add module definitions to generated hdl
This commit is contained in:
parent
7d98988b87
commit
9dba38925b
|
|
@ -0,0 +1,471 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns/1ps
|
||||
/* This manata definition was generated on 08 Mar 2023 at 21:04:09 by fischerm
|
||||
*
|
||||
* If this breaks or if you've got dank formal verification memes,
|
||||
* please contact fischerm [at] mit.edu
|
||||
*/
|
||||
|
||||
rx_uart #(.CLOCKS_PER_BAUD(868)) urx (
|
||||
.i_clk(clk),
|
||||
.i_uart_rx(tb_urx_rxd),
|
||||
.o_wr(urx_brx_axiv),
|
||||
.o_data(urx_brx_axid));
|
||||
|
||||
// uart_rx --> bridge_rx signals
|
||||
logic [7:0] urx_brx_axid;
|
||||
logic urx_brx_axiv;
|
||||
|
||||
bridge_rx brx (
|
||||
.clk(clk),
|
||||
|
||||
.rx_data(urx_brx_axid),
|
||||
.rx_valid(urx_brx_axiv),
|
||||
|
||||
.addr_o(),
|
||||
.wdata_o(),
|
||||
.rw_o(),
|
||||
.valid_o());
|
||||
|
||||
la_core my_logic_analyzer (
|
||||
.clk(),
|
||||
|
||||
.addr_i(),
|
||||
.wdata_i(),
|
||||
.rdata_i(),
|
||||
.rw_i(),
|
||||
.valid_i(),
|
||||
|
||||
.addr_o(),
|
||||
.wdata_o(),
|
||||
.rdata_o(),
|
||||
.rw_o(),
|
||||
.valid_o());
|
||||
|
||||
|
||||
bridge_tx btx (
|
||||
.clk(clk),
|
||||
|
||||
.rdata_i(),
|
||||
.rw_i(),
|
||||
.valid_i(),
|
||||
|
||||
.ready_i(utx_btx_ready),
|
||||
.data_o(btx_utx_data),
|
||||
.valid_o(btx_utx_valid));
|
||||
|
||||
logic utx_btx_ready;
|
||||
logic btx_utx_valid;
|
||||
logic [7:0] btx_utx_data;
|
||||
|
||||
uart_tx #(.CLOCKS_PER_BAUD(868)) utx (
|
||||
.clk(clk),
|
||||
|
||||
.data(btx_utx_data),
|
||||
.valid(btx_utx_valid),
|
||||
.ready(utx_btx_ready),
|
||||
|
||||
.tx(utx_tb_tx));
|
||||
endmodule
|
||||
|
||||
/* ---- Module Definitions ---- */
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Filename: rxuart.v
|
||||
//
|
||||
// Project: Verilog Tutorial Example file
|
||||
//
|
||||
// Purpose: Receives a character from a UART (serial port) wire. Key
|
||||
// features of this core include:
|
||||
//
|
||||
// - The baud rate is constant, and set by the CLOCKS_PER_BAUD parameter.
|
||||
// To be successful, one baud interval must be (approximately)
|
||||
// equal to CLOCKS_PER_BAUD / CLOCK_RATE_HZ seconds long.
|
||||
//
|
||||
// - The protocol used is the basic 8N1: 8 data bits, 1 stop bit, and no
|
||||
// parity.
|
||||
//
|
||||
// - This core has no reset
|
||||
// - This core has no error detection for frame errors
|
||||
// - This core cannot detect, report, or even recover from, a break
|
||||
// condition on the line. A break condition is defined as a
|
||||
// period of time where the i_uart_rx line is held low for longer
|
||||
// than one data byte (10 baud intervals)
|
||||
//
|
||||
// - There's no clock rate detection in this core
|
||||
//
|
||||
// Perhaps one of the nicer features of this core is that it (can be)
|
||||
// formally verified. It depends upon a separate (formally verified)
|
||||
// transmit core for this purpose.
|
||||
//
|
||||
// As with the other cores within this tutorial, there may (or may not) be
|
||||
// bugs within this design for you to find.
|
||||
//
|
||||
//
|
||||
// Creator: Dan Gisselquist, Ph.D.
|
||||
// Gisselquist Technology, LLC
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Written and distributed by Gisselquist Technology, LLC
|
||||
//
|
||||
// This program is hereby granted to the public domain.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
//
|
||||
|
||||
|
||||
module rx_uart(
|
||||
input wire i_clk,
|
||||
input wire i_uart_rx,
|
||||
output reg o_wr,
|
||||
output reg [7:0] o_data);
|
||||
|
||||
parameter [15:0] CLOCKS_PER_BAUD = 868;
|
||||
localparam [3:0] IDLE = 4'h0;
|
||||
localparam [3:0] BIT_ZERO = 4'h1;
|
||||
// localparam [3:0] BIT_ONE = 4'h2;
|
||||
// localparam [3:0] BIT_TWO = 4'h3;
|
||||
// localparam [3:0] BIT_THREE = 4'h4;
|
||||
// localparam [3:0] BIT_FOUR = 4'h5;
|
||||
// localparam [3:0] BIT_FIVE = 4'h6;
|
||||
// localparam [3:0] BIT_SIX = 4'h7;
|
||||
// localparam [3:0] BIT_SEVEN = 4'h8;
|
||||
localparam [3:0] STOP_BIT = 4'h9;
|
||||
|
||||
reg [3:0] state;
|
||||
reg [15:0] baud_counter;
|
||||
reg zero_baud_counter;
|
||||
|
||||
// 2FF Synchronizer
|
||||
//
|
||||
reg ck_uart;
|
||||
reg q_uart;
|
||||
initial { ck_uart, q_uart } = -1;
|
||||
always @(posedge i_clk)
|
||||
{ ck_uart, q_uart } <= { q_uart, i_uart_rx };
|
||||
|
||||
initial state = IDLE;
|
||||
initial baud_counter = 0;
|
||||
|
||||
always @(posedge i_clk)
|
||||
if (state == IDLE) begin
|
||||
state <= IDLE;
|
||||
baud_counter <= 0;
|
||||
if (!ck_uart) begin
|
||||
state <= BIT_ZERO;
|
||||
baud_counter <= CLOCKS_PER_BAUD+CLOCKS_PER_BAUD/2-1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
else if (zero_baud_counter) begin
|
||||
state <= state + 1;
|
||||
baud_counter <= CLOCKS_PER_BAUD-1'b1;
|
||||
if (state == STOP_BIT) begin
|
||||
state <= IDLE;
|
||||
baud_counter <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
else baud_counter <= baud_counter - 1'b1;
|
||||
|
||||
always @(*)
|
||||
zero_baud_counter = (baud_counter == 0);
|
||||
|
||||
always @(posedge i_clk)
|
||||
if ((zero_baud_counter)&&(state != STOP_BIT))
|
||||
o_data <= { ck_uart, o_data[7:1] };
|
||||
|
||||
initial o_wr = 1'b0;
|
||||
always @(posedge i_clk)
|
||||
o_wr <= ((zero_baud_counter)&&(state == STOP_BIT));
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
|
||||
module bridge_rx(
|
||||
input wire clk,
|
||||
|
||||
input wire[7:0] rx_data,
|
||||
input wire rx_valid,
|
||||
|
||||
output reg[15:0] addr_o,
|
||||
output reg[15:0] wdata_o,
|
||||
output reg rw_o,
|
||||
output reg valid_o
|
||||
);
|
||||
|
||||
|
||||
// this is a hack, the FSM needs to be updated
|
||||
// but this will bypass it for now
|
||||
parameter ready_i = 1;
|
||||
|
||||
parameter ADDR_WIDTH = 0;
|
||||
parameter DATA_WIDTH = 0;
|
||||
|
||||
localparam PREAMBLE = 8'h4D;
|
||||
localparam CR = 8'h0D;
|
||||
localparam LF = 8'h0A;
|
||||
|
||||
localparam ACQUIRE = 0;
|
||||
localparam TRANSMIT = 1;
|
||||
localparam ERROR = 2;
|
||||
|
||||
reg [1:0] state;
|
||||
reg [3:0] bytes_received;
|
||||
|
||||
// no global resets!
|
||||
initial begin
|
||||
addr_o = 0;
|
||||
wdata_o = 0;
|
||||
rw_o = 0;
|
||||
valid_o = 0;
|
||||
bytes_received = 0;
|
||||
state = ACQUIRE;
|
||||
end
|
||||
|
||||
reg [3:0] rx_data_decoded;
|
||||
reg rx_data_is_0_thru_9;
|
||||
reg rx_data_is_A_thru_F;
|
||||
|
||||
always @(*) begin
|
||||
rx_data_is_0_thru_9 = (rx_data >= 8'h30) & (rx_data <= 8'h39);
|
||||
rx_data_is_A_thru_F = (rx_data >= 8'h41) & (rx_data <= 8'h46);
|
||||
|
||||
if (rx_data_is_0_thru_9) rx_data_decoded = rx_data - 8'h30;
|
||||
else if (rx_data_is_A_thru_F) rx_data_decoded = rx_data - 8'h41 + 'd10;
|
||||
else rx_data_decoded = 0;
|
||||
end
|
||||
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (state == ACQUIRE) begin
|
||||
if(rx_valid) begin
|
||||
|
||||
if (bytes_received == 0) begin
|
||||
if(rx_data == PREAMBLE) bytes_received <= 1;
|
||||
end
|
||||
|
||||
else if( (bytes_received >= 1) & (bytes_received <= 4) ) begin
|
||||
// only advance if byte is valid hex digit
|
||||
if(rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
|
||||
addr_o <= (addr_o << 4) | rx_data_decoded;
|
||||
bytes_received <= bytes_received + 1;
|
||||
end
|
||||
|
||||
else state <= ERROR;
|
||||
end
|
||||
|
||||
else if( bytes_received == 5) begin
|
||||
if( (rx_data == CR) | (rx_data == LF)) begin
|
||||
valid_o <= 1;
|
||||
rw_o = 0;
|
||||
bytes_received <= 0;
|
||||
state <= TRANSMIT;
|
||||
end
|
||||
|
||||
else if (rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
|
||||
bytes_received <= bytes_received + 1;
|
||||
wdata_o <= (wdata_o << 4) | rx_data_decoded;
|
||||
end
|
||||
|
||||
else state <= ERROR;
|
||||
end
|
||||
|
||||
else if ( (bytes_received >= 6) & (bytes_received <= 8) ) begin
|
||||
|
||||
if (rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
|
||||
wdata_o <= (wdata_o << 4) | rx_data_decoded;
|
||||
bytes_received <= bytes_received + 1;
|
||||
end
|
||||
|
||||
else state <= ERROR;
|
||||
end
|
||||
|
||||
else if (bytes_received == 9) begin
|
||||
bytes_received <= 0;
|
||||
if( (rx_data == CR) | (rx_data == LF)) begin
|
||||
valid_o <= 1;
|
||||
rw_o <= 1;
|
||||
state <= TRANSMIT;
|
||||
end
|
||||
|
||||
else state <= ERROR;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
else if (state == TRANSMIT) begin
|
||||
if(ready_i) begin
|
||||
valid_o <= 0;
|
||||
state <= ACQUIRE;
|
||||
end
|
||||
|
||||
if(rx_valid) begin
|
||||
if ( (rx_data != CR) & (rx_data != LF)) begin
|
||||
valid_o <= 0;
|
||||
state <= ERROR;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
module bridge_tx(
|
||||
input wire clk,
|
||||
|
||||
input wire [15:0] rdata_i,
|
||||
input wire rw_i,
|
||||
input wire valid_i,
|
||||
|
||||
output reg [7:0] data_o,
|
||||
input wire ready_i,
|
||||
output reg valid_o);
|
||||
|
||||
localparam PREAMBLE = 8'h4D;
|
||||
localparam CR = 8'h0D;
|
||||
localparam LF = 8'h0A;
|
||||
|
||||
logic busy;
|
||||
logic [15:0] buffer;
|
||||
logic [3:0] byte_counter;
|
||||
|
||||
initial begin
|
||||
busy = 0;
|
||||
buffer = 0;
|
||||
byte_counter = 0;
|
||||
valid_o = 0;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (!busy) begin
|
||||
if (valid_i && !rw_i) begin
|
||||
busy <= 1;
|
||||
buffer <= rdata_i;
|
||||
byte_counter <= 0;
|
||||
valid_o <= 1;
|
||||
end
|
||||
end
|
||||
|
||||
if (busy) begin
|
||||
|
||||
if(ready_i) begin
|
||||
byte_counter <= byte_counter + 1;
|
||||
|
||||
if (byte_counter > 5) begin
|
||||
byte_counter <= 0;
|
||||
|
||||
// stop transmitting if we don't have both valid and read
|
||||
if ( !(valid_i && !rw_i) ) begin
|
||||
busy <= 0;
|
||||
valid_o <= 0;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @(*) begin
|
||||
case (byte_counter)
|
||||
0: data_o = PREAMBLE;
|
||||
1: data_o = (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
|
||||
2: data_o = (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
|
||||
3: data_o = (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
|
||||
4: data_o = (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
|
||||
5: data_o = CR;
|
||||
6: data_o = LF;
|
||||
default: data_o = 0;
|
||||
endcase
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
|
||||
module uart_tx(
|
||||
input wire clk,
|
||||
|
||||
input wire [7:0] data,
|
||||
input wire valid,
|
||||
output reg busy,
|
||||
output reg ready,
|
||||
|
||||
output reg tx);
|
||||
|
||||
// this transmitter only works with 8N1 serial, at configurable baudrate
|
||||
parameter CLOCKS_PER_BAUD = 868;
|
||||
|
||||
reg [9:0] baud_counter;
|
||||
reg [8:0] data_buf;
|
||||
reg [3:0] bit_index;
|
||||
|
||||
initial begin
|
||||
baud_counter = CLOCKS_PER_BAUD;
|
||||
data_buf = 0;
|
||||
bit_index = 0;
|
||||
busy = 0;
|
||||
ready = 1;
|
||||
tx = 1;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (valid && !busy) begin
|
||||
data_buf <= {1'b1, data};
|
||||
bit_index <= 0;
|
||||
tx <= 0; //wafflestomp that start bit
|
||||
baud_counter <= CLOCKS_PER_BAUD - 1;
|
||||
busy <= 1;
|
||||
ready <= 0;
|
||||
end
|
||||
|
||||
else if (busy) begin
|
||||
baud_counter <= baud_counter - 1;
|
||||
|
||||
ready <= (baud_counter == 1) && (bit_index == 9);
|
||||
|
||||
if (baud_counter == 0) begin
|
||||
baud_counter <= CLOCKS_PER_BAUD - 1;
|
||||
|
||||
|
||||
if (bit_index == 9) begin
|
||||
if(valid) begin
|
||||
data_buf <= {1'b1, data};
|
||||
bit_index <= 0;
|
||||
tx <= 0;
|
||||
end
|
||||
|
||||
else begin
|
||||
busy <= 0;
|
||||
ready <= 1;
|
||||
end
|
||||
// if valid happens here then we should bool
|
||||
end
|
||||
|
||||
else begin
|
||||
tx <= data_buf[bit_index];
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -43,13 +43,68 @@ class UARTInterface:
|
|||
self.ser.read(bytes)
|
||||
|
||||
def write(self, bytes):
|
||||
self.ser.write(bytes)
|
||||
self.ser.write(bytes)
|
||||
|
||||
def tx_hdl(self):
|
||||
pkgutil.get_data(__name__, "uart_tx.sv").decode()
|
||||
def rx_hdl_def(self):
|
||||
uart_rx_def = pkgutil.get_data(__name__, "rx_uart.v").decode()
|
||||
bridge_rx_def = pkgutil.get_data(__name__, "bridge_rx.v").decode()
|
||||
return uart_rx_def + '\n' + bridge_rx_def
|
||||
|
||||
def rx_hdl(self):
|
||||
pkgutil.get_data(__name__, "rx_uart.sv").decode()
|
||||
def tx_hdl_def(self):
|
||||
uart_tx_def = pkgutil.get_data(__name__, "uart_tx.v").decode()
|
||||
bridge_tx_def = pkgutil.get_data(__name__, "bridge_tx.v").decode()
|
||||
return bridge_tx_def + '\n' + uart_tx_def
|
||||
|
||||
def rx_hdl_inst(self):
|
||||
return f"""
|
||||
rx_uart #(.CLOCKS_PER_BAUD({self.clocks_per_baud})) urx (
|
||||
.i_clk(clk),
|
||||
.i_uart_rx(tb_urx_rxd),
|
||||
.o_wr(urx_brx_axiv),
|
||||
.o_data(urx_brx_axid));
|
||||
|
||||
// uart_rx --> bridge_rx signals
|
||||
logic [7:0] urx_brx_axid;
|
||||
logic urx_brx_axiv;
|
||||
|
||||
bridge_rx brx (
|
||||
.clk(clk),
|
||||
|
||||
.rx_data(urx_brx_axid),
|
||||
.rx_valid(urx_brx_axiv),
|
||||
|
||||
.addr_o(),
|
||||
.wdata_o(),
|
||||
.rw_o(),
|
||||
.valid_o());
|
||||
"""
|
||||
|
||||
def tx_hdl_inst(self):
|
||||
return f"""
|
||||
bridge_tx btx (
|
||||
.clk(clk),
|
||||
|
||||
.rdata_i(),
|
||||
.rw_i(),
|
||||
.valid_i(),
|
||||
|
||||
.ready_i(utx_btx_ready),
|
||||
.data_o(btx_utx_data),
|
||||
.valid_o(btx_utx_valid));
|
||||
|
||||
logic utx_btx_ready;
|
||||
logic btx_utx_valid;
|
||||
logic [7:0] btx_utx_data;
|
||||
|
||||
uart_tx #(.CLOCKS_PER_BAUD({self.clocks_per_baud})) utx (
|
||||
.clk(clk),
|
||||
|
||||
.data(btx_utx_data),
|
||||
.valid(btx_utx_valid),
|
||||
.ready(utx_btx_ready),
|
||||
|
||||
.tx(utx_tb_tx));
|
||||
"""
|
||||
|
||||
|
||||
class IOCore:
|
||||
|
|
@ -81,7 +136,7 @@ class LogicAnalyzerCore:
|
|||
assert len(config["triggers"]) > 0, "Must specify at least one trigger."
|
||||
self.triggers = config["triggers"]
|
||||
|
||||
def inst(self):
|
||||
def hdl_inst(self):
|
||||
hdl = f"""
|
||||
la_core {self.name} (
|
||||
.clk(),
|
||||
|
|
@ -171,7 +226,7 @@ class LogicAnalyzerCore:
|
|||
writer.change(probe, timestamp, val)
|
||||
vcd_file.close()
|
||||
|
||||
def hdl(self):
|
||||
def hdl_def(self):
|
||||
# Return an autogenerated verilog module definition for the core.
|
||||
# load source files
|
||||
tmpl = pkgutil.get_data(__name__, "la_template.v").decode()
|
||||
|
|
@ -179,13 +234,13 @@ class LogicAnalyzerCore:
|
|||
# add triggers
|
||||
trigger = [f"({trigger})" for trigger in self.triggers]
|
||||
trigger = " || ".join(trigger)
|
||||
templ = templ.replace("@TRIGGER", trigger)
|
||||
tmpl = tmpl.replace("@TRIGGER", trigger)
|
||||
|
||||
# add concat
|
||||
concat = [name for name in self.probes]
|
||||
concat = ", ".join(concat)
|
||||
concat = "{" + concat + "}"
|
||||
templ = templ.replace("@CONCAT", concat)
|
||||
tmpl = tmpl.replace("@CONCAT", concat)
|
||||
|
||||
# add probes
|
||||
probe_verilog = []
|
||||
|
|
@ -295,7 +350,7 @@ class Manta:
|
|||
for i, core in enumerate(self.cores):
|
||||
# should probably check if core is LogicAnalyzerCore or IOCore
|
||||
|
||||
hdl = core.inst()
|
||||
hdl = core.hdl_inst()
|
||||
|
||||
if (i < len(self.cores)-1):
|
||||
dst = self.cores[i+1]
|
||||
|
|
@ -318,45 +373,78 @@ class Manta:
|
|||
|
||||
return insts
|
||||
|
||||
def generate(self):
|
||||
# this occurs in two steps: generating manta and the top-level,
|
||||
# and pasting in all the HDL from earlier.
|
||||
|
||||
uart_rx_hdl = pkgutil.get_data(__name__, "rx_uart.v").decode()
|
||||
bridge_rx_hdl = pkgutil.get_data(__name__, "bridge_rx.v").decode()
|
||||
bridge_tx_hdl = pkgutil.get_data(__name__, "bridge_tx.v").decode()
|
||||
uart_tx_hdl = pkgutil.get_data(__name__, "uart_tx.v").decode()
|
||||
|
||||
|
||||
def generate_hdl(self):
|
||||
"""
|
||||
ok so the way this works is that we have two lists, instantiations and connections
|
||||
we make connections first, and it works by pairwise iterating over pairs of cores and
|
||||
doing the 'reg[N:0] src_dest_name' thing
|
||||
anatomy of manta.v:
|
||||
|
||||
once we have that, we then generate the instantiations. we iterate through the same pairs,
|
||||
setting outputs on the src, and inputs on the dest. this leaves the inputs of the first node
|
||||
and the outputs of the last node unconnected, but we'll have a final step to take care of that.
|
||||
- header
|
||||
- top-level module:
|
||||
- module declaration
|
||||
- top <-> cores
|
||||
- interface_in (for uart, this would be uart_rx and bridge_rx)
|
||||
|
||||
- core chain
|
||||
- core inst
|
||||
- core connection
|
||||
- core inst
|
||||
- core connection
|
||||
....
|
||||
|
||||
- interface_out (for uart, this is bridge_tx and uart_tx)
|
||||
- footer
|
||||
|
||||
|
||||
then come all the module definitions
|
||||
"""
|
||||
|
||||
|
||||
# add preamble to top of file
|
||||
# generate header
|
||||
user = os.environ.get("USER", os.environ.get("USERNAME"))
|
||||
timestamp = datetime.now().strftime("%d %b %Y at %H:%M:%S")
|
||||
|
||||
hdl = f"/* This manata definition was generated on {timestamp} by {user}\n"
|
||||
hdl += " *\n"
|
||||
hdl += " * If this breaks or if you've got dank formal verification memes,\n"
|
||||
hdl += " * please contact fischerm [at] mit.edu\n"
|
||||
hdl += " */\n"
|
||||
header = f"/* This manata definition was generated on {timestamp} by {user}\n"
|
||||
header += " *\n"
|
||||
header += " * If this breaks or if you've got dank formal verification memes,\n"
|
||||
header += " * please contact fischerm [at] mit.edu\n"
|
||||
header += " */\n"
|
||||
|
||||
# generate interface_rx
|
||||
interface_rx = self.interface.rx_hdl_inst()
|
||||
|
||||
# generate chain of cores
|
||||
insts = self.generate_instantiations()
|
||||
conns = self.generate_connections()
|
||||
core_chain = []
|
||||
for i, inst in enumerate(insts):
|
||||
hdl += inst
|
||||
core_chain.append(inst)
|
||||
|
||||
if (i != len(insts)-1):
|
||||
hdl += conns[i]
|
||||
core_chain.append(conns[i])
|
||||
|
||||
core_chain = '\n'.join(core_chain)
|
||||
|
||||
# generate interface_tx
|
||||
interface_tx = self.interface.tx_hdl_inst()
|
||||
|
||||
# generate footer
|
||||
footer = """endmodule\n"""
|
||||
|
||||
# aggregate module definitions and remove duplicates
|
||||
module_defs_with_dups = [self.interface.rx_hdl_def()] + [core.hdl_def() for core in self.cores] + [self.interface.tx_hdl_def()]
|
||||
module_defs = []
|
||||
module_defs = [m_def for m_def in module_defs_with_dups if m_def not in module_defs]
|
||||
module_defs = '\n'.join(module_defs)
|
||||
|
||||
# assemble all the parts
|
||||
hdl = header + interface_rx + core_chain + interface_tx + footer
|
||||
hdl += "\n /* ---- Module Definitions ---- */\n"
|
||||
hdl += module_defs
|
||||
|
||||
# default_nettype and timescale directives only at the beginning and end
|
||||
hdl = hdl.replace("`default_nettype none", "")
|
||||
hdl = hdl.replace("`default_nettype wire", "")
|
||||
hdl = hdl.replace("`timescale 1ns/1ps", "")
|
||||
|
||||
hdl = "`default_nettype none\n" + "`timescale 1ns/1ps\n" + hdl + "`default_nettype wire"
|
||||
return hdl
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module uart_tx(
|
||||
input wire clk,
|
||||
|
|
|
|||
|
|
@ -0,0 +1,4 @@
|
|||
from manta import Manta
|
||||
|
||||
m = Manta('/Users/fischerm/fpga/manta/examples/nexys_a7/single_lut_ram/manta.yaml')
|
||||
print (m.generate_hdl())
|
||||
Loading…
Reference in New Issue