When an expression is elaborated, the compiler converts multiplies with
one constamt zero operand into a constant zero value. This is only valid
if the other operand is not a 4-state variable.
Unsized expressions can expand to extremely large widths. Usually this
is actually a mistake in the source code, but it can lead to the compiler
temporarily using extremely large amounts of memory, or in the worst
case, crashing. This adds a cap on the width of unsized expressions (by
default 65536 bits, but overridable by the user), and causes a warning
message to be output when the cap is reached.
The verinum arithmetic operators now observe the standard Verilog
rules for calculating the result width if all operands are sized.
If any operand is unsized, the result is lossless, as before.
They also now all observe the standard rules for handling partially
undefined operands (if any operand bit is 'x', the entire result is
'x').
I've also added the unary '-' operator, and renamed v_not() to be
the unary '~' operator. This has allowed some simplification in
other parts of the compiler.
This changes the verinum pow() function to use the more efficient algorithm
used in the vvp runtime. It will still be slow if the left operand is unsized
and the right operand is large, as it will expand the result vector to avoid
overflow.
The code should only look at the real argument that exist any missing
arguments default to not being defined and hence needs to use the
default expression. Found with valgrind.
It is better to leave the handling of PChainConstructor calls to
the elaboration, instead of stripping them out early. This allows
for handling the arguments of the chain constructor in the correct
scope.
It is more common to find an unsized number on the right hand side
of a binary operator than on the left hand side, particularly for
comparison operations (e.g. x < 10 rather than 10 > x), so testing
the width of the right operand first is less likely to result in
the width needing to be retested. Counting the number of times an
operand width is retested when running the test suite confirms this;
before this change an operand width was retested 4869 times, after
the change an operand width was retested 99 times.
To be strictly compliant with the standard and compatible with other
EDA tools, unsized numbers should be treated as having a fixed size
(the same size as an integer). The -gstrict-expr-width option is
extended to allow the user to enable this behaviour.
This includes adding support for returning strings from functions,
adding initializing new darray with array_pattern strings, and
assigning an array_pattern of strings to a preallocated darray.
Also fix up support for initializing array with simple string
expression.
Turns out that call to eval_expr is redundant, and in degenerate
situations can lead to so many wasteful calls to eval_expr that
elaboration performance suffers dramatically.
For variable parameter selects (indexed and bit) pass the value being
selected as a parameter reference instead of just a numeric constant
so it is easy to get the underlying parameter information.
Move the parameter bit select code into its own routine and cleanup
the remaining general code.
This should not effect the VVP code, but the ivl_expr_parameter(<expr>)
routine can be used to get at the actual parameter information in the
vlog95 target.
Static properties are like variables in a named scope.
Detect these variables during elaboration so that the
code generator just sees them as variables.
The VHDL to_unsigned function with to arguments is best handled
in the ivl elaborator, so have it generate an $ivlh_to_unsigned
function call in the vhdlpp code, and implement it in the ivl
core.
Also, implement the 'length attribute as a $bits() call for
similar reasons.
For constant word indices, issue a warning if the index is out of
range or an undefined value. In any case, the RHS value should be
discarded, and the actual assignment should be skipped.