break up hdl definition into multiple member functinos

This commit is contained in:
Fischer Moseley 2023-03-09 12:17:32 -05:00
parent 9dba38925b
commit 3fda03ec90
4 changed files with 142 additions and 535 deletions

View File

@ -49,3 +49,6 @@ clean:
rm -f *.out *.vcd
rm -rf dist/
rm -rf src/mantaray.egg-info
loc:
find . -type f \( -iname \*.sv -o -iname \*.v -o -iname \*.py -o -iname \*.yaml -o -iname \*.md \) | sed 's/.*/"&"/' | xargs wc -l

View File

@ -1,471 +0,0 @@
`default_nettype none
`timescale 1ns/1ps
/* This manata definition was generated on 08 Mar 2023 at 21:04:09 by fischerm
*
* If this breaks or if you've got dank formal verification memes,
* please contact fischerm [at] mit.edu
*/
rx_uart #(.CLOCKS_PER_BAUD(868)) urx (
.i_clk(clk),
.i_uart_rx(tb_urx_rxd),
.o_wr(urx_brx_axiv),
.o_data(urx_brx_axid));
// uart_rx --> bridge_rx signals
logic [7:0] urx_brx_axid;
logic urx_brx_axiv;
bridge_rx brx (
.clk(clk),
.rx_data(urx_brx_axid),
.rx_valid(urx_brx_axiv),
.addr_o(),
.wdata_o(),
.rw_o(),
.valid_o());
la_core my_logic_analyzer (
.clk(),
.addr_i(),
.wdata_i(),
.rdata_i(),
.rw_i(),
.valid_i(),
.addr_o(),
.wdata_o(),
.rdata_o(),
.rw_o(),
.valid_o());
bridge_tx btx (
.clk(clk),
.rdata_i(),
.rw_i(),
.valid_i(),
.ready_i(utx_btx_ready),
.data_o(btx_utx_data),
.valid_o(btx_utx_valid));
logic utx_btx_ready;
logic btx_utx_valid;
logic [7:0] btx_utx_data;
uart_tx #(.CLOCKS_PER_BAUD(868)) utx (
.clk(clk),
.data(btx_utx_data),
.valid(btx_utx_valid),
.ready(utx_btx_ready),
.tx(utx_tb_tx));
endmodule
/* ---- Module Definitions ---- */
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rxuart.v
//
// Project: Verilog Tutorial Example file
//
// Purpose: Receives a character from a UART (serial port) wire. Key
// features of this core include:
//
// - The baud rate is constant, and set by the CLOCKS_PER_BAUD parameter.
// To be successful, one baud interval must be (approximately)
// equal to CLOCKS_PER_BAUD / CLOCK_RATE_HZ seconds long.
//
// - The protocol used is the basic 8N1: 8 data bits, 1 stop bit, and no
// parity.
//
// - This core has no reset
// - This core has no error detection for frame errors
// - This core cannot detect, report, or even recover from, a break
// condition on the line. A break condition is defined as a
// period of time where the i_uart_rx line is held low for longer
// than one data byte (10 baud intervals)
//
// - There's no clock rate detection in this core
//
// Perhaps one of the nicer features of this core is that it (can be)
// formally verified. It depends upon a separate (formally verified)
// transmit core for this purpose.
//
// As with the other cores within this tutorial, there may (or may not) be
// bugs within this design for you to find.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Written and distributed by Gisselquist Technology, LLC
//
// This program is hereby granted to the public domain.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
////////////////////////////////////////////////////////////////////////////////
//
//
module rx_uart(
input wire i_clk,
input wire i_uart_rx,
output reg o_wr,
output reg [7:0] o_data);
parameter [15:0] CLOCKS_PER_BAUD = 868;
localparam [3:0] IDLE = 4'h0;
localparam [3:0] BIT_ZERO = 4'h1;
// localparam [3:0] BIT_ONE = 4'h2;
// localparam [3:0] BIT_TWO = 4'h3;
// localparam [3:0] BIT_THREE = 4'h4;
// localparam [3:0] BIT_FOUR = 4'h5;
// localparam [3:0] BIT_FIVE = 4'h6;
// localparam [3:0] BIT_SIX = 4'h7;
// localparam [3:0] BIT_SEVEN = 4'h8;
localparam [3:0] STOP_BIT = 4'h9;
reg [3:0] state;
reg [15:0] baud_counter;
reg zero_baud_counter;
// 2FF Synchronizer
//
reg ck_uart;
reg q_uart;
initial { ck_uart, q_uart } = -1;
always @(posedge i_clk)
{ ck_uart, q_uart } <= { q_uart, i_uart_rx };
initial state = IDLE;
initial baud_counter = 0;
always @(posedge i_clk)
if (state == IDLE) begin
state <= IDLE;
baud_counter <= 0;
if (!ck_uart) begin
state <= BIT_ZERO;
baud_counter <= CLOCKS_PER_BAUD+CLOCKS_PER_BAUD/2-1'b1;
end
end
else if (zero_baud_counter) begin
state <= state + 1;
baud_counter <= CLOCKS_PER_BAUD-1'b1;
if (state == STOP_BIT) begin
state <= IDLE;
baud_counter <= 0;
end
end
else baud_counter <= baud_counter - 1'b1;
always @(*)
zero_baud_counter = (baud_counter == 0);
always @(posedge i_clk)
if ((zero_baud_counter)&&(state != STOP_BIT))
o_data <= { ck_uart, o_data[7:1] };
initial o_wr = 1'b0;
always @(posedge i_clk)
o_wr <= ((zero_baud_counter)&&(state == STOP_BIT));
endmodule
module bridge_rx(
input wire clk,
input wire[7:0] rx_data,
input wire rx_valid,
output reg[15:0] addr_o,
output reg[15:0] wdata_o,
output reg rw_o,
output reg valid_o
);
// this is a hack, the FSM needs to be updated
// but this will bypass it for now
parameter ready_i = 1;
parameter ADDR_WIDTH = 0;
parameter DATA_WIDTH = 0;
localparam PREAMBLE = 8'h4D;
localparam CR = 8'h0D;
localparam LF = 8'h0A;
localparam ACQUIRE = 0;
localparam TRANSMIT = 1;
localparam ERROR = 2;
reg [1:0] state;
reg [3:0] bytes_received;
// no global resets!
initial begin
addr_o = 0;
wdata_o = 0;
rw_o = 0;
valid_o = 0;
bytes_received = 0;
state = ACQUIRE;
end
reg [3:0] rx_data_decoded;
reg rx_data_is_0_thru_9;
reg rx_data_is_A_thru_F;
always @(*) begin
rx_data_is_0_thru_9 = (rx_data >= 8'h30) & (rx_data <= 8'h39);
rx_data_is_A_thru_F = (rx_data >= 8'h41) & (rx_data <= 8'h46);
if (rx_data_is_0_thru_9) rx_data_decoded = rx_data - 8'h30;
else if (rx_data_is_A_thru_F) rx_data_decoded = rx_data - 8'h41 + 'd10;
else rx_data_decoded = 0;
end
always @(posedge clk) begin
if (state == ACQUIRE) begin
if(rx_valid) begin
if (bytes_received == 0) begin
if(rx_data == PREAMBLE) bytes_received <= 1;
end
else if( (bytes_received >= 1) & (bytes_received <= 4) ) begin
// only advance if byte is valid hex digit
if(rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
addr_o <= (addr_o << 4) | rx_data_decoded;
bytes_received <= bytes_received + 1;
end
else state <= ERROR;
end
else if( bytes_received == 5) begin
if( (rx_data == CR) | (rx_data == LF)) begin
valid_o <= 1;
rw_o = 0;
bytes_received <= 0;
state <= TRANSMIT;
end
else if (rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
bytes_received <= bytes_received + 1;
wdata_o <= (wdata_o << 4) | rx_data_decoded;
end
else state <= ERROR;
end
else if ( (bytes_received >= 6) & (bytes_received <= 8) ) begin
if (rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
wdata_o <= (wdata_o << 4) | rx_data_decoded;
bytes_received <= bytes_received + 1;
end
else state <= ERROR;
end
else if (bytes_received == 9) begin
bytes_received <= 0;
if( (rx_data == CR) | (rx_data == LF)) begin
valid_o <= 1;
rw_o <= 1;
state <= TRANSMIT;
end
else state <= ERROR;
end
end
end
else if (state == TRANSMIT) begin
if(ready_i) begin
valid_o <= 0;
state <= ACQUIRE;
end
if(rx_valid) begin
if ( (rx_data != CR) & (rx_data != LF)) begin
valid_o <= 0;
state <= ERROR;
end
end
end
end
endmodule
module bridge_tx(
input wire clk,
input wire [15:0] rdata_i,
input wire rw_i,
input wire valid_i,
output reg [7:0] data_o,
input wire ready_i,
output reg valid_o);
localparam PREAMBLE = 8'h4D;
localparam CR = 8'h0D;
localparam LF = 8'h0A;
logic busy;
logic [15:0] buffer;
logic [3:0] byte_counter;
initial begin
busy = 0;
buffer = 0;
byte_counter = 0;
valid_o = 0;
end
always @(posedge clk) begin
if (!busy) begin
if (valid_i && !rw_i) begin
busy <= 1;
buffer <= rdata_i;
byte_counter <= 0;
valid_o <= 1;
end
end
if (busy) begin
if(ready_i) begin
byte_counter <= byte_counter + 1;
if (byte_counter > 5) begin
byte_counter <= 0;
// stop transmitting if we don't have both valid and read
if ( !(valid_i && !rw_i) ) begin
busy <= 0;
valid_o <= 0;
end
end
end
end
end
always @(*) begin
case (byte_counter)
0: data_o = PREAMBLE;
1: data_o = (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
2: data_o = (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
3: data_o = (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
4: data_o = (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
5: data_o = CR;
6: data_o = LF;
default: data_o = 0;
endcase
end
endmodule
module uart_tx(
input wire clk,
input wire [7:0] data,
input wire valid,
output reg busy,
output reg ready,
output reg tx);
// this transmitter only works with 8N1 serial, at configurable baudrate
parameter CLOCKS_PER_BAUD = 868;
reg [9:0] baud_counter;
reg [8:0] data_buf;
reg [3:0] bit_index;
initial begin
baud_counter = CLOCKS_PER_BAUD;
data_buf = 0;
bit_index = 0;
busy = 0;
ready = 1;
tx = 1;
end
always @(posedge clk) begin
if (valid && !busy) begin
data_buf <= {1'b1, data};
bit_index <= 0;
tx <= 0; //wafflestomp that start bit
baud_counter <= CLOCKS_PER_BAUD - 1;
busy <= 1;
ready <= 0;
end
else if (busy) begin
baud_counter <= baud_counter - 1;
ready <= (baud_counter == 1) && (bit_index == 9);
if (baud_counter == 0) begin
baud_counter <= CLOCKS_PER_BAUD - 1;
if (bit_index == 9) begin
if(valid) begin
data_buf <= {1'b1, data};
bit_index <= 0;
tx <= 0;
end
else begin
busy <= 0;
ready <= 1;
end
// if valid happens here then we should bool
end
else begin
tx <= data_buf[bit_index];
bit_index <= bit_index + 1;
end
end
end
end
endmodule
`default_nettype wire

View File

@ -103,8 +103,7 @@ class UARTInterface:
.valid(btx_utx_valid),
.ready(utx_btx_ready),
.tx(utx_tb_tx));
"""
.tx(utx_tb_tx));\n"""
class IOCore:
@ -138,20 +137,20 @@ class LogicAnalyzerCore:
def hdl_inst(self):
hdl = f"""
la_core {self.name} (
.clk(),
la_core {self.name} (
.clk(clk),
.addr_i(),
.wdata_i(),
.rdata_i(),
.rw_i(),
.valid_i(),
.addr_o(),
.wdata_o(),
.rdata_o(),
.rw_o(),
.valid_o());\n\n"""
.addr_i(),
.wdata_i(),
.rdata_i(),
.rw_i(),
.valid_i(),
.addr_o(),
.wdata_o(),
.rdata_o(),
.rw_o(),
.valid_o());\n\n"""
return hdl
@ -262,6 +261,10 @@ class LogicAnalyzerCore:
tmpl = tmpl.replace("@SAMPLE_DEPTH", str(self.sample_depth))
return tmpl
def hdl_top_level_ports(self):
# this should return the probes that we want to connect to top-level, but like as a string of verilog\
return "" # TODO: i'll fix this later
class Manta:
def __init__(self, config_filepath):
@ -343,7 +346,7 @@ class Manta:
return conns
def generate_instantiations(self):
def generate_instances(self):
# generates hdl for modules that need to be connected together
insts = []
@ -372,46 +375,9 @@ class Manta:
insts.append(hdl)
return insts
def generate_hdl(self):
"""
anatomy of manta.v:
- header
- top-level module:
- module declaration
- top <-> cores
- interface_in (for uart, this would be uart_rx and bridge_rx)
- core chain
- core inst
- core connection
- core inst
- core connection
....
- interface_out (for uart, this is bridge_tx and uart_tx)
- footer
then come all the module definitions
"""
# generate header
user = os.environ.get("USER", os.environ.get("USERNAME"))
timestamp = datetime.now().strftime("%d %b %Y at %H:%M:%S")
header = f"/* This manata definition was generated on {timestamp} by {user}\n"
header += " *\n"
header += " * If this breaks or if you've got dank formal verification memes,\n"
header += " * please contact fischerm [at] mit.edu\n"
header += " */\n"
# generate interface_rx
interface_rx = self.interface.rx_hdl_inst()
# generate chain of cores
insts = self.generate_instantiations()
def generate_core_chain(self):
insts = self.generate_instances()
conns = self.generate_connections()
core_chain = []
for i, inst in enumerate(insts):
@ -419,23 +385,130 @@ class Manta:
if (i != len(insts)-1):
core_chain.append(conns[i])
return '\n'.join(core_chain)
core_chain = '\n'.join(core_chain)
def generate_header(self):
# generate header
user = os.environ.get("USER", os.environ.get("USERNAME"))
timestamp = datetime.now().strftime("%d %b %Y at %H:%M:%S")
# generate interface_tx
header = f"""
/*
This manta definition was generated on {timestamp} by {user}
If this breaks or if you've got dank formal verification memes,
please contact fischerm [at] mit.edu
Provided under a GNU GPLv3 license. Go wild.
*/
"""
return header
def generate_declaration(self):
# get all the top level connections for each module.
#ports = [core.top_level_ports() for core in self.cores]
#ports = "\n".join(ports)
return f"""
module manta (
input wire clk,
input wire rx,
output reg tx,
);"""
def generate_interface_rx(self):
interface_rx = self.interface.rx_hdl_inst()
# connect interface_rx to core_chain
interface_rx_chain_connection = f"""
reg [15:0] brx_{self.cores[0].name}_addr;
reg [15:0] brx_{self.cores[0].name}_wdata;
reg brx_{self.cores[0].name}_rw;
reg brx_{self.cores[0].name}_valid;\n"""
interface_rx = interface_rx.replace("addr_o()", f"addr_o(brx_{self.cores[0].name}_addr)")
interface_rx = interface_rx.replace("wdata_o()", f"wdata_o(brx_{self.cores[0].name}_wdata)")
interface_rx = interface_rx.replace("rw_o()", f"rw_o(brx_{self.cores[0].name}_rw)")
interface_rx = interface_rx.replace("valid_o()", f"valid_o(brx_{self.cores[0].name}_valid)")
return interface_rx
def generate_interface_tx(self):
interface_tx = self.interface.tx_hdl_inst()
# generate footer
footer = """endmodule\n"""
interface_tx = interface_tx.replace("addr_i()", f"addr_o({self.cores[0].name}_btx_addr)")
interface_tx = interface_tx.replace("rdata_i()", f"rdata_o({self.cores[0].name}_btx_rdata)")
interface_tx = interface_tx.replace("rw_i()", f"rw_o({self.cores[0].name}_btx_rw)")
interface_tx = interface_tx.replace("valid_i()", f"valid_o({self.cores[0].name}_btx_valid)")
return interface_tx
def generate_footer(self):
return """endmodule\n"""
def generate_module_defs(self):
# aggregate module definitions and remove duplicates
module_defs_with_dups = [self.interface.rx_hdl_def()] + [core.hdl_def() for core in self.cores] + [self.interface.tx_hdl_def()]
module_defs = []
module_defs = [m_def for m_def in module_defs_with_dups if m_def not in module_defs]
module_defs = '\n'.join(module_defs)
return '\n'.join(module_defs)
def generate_hdl(self, output_filepath):
"""
This function generates manta.v, which has the following anatomy:
- Header - contains a little blurb about when and who generated the file
- Top-Level Module - the actual definition of module manta
- Declaration - contains `module manta` and top-level ports
that constitutent cores need access to
- Interface RX - the modules needed to bring whatever interface the user
selected onto the bus. For UART, this is just an instance
of uart_rx and bridge_rx.
- Core Chain - the chain of cores specified by the user. This follows
a sequence of:
- Core Instance - HDL specifying an instance of the core.
- Core Connection - HDL specifying the registers that connect one
core to the next.
- Core Instance
- Core Connection
....
This repeats for however many cores the user specified.
- Interface TX - the modules needed to bring the bus out to whatever
interface the user selected. For UART, this is just
an instance of bridge_tx and uart_tx.
- Footer - just the 'endmodule' keyword.
- Module Definitions - all the source for the modules instantiated in the
top-level module.
"""
# generate header
header = self.generate_header()
# generate module declaration
declar = self.generate_declaration()
# generate interface_rx
interface_rx = self.generate_interface_rx()
# generate core chain
core_chain = self.generate_core_chain()
# generate interface_tx
interface_tx = self.generate_interface_tx()
# generate footer
footer = self.generate_footer()
# generate module definitions
module_defs = self.generate_module_defs()
# assemble all the parts
hdl = header + interface_rx + core_chain + interface_tx + footer
hdl = header + declar + interface_rx + core_chain + interface_tx + footer
hdl += "\n /* ---- Module Definitions ---- */\n"
hdl += module_defs
@ -445,7 +518,9 @@ class Manta:
hdl = hdl.replace("`timescale 1ns/1ps", "")
hdl = "`default_nettype none\n" + "`timescale 1ns/1ps\n" + hdl + "`default_nettype wire"
return hdl
with open(output_filepath, 'w') as f:
f.write(hdl)
def main():

View File

@ -1,4 +1,4 @@
from manta import Manta
m = Manta('/Users/fischerm/fpga/manta/examples/nexys_a7/single_lut_ram/manta.yaml')
print (m.generate_hdl())
m.generate_hdl('inspecto_time.v')