.clkb(clk),
.rstb(rst),
.enb(1),
.addrb(read_pointer),
.dinb(),
.web(0),
.regceb(1),
.doutb(data_out));
endmodule
`default_nettype wire

View File

@ -1,224 +0,0 @@
`default_nettype none
`timescale 1ns / 1ps
/*
This manta definition was autogenerated on @TIMESTAMP by @USER
If this breaks or if you've got dank formal verification memes,
please contact fischerm [at] mit.edu.
*/
`define IDLE 0
`define ARM 1
`define FILL 2
`define DOWNLINK 3
`define ARM_BYTE 8'b00110000
module manta (
input wire clk,
input wire rst,
/* Begin autogenerated probe definitions */
@PROBES
/* End autogenerated probe definitions */
input wire rxd,
output reg txd);
/* Begin autogenerated parameters */
localparam SAMPLE_WIDTH = @SAMPLE_WIDTH;
localparam SAMPLE_DEPTH = @SAMPLE_DEPTH;
localparam DATA_WIDTH = @DATA_WIDTH;
localparam BAUDRATE = @BAUDRATE;
localparam CLK_FREQ_HZ = @CLK_FREQ_HZ;
reg trigger;
assign trigger = @TRIGGER;
reg [SAMPLE_WIDTH - 1 : 0] concat;
assign concat = @CONCAT;
/* End autogenerated parameters */
// FIFO
reg [7:0] fifo_data_in;
reg fifo_input_ready;
reg fifo_request_output;
reg [7:0] fifo_data_out;
reg fifo_output_valid;
reg [11:0] fifo_size;
reg fifo_empty;
reg fifo_full;
fifo #(
.WIDTH(SAMPLE_WIDTH),
.DEPTH(SAMPLE_DEPTH)
) fifo (
.clk(clk),
.rst(rst),
.data_in(fifo_data_in),
.input_ready(fifo_input_ready),
.request_output(fifo_request_output),
.data_out(fifo_data_out),
.output_valid(fifo_output_valid),
.size(fifo_size),
.empty(fifo_empty),
.full(fifo_full));
// Serial interface
reg tx_start;
reg [7:0] tx_data;
reg tx_busy;
reg [7:0] rx_data;
reg rx_ready;
reg rx_busy;
uart_tx #(
.DATA_WIDTH(DATA_WIDTH),
.CLK_FREQ_HZ(CLK_FREQ_HZ),
.BAUDRATE(BAUDRATE))
tx (
.clk(clk),
.rst(rst),
.start(tx_start),
.data(tx_data),
.busy(tx_busy),
.txd(txd));
uart_rx #(
.DATA_WIDTH(DATA_WIDTH),
.CLK_FREQ_HZ(CLK_FREQ_HZ),
.BAUDRATE(BAUDRATE))
rx (
.clk(clk),
.rst(rst),
.rxd(rxd),
.data(rx_data),
.ready(rx_ready),
.busy(rx_busy));
/* State Machine */
/*
IDLE:
- literally nothing is happening. the FIFO isn't being written to or read from. it should be empty.
- an arm command over serial is what brings us into the ARM state
ARM:
- popping things onto FIFO. if the fifo is halfway full, we pop them off too.
- meeting the trigger condition is what moves us into the filing state
FILL:
- popping things onto FIFO, until it's full. once it is full, we move into the downlinking state
DOWNLINK:
- popping thing off of the FIFO until it's empty. once it's empty, we move back into the IDLE state
*/
/* Downlink State Machine Controller */
/*
- ila enters the downlink state
- set fifo_output_request high for a clock cycle
- when fifo_output_valid goes high, send fifo_data_out across the line
- do nothing until tx_busy goes low
- goto step 2
*/
reg [1:0] state;
reg [2:0] downlink_fsm_state;
always @(posedge clk) begin
if(rst) begin
state <= `IDLE;
downlink_fsm_state <= 0;
tx_data <= 0;
tx_start <= 0;
end
else begin
case (state)
`IDLE : begin
fifo_input_ready <= 0;
fifo_request_output <= 0;
if (rx_ready && rx_data == `ARM_BYTE) state <= `ARM;
end
`ARM : begin
// place samples into FIFO
fifo_input_ready <= 1;
fifo_data_in <= concat;
// remove old samples if we're more than halfway full
fifo_request_output <= (fifo_size >= SAMPLE_DEPTH / 2);
if(trigger) state <= `FILL;
end
`FILL : begin
// place samples into FIFO
fifo_input_ready <= 1;
fifo_data_in <= concat;
// don't pop anything out the FIFO
fifo_request_output <= 0;
if(fifo_size == SAMPLE_DEPTH - 1) state <= `DOWNLINK;
end
`DOWNLINK : begin
// place no samples into FIFO
fifo_input_ready <= 0;
case (downlink_fsm_state)
0 : begin
if (~fifo_empty) begin
fifo_request_output <= 1;
downlink_fsm_state <= 1;
end
else state <= `IDLE;
end
1 : begin
fifo_request_output <= 0;
if (fifo_output_valid) begin
tx_data <= fifo_data_out;
tx_start <= 1;
downlink_fsm_state <= 2;
end
end
2 : begin
tx_start <= 0;
if (~tx_busy && ~tx_start) downlink_fsm_state <= 0;
end
endcase
end
endcase
end
end
endmodule
`default_nettype wire

View File

@ -3,79 +3,73 @@
module uart_tx(
input wire clk,
input wire rst,
input wire [DATA_WIDTH-1:0] axiid,
input wire axiiv,
output reg axiir,
input wire [7:0] data,
input wire valid,
output reg busy,
output reg ready,
output reg txd
);
parameter DATA_WIDTH = 0;
parameter CLK_FREQ_HZ = 0;
parameter BAUDRATE = 0;
output reg tx);
localparam BAUD_PERIOD = CLK_FREQ_HZ / BAUDRATE;
// this transmitter only works with 8N1 serial, at configurable baudrate
parameter CLOCKS_PER_BAUD = 868;
reg busy;
assign axiir = ~busy;
reg [9:0] baud_counter;
reg [8:0] data_buf;
reg [3:0] bit_index;
reg [$clog2(BAUD_PERIOD) - 1:0] baud_counter;
reg [$clog2(DATA_WIDTH + 2):0] bit_index;
reg [DATA_WIDTH - 1:0] data_buf;
// make secondary logic for baudrate
always @(posedge clk) begin
if(rst) baud_counter <= 0;
else begin
baud_counter <= (baud_counter == BAUD_PERIOD - 1) ? 0 : baud_counter + 1;
end
initial begin
baud_counter = CLOCKS_PER_BAUD;
data_buf = 0;
bit_index = 0;
busy = 0;
ready = 1;
tx = 1;
end
always @(posedge clk) begin
// reset logic
if(rst) begin
if (valid && !busy) begin
data_buf <= {1'b1, data};
bit_index <= 0;
busy <= 0;
txd <= 1; // idle high
end
// enter transmitting state logic
// don't allow new requests to interrupt current
// transfers
if(axiiv && ~busy) begin
tx <= 0; //wafflestomp that start bit
baud_counter <= CLOCKS_PER_BAUD - 1;
busy <= 1;
data_buf <= axiid;
ready <= 0;
end
else if (busy) begin
baud_counter <= baud_counter - 1;
// transmitting state logic
else if(baud_counter == 0 && busy) begin
ready <= (baud_counter == 1) && (bit_index == 9);
if (bit_index == 0) begin
txd <= 0;
bit_index <= bit_index + 1;
end
if (baud_counter == 0) begin
baud_counter <= CLOCKS_PER_BAUD - 1;
else if ((bit_index < DATA_WIDTH + 1) && (bit_index > 0)) begin
txd <= data_buf[bit_index - 1];
bit_index <= bit_index + 1;
end
else if (bit_index == DATA_WIDTH + 1) begin
txd <= 1;
bit_index <= bit_index + 1;
end
else if (bit_index >= DATA_WIDTH + 1) begin
busy <= 0;
bit_index <= 0;
if (bit_index == 9) begin
if(valid) begin
data_buf <= {1'b1, data};
bit_index <= 0;
tx <= 0;
end
else begin
busy <= 0;
ready <= 1;
end
// if valid happens here then we should bool
end
else begin
tx <= data_buf[bit_index];
bit_index <= bit_index + 1;
end
end
end
end
endmodule
`default_nettype wire

View File

@ -1,149 +0,0 @@
// Xilinx True Dual Port RAM, Read First, Dual Clock
// This code implements a parameterizable true dual port memory (both ports can read and write).
// The behavior of this RAM is when data is written, the prior memory contents at the write
// address are presented on the output port. If the output data is
// not needed during writes or the last read value is desired to be retained,
// it is suggested to use a no change RAM as it is more power efficient.
// If a reset or enable is not necessary, it may be tied off or removed from the code.
module xilinx_true_dual_port_read_first_2_clock_ram #(
parameter RAM_WIDTH = 18, // Specify RAM data width
parameter RAM_DEPTH = 1024, // Specify RAM depth (number of entries)
parameter RAM_PERFORMANCE = "HIGH_PERFORMANCE", // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
parameter INIT_FILE = "" // Specify name/location of RAM initialization file if using one (leave blank if not)
) (
input [clogb2(RAM_DEPTH-1)-1:0] addra, // Port A address bus, width determined from RAM_DEPTH
input [clogb2(RAM_DEPTH-1)-1:0] addrb, // Port B address bus, width determined from RAM_DEPTH
input [RAM_WIDTH-1:0] dina, // Port A RAM input data
input [RAM_WIDTH-1:0] dinb, // Port B RAM input data
input clka, // Port A clock
input clkb, // Port B clock
input wea, // Port A write enable
input web, // Port B write enable
input ena, // Port A RAM Enable, for additional power savings, disable port when not in use
input enb, // Port B RAM Enable, for additional power savings, disable port when not in use
input rsta, // Port A output reset (does not affect memory contents)
input rstb, // Port B output reset (does not affect memory contents)
input regcea, // Port A output register enable
input regceb, // Port B output register enable
output [RAM_WIDTH-1:0] douta, // Port A RAM output data
output [RAM_WIDTH-1:0] doutb // Port B RAM output data
);
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
//this loop below allows for rendering with iverilog simulations!
/*
integer idx;
for(idx = 0; idx < RAM_DEPTH; idx = idx+1) begin: cats
wire [RAM_WIDTH-1:0] tmp;
assign tmp = BRAM[idx];
end
*/
// The following code either initializes the memory values to a specified file or to all zeros to match hardware
generate
if (INIT_FILE != "") begin: use_init_file
initial
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
end else begin: init_bram_to_zero
integer ram_index;
initial
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
end
endgenerate
integer idx;
// initial begin
// for (idx = 0; idx < RAM_DEPTH; idx = idx + 1) begin
// $dumpvars(0, BRAM[idx]);
// end
// end
always @(posedge clka)
if (ena) begin
if (wea)
BRAM[addra] <= dina;
ram_data_a <= BRAM[addra];
end
always @(posedge clkb)
if (enb) begin
if (web)
BRAM[addrb] <= dinb;
ram_data_b <= BRAM[addrb];
end
// The following code generates HIGH_PERFORMANCE (use output register) or LOW_LATENCY (no output register)
generate
if (RAM_PERFORMANCE == "LOW_LATENCY") begin: no_output_register
// The following is a 1 clock cycle read latency at the cost of a longer clock-to-out timing
assign douta = ram_data_a;
assign doutb = ram_data_b;
end else begin: output_register
// The following is a 2 clock cycle read latency with improve clock-to-out timing
reg [RAM_WIDTH-1:0] douta_reg = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] doutb_reg = {RAM_WIDTH{1'b0}};
always @(posedge clka)
if (rsta)
douta_reg <= {RAM_WIDTH{1'b0}};
else if (regcea)
douta_reg <= ram_data_a;
always @(posedge clkb)
if (rstb)
doutb_reg <= {RAM_WIDTH{1'b0}};
else if (regceb)
doutb_reg <= ram_data_b;
assign douta = douta_reg;
assign doutb = doutb_reg;
end
endgenerate
// The following function calculates the address width based on specified RAM depth
function integer clogb2;
input integer depth;
for (clogb2=0; depth>0; clogb2=clogb2+1)
depth = depth >> 1;
endfunction
endmodule
// The following is an instantiation template for xilinx_true_dual_port_read_first_2_clock_ram
/*
// Xilinx True Dual Port RAM, Read First, Dual Clock
xilinx_true_dual_port_read_first_2_clock_ram #(
.RAM_WIDTH(18), // Specify RAM data width
.RAM_DEPTH(1024), // Specify RAM depth (number of entries)
.RAM_PERFORMANCE("HIGH_PERFORMANCE"), // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
.INIT_FILE("") // Specify name/location of RAM initialization file if using one (leave blank if not)
) your_instance_name (
.addra(addra), // Port A address bus, width determined from RAM_DEPTH
.addrb(addrb), // Port B address bus, width determined from RAM_DEPTH
.dina(dina), // Port A RAM input data, width determined from RAM_WIDTH
.dinb(dinb), // Port B RAM input data, width determined from RAM_WIDTH
.clka(clka), // Port A clock
.clkb(clkb), // Port B clock
.wea(wea), // Port A write enable
.web(web), // Port B write enable
.ena(ena), // Port A RAM Enable, for additional power savings, disable port when not in use
.enb(enb), // Port B RAM Enable, for additional power savings, disable port when not in use
.rsta(rsta), // Port A output reset (does not affect memory contents)
.rstb(rstb), // Port B output reset (does not affect memory contents)
.regcea(regcea), // Port A output register enable
.regceb(regceb), // Port B output register enable
.douta(douta), // Port A RAM output data, width determined from RAM_WIDTH
.doutb(doutb) // Port B RAM output data, width determined from RAM_WIDTH
);
*/

75
test/bit_fifo_tb.sv Normal file
View File

@ -0,0 +1,75 @@
`default_nettype none
`timescale 1ns/1ps
`define CP 10
`define HCP 5
module bit_fifo_tb;
//boilerplate
logic clk;
integer test_num;
always begin
#`HCP
clk = !clk;
end
parameter IWIDTH = 3;
parameter OWIDTH = 7;
logic en;
logic [IWIDTH-1:0] in;
logic in_valid;
logic [OWIDTH-1:0] out;
logic out_valid;
bit_fifo #(.IWIDTH(IWIDTH), .OWIDTH(OWIDTH)) bfifo (
.clk(clk),
.en(en),
.in(in),
.in_valid(in_valid),
.out(out),
.out_valid(out_valid));
initial begin
$dumpfile("bit_fifo_tb.vcd");
$dumpvars(0, bit_fifo_tb);
// setup and reset
clk = 0;
test_num = 0;
en = 0;
in_valid = 0;
in = 0;
#`HCP
#(10*`CP);
/* ==== Test 1 Begin ==== */
$display("\n=== test 1: make sure invalid data isn't added to buffer ===");
test_num = 1;
en = 1;
#(10*`CP);
en = 0;
/* ==== Test 1 End ==== */
/* ==== Test 2 Begin ==== */
$display("\n=== test 2: just throw bits at it! ===");
test_num = 1;
en = 1;
in_valid = 1;
in = 3'b101;
#(10*`CP);
in_valid = 0;
en = 0;
#(10*`CP);
/* ==== Test 2 End ==== */
$finish();
end
endmodule
`default_nettype wire

View File

@ -1,101 +0,0 @@
[*]
[*] GTKWave Analyzer v3.3.107 (w)1999-2020 BSI
[*] Wed Mar 1 02:04:43 2023
[*]
[dumpfile] "/Users/fischerm/fpga/manta/bus.vcd"
[dumpfile_mtime] "Wed Mar 1 02:00:40 2023"
[dumpfile_size] 91134
[savefile] "/Users/fischerm/fpga/manta/bus.gtkw"
[timestart] 0
[size] 1710 994
[pos] -1 -1
*-21.981709 8420000 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[treeopen] bus_tb.
[sst_width] 353
[signals_width] 276
[sst_expanded] 1
[sst_vpaned_height] 296
@28
bus_tb.clk
bus_tb.rst
@420
bus_tb.test_num
@200
-
-
-tb --> uart_rx
@28
bus_tb.tb_urx_rxd
@200
-
-
-uart_rx --> bridge_rx
@820
bus_tb.urx_brx_axid[7:0]
@28
bus_tb.urx_brx_axiv
@22
bus_tb.urx.bit_index[4:0]
@200
-
-
-bridge_rx --> mem_1
@22
bus_tb.brx_mem_1_addr[15:0]
bus_tb.brx_mem_1_rdata[15:0]
bus_tb.brx_mem_1_wdata[15:0]
@28
bus_tb.brx_mem_1_rw
bus_tb.brx_mem_1_valid
@200
-
-
-mem_1 --> mem_2
@22
bus_tb.mem_1_mem_2_addr[15:0]
bus_tb.mem_1_mem_2_rdata[15:0]
bus_tb.mem_1_mem_2_wdata[15:0]
@28
bus_tb.mem_1_mem_2_rw
bus_tb.mem_1_mem_2_valid
@200
-
-
-mem_2 --> mem_3
@22
bus_tb.mem_2_mem_3_addr[15:0]
bus_tb.mem_2_mem_3_rdata[15:0]
@28
bus_tb.mem_2_mem_3_rw
bus_tb.mem_2_mem_3_valid
@22
bus_tb.mem_2_mem_3_wdata[15:0]
@200
-
-
-mem_3 --> bridge_tx
@22
bus_tb.mem_3_btx_addr[15:0]
bus_tb.mem_3_btx_rdata[15:0]
@28
bus_tb.mem_3_btx_rw
bus_tb.mem_3_btx_valid
@22
bus_tb.mem_3_btx_wdata[15:0]
@200
-
-
-bridge_tx --> uart_tx
@23
bus_tb.btx_utx_axid[7:0]
@28
bus_tb.btx_utx_axir
bus_tb.btx_utx_axiv
@200
-
-
-uart_tx --> tb
@28
bus_tb.utx_tb_txd
[pattern_trace] 1
[pattern_trace] 0

View File

@ -11,11 +11,11 @@
if (i == 0) tb_urx_rxd = 0; \
else if ((i > 0) & (i < 9)) tb_urx_rxd = char[i-1]; \
else if (i == 9) tb_urx_rxd = 1; \
#(10*`CP); \
#(868*`CP); \
end \
end \
module minimal_bus_tb;
module bus_fix_tb;
// https://www.youtube.com/watch?v=WCOAr-96bGc
//boilerplate
@ -25,10 +25,11 @@ module minimal_bus_tb;
string msg;
logic [7:0] char;
logic [7:0] botl;
// tb --> uart_rx signals
logic tb_urx_rxd;
rx_uart #(.CLOCKS_PER_BAUD(10)) urx (
rx_uart #(.CLOCKS_PER_BAUD(868)) urx (
.i_clk(clk),
.i_uart_rx(tb_urx_rxd),
.o_wr(urx_brx_axiv),
@ -67,45 +68,57 @@ module minimal_bus_tb;
.rw_i(brx_mem_rw),
.valid_i(brx_mem_valid),
.addr_o(mem_btx_addr),
.wdata_o(mem_btx_wdata),
.addr_o(),
.wdata_o(),
.rdata_o(mem_btx_rdata),
.rw_o(mem_btx_rw),
.valid_o(mem_btx_valid));
// mem --> bridge_tx signals
logic [15:0] mem_btx_addr;
logic [15:0] mem_btx_wdata;
// mem --> frizzle signals, it's frizzle because that's a bus you wanna get off of
logic [15:0] mem_btx_rdata;
logic mem_btx_rw;
logic mem_btx_valid;
bridge_tx btx (
.clk(clk),
.rdata_i(mem_btx_rdata),
.rw_i(mem_btx_rw),
.valid_i(mem_btx_valid),
.res_data(mem_btx_rdata),
.res_valid(mem_btx_valid),
.res_ready(),
.ready_i(utx_btx_ready),
.data_o(btx_utx_data),
.valid_o(btx_utx_valid));
.axiod(btx_utx_axid),
.axiov(btx_utx_axiv),
.axior(~btx_utx_axib));
logic utx_btx_ready;
logic btx_utx_valid;
logic [7:0] btx_utx_data;
uart_tx #(.CLOCKS_PER_BAUD(868)) utx (
.clk(clk),
// bridge_tx --> uart_tx signals
logic [7:0] btx_utx_axid;
logic btx_utx_axiv;
logic btx_utx_axib;
.data(btx_utx_data),
.valid(btx_utx_valid),
.ready(utx_btx_ready),
tx_uart #(.CLOCKS_PER_BAUD(10)) utx(
.i_clk(clk),
.i_wr(btx_utx_axiv),
.i_data(btx_utx_axid),
.o_uart_tx(utx_tb_txd),
.o_busy(btx_utx_axib));
.tx(utx_tb_tx));
// utx --> tb signals
logic utx_tb_txd;
logic utx_tb_tx;
// decoder for lolz
logic [7:0] tb_decoder_data;
logic [7:0] decoded_uart;
logic tb_decoder_valid;
rx_uart #(.CLOCKS_PER_BAUD(868)) decoder (
.i_clk(clk),
.i_uart_rx(utx_tb_tx),
.o_wr(tb_decoder_valid),
.o_data(tb_decoder_data));
always @(posedge clk) if (tb_decoder_valid) decoded_uart <= tb_decoder_data;
always begin
#`HCP
@ -113,8 +126,8 @@ module minimal_bus_tb;
end
initial begin
$dumpfile("minimal_bus.vcd");
$dumpvars(0, minimal_bus_tb);
$dumpfile("bus_fix.vcd");
$dumpvars(0, bus_fix_tb);
// setup and reset
clk = 0;
@ -152,18 +165,53 @@ module minimal_bus_tb;
/* ==== Test 2 End ==== */
/* ==== Test 3 Begin ==== */
$display("\n=== test 3: read from 0x0000-0x0007 for baseline functionality ===");
$display("\n=== test 3: 1k sequential reads, stress test ===");
test_num = 3;
for(logic[15:0] j=0; j<32; j++) begin
$display($sformatf("M%H", j));
msg = {$sformatf("M%H", j), 8'h0D, 8'h0A};
`SEND_MSG_BITS(msg)
for(int i=0; i<1000; i++) begin
msg = {"M1234", 8'h0D, 8'h0A};
`SEND_MSG_BITS(msg);
end
// big reads
// for(logic[15:0] j=0; j<10; j++) begin
// msg = {$sformatf("M%H", j), 8'h0D, 8'h0A};
// `SEND_MSG_BITS(msg)
// end
// for(logic[15:0] j=0; j<10; j++) begin
// msg = {$sformatf("M%H", j), 8'h0D, 8'h0A};
// `SEND_MSG_BITS(msg)
// end
#(10*`CP);
/* ==== Test 3 End ==== */
/* ==== Test 4 Begin ==== */
$display("\n=== test 4: 100 sequential writes, stress test ===");
test_num = 4;
for(int i=0; i<100; i++) begin
msg = {"M12345678", 8'h0D, 8'h0A};
`SEND_MSG_BITS(msg);
end
/* ==== Test 4 End ==== */
/* ==== Test 5 Begin ==== */
$display("\n=== test 5: 100 sequential reads, stress test ===");
test_num = 5;
for(int i=0; i<100; i++) begin
msg = {"M1234", 8'h0D, 8'h0A};
`SEND_MSG_BITS(msg);
end
/* ==== Test 5 End ==== */
#(1000*`CP)

View File

@ -1,233 +0,0 @@
`default_nettype none
`timescale 1ns/1ps
`define CP 10
`define HCP 5
`define SEND_MSG_BITS(MSG) \
for(int j=0; j < $size(msg); j++) begin \
char = msg[j]; \
for(int i=0; i < 10; i++) begin \
if (i == 0) tb_urx_rxd = 0; \
else if ((i > 0) & (i < 9)) tb_urx_rxd = char[i-1]; \
else if (i == 9) tb_urx_rxd = 1; \
#(10*`CP); \
end \
end \
module bus_tb;
// https://www.youtube.com/watch?v=WCOAr-96bGc
//boilerplate
logic clk;
logic rst;
integer test_num;
string msg;
logic [7:0] char;
// tb --> uart_rx signals
logic tb_urx_rxd;
uart_rx #(
.DATA_WIDTH(8),
.CLK_FREQ_HZ(100_000_000),
.BAUDRATE(10_000_000)
) urx (
.clk(clk),
.rst(rst),
.rxd(tb_urx_rxd),
.axiod(urx_brx_axid),
.axiov(urx_brx_axiv));
// uart_rx --> bridge_rx signals
logic [7:0] urx_brx_axid;
logic urx_brx_axiv;
bridge_rx brx (
.clk(clk),
.axiid(urx_brx_axid),
.axiiv(urx_brx_axiv),
.req_addr(brx_mem_1_addr),
.req_data(brx_mem_1_wdata),
.req_rw(brx_mem_1_rw),
.req_valid(brx_mem_1_valid),
.req_ready(1'b1));
// bridge_rx --> mem_1 signals
logic [15:0] brx_mem_1_addr;
logic [15:0] brx_mem_1_wdata;
logic [15:0] brx_mem_1_rdata;
logic brx_mem_1_rw;
logic brx_mem_1_valid;
assign brx_mem_1_rdata = 0;
lut_mem #(
.DEPTH(8),
.BASE_ADDR(0)
) mem_1 (
.clk(clk),
.addr_i(brx_mem_1_addr),
.wdata_i(brx_mem_1_wdata),
.rdata_i(brx_mem_1_rdata),
.rw_i(brx_mem_1_rw),
.valid_i(brx_mem_1_valid),
.addr_o(mem_1_mem_2_addr),
.wdata_o(mem_1_mem_2_wdata),
.rdata_o(mem_1_mem_2_rdata),
.rw_o(mem_1_mem_2_rw),
.valid_o(mem_1_mem_2_valid));
// mem_1 --> mem_2 signals
logic [15:0] mem_1_mem_2_addr;
logic [15:0] mem_1_mem_2_wdata;
logic [15:0] mem_1_mem_2_rdata;
logic mem_1_mem_2_rw;
logic mem_1_mem_2_valid;
lut_mem #(
.DEPTH(8),
.BASE_ADDR(8)
) mem_2 (
.clk(clk),
.addr_i(mem_1_mem_2_addr),
.wdata_i(mem_1_mem_2_wdata),
.rdata_i(mem_1_mem_2_rdata),
.rw_i(mem_1_mem_2_rw),
.valid_i(mem_1_mem_2_valid),
.addr_o(mem_2_mem_3_addr),
.wdata_o(mem_2_mem_3_wdata),
.rdata_o(mem_2_mem_3_rdata),
.rw_o(mem_2_mem_3_rw),
.valid_o(mem_2_mem_3_valid));
// mem_2 --> mem_3 signals
logic [15:0] mem_2_mem_3_addr;
logic [15:0] mem_2_mem_3_wdata;
logic [15:0] mem_2_mem_3_rdata;
logic mem_2_mem_3_rw;
logic mem_2_mem_3_valid;
lut_mem #(
.DEPTH(8),
.BASE_ADDR(16)
) mem_3 (
.clk(clk),
.addr_i(mem_2_mem_3_addr),
.wdata_i(mem_2_mem_3_wdata),
.rdata_i(mem_2_mem_3_rdata),
.rw_i(mem_2_mem_3_rw),
.valid_i(mem_2_mem_3_valid),
.addr_o(mem_3_btx_addr),
.wdata_o(mem_3_btx_wdata),
.rdata_o(mem_3_btx_rdata),
.rw_o(mem_3_btx_rw),
.valid_o(mem_3_btx_valid));
// mem_3 --> bridge_tx signals
logic [15:0] mem_3_btx_addr;
logic [15:0] mem_3_btx_wdata;
logic [15:0] mem_3_btx_rdata;
logic mem_3_btx_rw;
logic mem_3_btx_valid;
bridge_tx btx (
.clk(clk),
.axiod(btx_utx_axid),
.axiov(btx_utx_axiv),
.axior(btx_utx_axir),
.res_data(mem_3_btx_rdata),
.res_valid(mem_3_btx_valid),
.res_ready());
// bridge_tx --> uart_tx signals
logic [7:0] btx_utx_axid;
logic btx_utx_axiv;
logic btx_utx_axir;
uart_tx #(
.DATA_WIDTH(8),
.CLK_FREQ_HZ(100_000_000),
.BAUDRATE(10_000_000)
) utx (
.clk(clk),
.rst(rst),
.axiid(btx_utx_axid),
.axiiv(btx_utx_axiv),
.axiir(btx_utx_axir),
.txd(utx_tb_txd));
// utx --> tb signals
logic utx_tb_txd;
always begin
#`HCP
clk = !clk;
end
initial begin
$dumpfile("bus.vcd");
$dumpvars(0, bus_tb);
// setup and reset
clk = 0;
rst = 0;
tb_urx_rxd = 1;
test_num = 0;
#`CP
rst = 1;
#`CP
rst = 0;
#`HCP
// throw some nonzero data in the memories just so we know that we're pulling from the right ones
mem_1.mem[0] = 16'h0000;
mem_1.mem[1] = 16'h0001;
mem_1.mem[2] = 16'h0002;
mem_1.mem[3] = 16'h0003;
mem_1.mem[4] = 16'h0004;
mem_1.mem[5] = 16'h0005;
mem_1.mem[6] = 16'h0006;
mem_1.mem[7] = 16'h0007;
mem_2.mem[0] = 16'h0008;
mem_2.mem[1] = 16'h0009;
mem_2.mem[2] = 16'h000A;
mem_2.mem[3] = 16'h000B;
mem_2.mem[4] = 16'h000C;
mem_2.mem[5] = 16'h000D;
mem_2.mem[6] = 16'h000E;
mem_2.mem[7] = 16'h000F;
mem_3.mem[0] = 16'h0010;
mem_3.mem[1] = 16'h0011;
mem_3.mem[2] = 16'h0012;
mem_3.mem[3] = 16'h0013;
mem_3.mem[4] = 16'h0014;
mem_3.mem[5] = 16'h0015;
mem_3.mem[6] = 16'h0016;
mem_3.mem[7] = 16'h0017;
#(10*`CP);
/* ==== Test 1 Begin ==== */
$display("\n=== test 1: read from 0x0001 for baseline functionality ===");
test_num = 1;
#(10*`CP);
/* ==== Test 1 End ==== */
msg = {"M12345678", 8'h0D, 8'h0A};
`SEND_MSG_BITS(msg)
#(1000*`CP)
$finish();
end
endmodule
`default_nettype wire

View File

@ -1,69 +0,0 @@
[*]
[*] GTKWave Analyzer v3.3.107 (w)1999-2020 BSI
[*] Tue Feb 28 23:16:04 2023
[*]
[dumpfile] "/Users/fischerm/fpga/manta/lut_mem.vcd"
[dumpfile_mtime] "Tue Feb 28 23:14:40 2023"
[dumpfile_size] 5873
[savefile] "/Users/fischerm/fpga/manta/lut_mem.gtkw"
[timestart] 96500000000000
[size] 1710 994
[pos] -1 -1
*-46.420933 115000000000000 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[treeopen] lut_mem_tb.
[sst_width] 193
[signals_width] 517
[sst_expanded] 1
[sst_vpaned_height] 305
@28
lut_mem_tb.clk
@420
lut_mem_tb.test_num
@200
-
-tb --> mem_1
@29
lut_mem_tb.tb_mem_1_valid
@22
lut_mem_tb.tb_mem_1_addr[15:0]
lut_mem_tb.tb_mem_1_wdata[15:0]
lut_mem_tb.tb_mem_1_rdata[15:0]
@28
lut_mem_tb.tb_mem_1_rw
@200
-
-mem_1 --> mem_2
@28
lut_mem_tb.mem_1_mem_2_valid
@22
lut_mem_tb.mem_1_mem_2_addr[15:0]
lut_mem_tb.mem_1_mem_2_wdata[15:0]
lut_mem_tb.mem_1_mem_2_rdata[15:0]
@28
lut_mem_tb.mem_1_mem_2_rw
@200
-
-
-mem_2 --> mem_3
@28
lut_mem_tb.mem_2_mem_3_valid
@22
lut_mem_tb.mem_2_mem_3_addr[15:0]
lut_mem_tb.mem_2_mem_3_wdata[15:0]
lut_mem_tb.mem_2_mem_3_rdata[15:0]
@28
lut_mem_tb.mem_2_mem_3_rw
@200
-
-
-mem_3 --> tb
@28
lut_mem_tb.mem_3_tb_valid
@22
lut_mem_tb.mem_3_tb_addr[15:0]
lut_mem_tb.mem_3_tb_wdata[15:0]
lut_mem_tb.mem_3_tb_rdata[15:0]
@28
lut_mem_tb.mem_3_tb_rw
[pattern_trace] 1
[pattern_trace] 0

View File

@ -1,48 +1,110 @@
`default_nettype none
`timescale 1ns / 1ps
`define CP 10
`define HCP 5
module uart_tx_tb();
logic clk;
logic rst;
logic [7:0] data;
logic start;
logic busy;
logic txd;
logic [7:0] tb_utx_data;
logic tb_utx_valid;
logic utx_tb_busy;
uart_tx #(
.DATA_WIDTH(8),
.CLK_FREQ_HZ(100_000_000),
.BAUDRATE(115200))
uut (
logic utx_tb_tx;
uart_tx #(.CLOCKS_PER_BAUD(10)) utx (
.clk(clk),
.rst(rst),
.data(data),
.start(start),
.busy(busy),
.txd(txd));
.data(tb_utx_data),
.valid(tb_utx_valid),
.busy(utx_tb_busy),
.tx(utx_tb_tx));
logic zcpu_tb_tx;
logic zcpu_tb_busy;
tx_uart #(.CLOCKS_PER_BAUD(10)) zcpu_utx (
.i_clk(clk),
.i_wr(tb_utx_valid),
.i_data(tb_utx_data),
.o_uart_tx(zcpu_tb_tx),
.o_busy(zcpu_tb_busy));
logic zcpu_urx_valid;
logic[7:0] zcpu_urx_data;
rx_uart #(.CLOCKS_PER_BAUD(10)) zcpu_urx (
.i_clk(clk),
.i_uart_rx(utx_tb_tx),
.o_wr(zcpu_urx_valid),
.o_data(zcpu_urx_data));
always begin
#5;
#`HCP
clk = !clk;
end
initial begin
$dumpfile("uart_tx.vcd");
$dumpvars(0, uart_tx_tb);
$dumpfile("uart_tx.vcd");
$dumpvars(0, uart_tx_tb);
clk = 0;
rst = 1;
start = 0;
#10;
rst = 0;
data = 'h0F;
#10;
start = 1;
#10;
start = 0;
#150000;
tb_utx_data = 0;
tb_utx_valid = 0;
#`HCP;
#(10*`CP);
$display("send a byte");
tb_utx_data = 8'h69;
tb_utx_valid = 1;
#`CP;
tb_utx_valid = 0;
#(150*`CP);
$display("send another byte");
tb_utx_data = 8'h42;
tb_utx_valid = 1;
#`CP;
tb_utx_valid = 0;
#(150*`CP);
$display("send two bytes back to back");
tb_utx_data = 8'h69;
tb_utx_valid = 1;
#`CP;
tb_utx_valid = 0;
#(99*`CP);
tb_utx_data = 8'h42;
tb_utx_valid = 1;
#`CP;
tb_utx_valid = 0;
#(150*`CP);
$display("send two bytes back to back, but keep valid asserted");
tb_utx_data = 8'h69;
tb_utx_valid = 1;
#`CP;
#(99*`CP);
tb_utx_data = 8'h42;
tb_utx_valid = 1;
#`CP;
tb_utx_valid = 0;
#(150*`CP);
$finish();
end
endmodule

93
test/yeet_tb.sv Normal file
View File

@ -0,0 +1,93 @@
`default_nettype none
`timescale 1ns/1ps
`define CP 10
`define HCP 5
module yeet_tb();
logic clk;
logic [15:0] tb_btx_rdata;
logic tb_btx_rw;
logic tb_btx_valid;
bridge_tx btx (
.clk(clk),
.rdata_i(tb_btx_rdata),
.rw_i(tb_btx_rw),
.valid_i(tb_btx_valid),
.ready_i(utx_btx_ready),
.data_o(btx_utx_data),
.valid_o(btx_utx_valid));
logic [7:0] btx_utx_data;
logic btx_utx_valid;
logic utx_btx_ready;
uart_tx #(.CLOCKS_PER_BAUD(10)) utx (
.clk(clk),
.data(btx_utx_data),
.valid(btx_utx_valid),
.ready(utx_btx_ready),
.tx(utx_tb_tx));
logic utx_tb_tx;
logic [7:0] decoded_byte;
logic decoder_valid;
logic [7:0] decoder_data;
always @(posedge clk) if (decoder_valid) decoded_byte <= decoder_data;
rx_uart #(.CLOCKS_PER_BAUD(10)) urx_decoder(
.i_clk(clk),
.i_uart_rx(utx_tb_tx),
.o_wr(decoder_valid),
.o_data(decoder_data));
always begin
#`HCP
clk = !clk;
end
initial begin
$dumpfile("yeet.vcd");
$dumpvars(0, yeet_tb);
clk = 0;
tb_btx_rdata = 0;
tb_btx_valid = 0;
tb_btx_rw = 0;
#`HCP
#(10*`CP);
// put some shit on the bus
tb_btx_rdata = 16'h69;
tb_btx_valid = 1;
tb_btx_rw = 0;
#`CP
tb_btx_valid = 0;
// wait a bit
#(7000 - `CP);
// put some more shit on the bus
tb_btx_rdata = 16'h42;
tb_btx_valid = 1;
tb_btx_rw = 1;
#`CP
tb_btx_valid = 0;
#(7000 - `CP);
$finish();
end
endmodule
`default_nettype wire