iverilog/cprop.cc

1044 lines
28 KiB
C++
Raw Normal View History

/*
2005-02-12 23:52:45 +01:00
* Copyright (c) 1998-2005 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CVS_IDENT
2005-02-12 23:52:45 +01:00
#ident "$Id: cprop.cc,v 1.51 2005/02/12 22:52:45 steve Exp $"
#endif
# include "config.h"
# include "netlist.h"
2000-05-14 19:55:04 +02:00
# include "netmisc.h"
# include "functor.h"
# include <assert.h>
/*
2003-01-27 06:09:17 +01:00
* The cprop function below invokes constant propagation where
* possible. The elaboration generates NetConst objects. I can remove
* these and replace the gates connected to it with simpler ones. I
* may even be able to replace nets with a new constant.
*/
struct cprop_functor : public functor_t {
unsigned count;
2001-02-18 02:07:32 +01:00
virtual void signal(Design*des, NetNet*obj);
virtual void lpm_add_sub(Design*des, NetAddSub*obj);
2001-02-16 04:27:31 +01:00
virtual void lpm_compare(Design*des, NetCompare*obj);
virtual void lpm_compare_eq_(Design*des, NetCompare*obj);
virtual void lpm_ff(Design*des, NetFF*obj);
virtual void lpm_logic(Design*des, NetLogic*obj);
2000-07-15 07:13:43 +02:00
virtual void lpm_mux(Design*des, NetMux*obj);
};
2001-02-18 02:07:32 +01:00
void cprop_functor::signal(Design*des, NetNet*obj)
{
}
void cprop_functor::lpm_add_sub(Design*des, NetAddSub*obj)
{
}
2001-02-16 04:27:31 +01:00
void cprop_functor::lpm_compare(Design*des, NetCompare*obj)
{
if (obj->pin_AEB().is_linked()) {
assert( ! obj->pin_AGB().is_linked() );
assert( ! obj->pin_AGEB().is_linked() );
assert( ! obj->pin_ALB().is_linked() );
assert( ! obj->pin_ALEB().is_linked() );
assert( ! obj->pin_AGB().is_linked() );
assert( ! obj->pin_ANEB().is_linked() );
lpm_compare_eq_(des, obj);
return;
}
}
void cprop_functor::lpm_compare_eq_(Design*des, NetCompare*obj)
{
#if 0
/* XXXX Need to reimplement this code to account for vectors. */
NetScope*scope = obj->scope();
2001-02-16 04:27:31 +01:00
2003-04-25 07:06:32 +02:00
unsigned const_count = 0;
bool unknown_flag = false;
2001-02-16 04:27:31 +01:00
/* First, look for the case where constant bits on matching A
and B inputs are different. This this is so, the device can
be completely eliminated and replaced with a constant 0. */
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
if (! obj->pin_DataA(idx).nexus()->drivers_constant())
2001-02-16 04:27:31 +01:00
continue;
if (! obj->pin_DataB(idx).nexus()->drivers_constant())
2001-02-16 04:27:31 +01:00
continue;
2003-04-25 07:06:32 +02:00
const_count += 1;
verinum::V abit = obj->pin_DataA(idx).nexus()->driven_value();
verinum::V bbit = obj->pin_DataB(idx).nexus()->driven_value();
if ((abit == verinum::V0) && (bbit == verinum::V0))
continue;
if ((abit == verinum::V1) && (bbit == verinum::V1))
continue;
unknown_flag = true;
if ((abit == verinum::Vz) || (abit == verinum::Vx))
continue;
if ((bbit == verinum::Vz) || (bbit == verinum::Vx))
2001-02-16 04:27:31 +01:00
continue;
NetConst*zero = new NetConst(scope, obj->name(), verinum::V0);
2001-02-16 04:27:31 +01:00
connect(zero->pin(0), obj->pin_AEB());
delete obj;
des->add_node(zero);
count += 1;
return;
}
2003-04-25 07:06:32 +02:00
/* If all the inputs are constant, then at this point the
result is either V1 or Vx. */
if (const_count == obj->width()) {
NetConst*val = new NetConst(scope, obj->name(),
unknown_flag
? verinum::Vx
: verinum::V1);
connect(val->pin(0), obj->pin_AEB());
delete obj;
des->add_node(val);
count += 1;
return;
}
2001-02-16 04:27:31 +01:00
/* Still may need the gate. Run through the inputs again, and
look for pairs of constants. Those inputs can be removed. */
unsigned top = obj->width();
for (unsigned idx = 0 ; idx < top ; ) {
if (! obj->pin_DataA(idx).nexus()->drivers_constant()) {
2001-02-16 04:27:31 +01:00
idx += 1;
continue;
}
if (! obj->pin_DataB(idx).nexus()->drivers_constant()) {
2001-02-16 04:27:31 +01:00
idx += 1;
continue;
}
obj->pin_DataA(idx).unlink();
obj->pin_DataB(idx).unlink();
top -= 1;
for (unsigned jj = idx ; jj < top ; jj += 1) {
connect(obj->pin_DataA(jj), obj->pin_DataA(jj+1));
connect(obj->pin_DataB(jj), obj->pin_DataB(jj+1));
obj->pin_DataA(jj+1).unlink();
obj->pin_DataB(jj+1).unlink();
}
}
/* If we wound up disconnecting all the inputs, then remove
the device and replace it with a constant. */
if (top == 0) {
NetConst*one = new NetConst(scope, obj->name(), verinum::V1);
2001-02-16 04:27:31 +01:00
connect(one->pin(0), obj->pin_AEB());
delete obj;
des->add_node(one);
count += 1;
return;
}
/* If there is only one bit left, then replace the comparator
with a simple XOR gate. */
if (top == 1) {
NetLogic*tmp = new NetLogic(scope, obj->name(), 3,
NetLogic::XNOR, 1);
2001-02-16 04:27:31 +01:00
connect(tmp->pin(0), obj->pin_AEB());
connect(tmp->pin(1), obj->pin_DataA(0));
connect(tmp->pin(2), obj->pin_DataB(0));
delete obj;
des->add_node(tmp);
count += 1;
return;
}
if (top == obj->width())
return;
NetCompare*tmp = new NetCompare(scope, obj->name(), top);
2001-02-16 04:27:31 +01:00
connect(tmp->pin_AEB(), obj->pin_AEB());
for (unsigned idx = 0 ; idx < top ; idx += 1) {
connect(tmp->pin_DataA(idx), obj->pin_DataA(idx));
connect(tmp->pin_DataB(idx), obj->pin_DataB(idx));
}
delete obj;
des->add_node(tmp);
count += 1;
#endif
2001-02-16 04:27:31 +01:00
}
void cprop_functor::lpm_ff(Design*des, NetFF*obj)
{
// Look for and count unlinked FF outputs. Note that if the
// Data and Q pins are connected together, they can be removed
// from the circuit, since it doesn't do anything.
unsigned unlinked_count = 0;
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
if (connected(obj->pin_Data(idx), obj->pin_Q(idx))
&& (! obj->pin_Sclr().is_linked())
&& (! obj->pin_Sset().is_linked())
&& (! obj->pin_Aclr().is_linked())
&& (! obj->pin_Aset().is_linked())) {
obj->pin_Data(idx).unlink();
obj->pin_Q(idx).unlink();
}
if (! obj->pin_Q(idx).is_linked())
unlinked_count += 1;
}
// If the entire FF is unlinked, remove the whole thing.
if (unlinked_count == obj->width()) {
delete obj;
count += 1;
return;
}
// If some of the FFs are unconnected, make a new FF array
// that does not include the useless FF devices.
if (unlinked_count > 0) {
NetFF*tmp = new NetFF(obj->scope(), obj->name(),
obj->width()-unlinked_count);
connect(tmp->pin_Clock(), obj->pin_Clock());
connect(tmp->pin_Enable(), obj->pin_Enable());
connect(tmp->pin_Aload(), obj->pin_Aload());
connect(tmp->pin_Aset(), obj->pin_Aset());
connect(tmp->pin_Aclr(), obj->pin_Aclr());
connect(tmp->pin_Sload(), obj->pin_Sload());
connect(tmp->pin_Sset(), obj->pin_Sset());
connect(tmp->pin_Sclr(), obj->pin_Sclr());
unsigned tidx = 0;
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1)
if (obj->pin_Q(idx).is_linked()) {
connect(tmp->pin_Data(tidx), obj->pin_Data(idx));
connect(tmp->pin_Q(tidx), obj->pin_Q(idx));
tidx += 1;
}
assert(tidx == obj->width() - unlinked_count);
delete obj;
des->add_node(tmp);
count += 1;
return;
}
}
void cprop_functor::lpm_logic(Design*des, NetLogic*obj)
{
NetScope*scope = obj->scope();
switch (obj->type()) {
2000-11-19 06:26:58 +01:00
case NetLogic::NAND:
case NetLogic::AND: {
unsigned top = obj->pin_count();
unsigned idx = 1;
unsigned xs = 0;
2000-11-19 06:26:58 +01:00
/* Eliminate all the 1 inputs. They have no effect
on the output of an AND gate. */
2000-11-19 06:26:58 +01:00
while (idx < top) {
if (! obj->pin(idx).nexus()->drivers_constant()) {
2000-11-19 06:26:58 +01:00
idx += 1;
continue;
}
2002-06-25 03:33:22 +02:00
if (obj->pin(idx).nexus()->driven_value()==verinum::V1) {
2000-11-19 06:26:58 +01:00
obj->pin(idx).unlink();
top -= 1;
if (idx < top) {
connect(obj->pin(idx), obj->pin(top));
obj->pin(top).unlink();
}
continue;
}
2002-06-25 03:33:22 +02:00
if (obj->pin(idx).nexus()->driven_value() != verinum::V0) {
2000-11-19 06:26:58 +01:00
idx += 1;
xs += 1;
continue;
}
/* Oops! We just stumbled on a driven-0 input
to the AND gate. That means we can replace
the whole bloody thing with a constant
driver and exit now. */
NetConst*tmp;
switch (obj->type()) {
case NetLogic::AND:
tmp = new NetConst(scope, obj->name(), verinum::V0);
2000-11-19 06:26:58 +01:00
break;
case NetLogic::NAND:
tmp = new NetConst(scope, obj->name(), verinum::V1);
2000-11-19 06:26:58 +01:00
break;
default:
assert(0);
}
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
2000-11-19 06:26:58 +01:00
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If all the inputs were eliminated, then replace
the gate with a constant 1 and I am done. */
if (top == 1) {
NetConst*tmp;
switch (obj->type()) {
case NetLogic::AND:
tmp = new NetConst(scope, obj->name(), verinum::V1);
2000-11-19 06:26:58 +01:00
break;
case NetLogic::NAND:
tmp = new NetConst(scope, obj->name(), verinum::V0);
2000-11-19 06:26:58 +01:00
break;
default:
assert(0);
}
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
2000-11-19 06:26:58 +01:00
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If all the inputs are unknowns, then replace the
gate with a Vx. */
if (xs == (top-1)) {
NetConst*tmp;
tmp = new NetConst(scope, obj->name(), verinum::Vx);
2000-11-19 06:26:58 +01:00
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If we are down to only one input, then replace
the AND with a BUF and exit now. */
if (top == 2) {
NetLogic*tmp;
switch (obj->type()) {
case NetLogic::AND:
tmp = new NetLogic(scope,
2000-11-19 06:26:58 +01:00
obj->name(), 2,
NetLogic::BUF, 1);
2000-11-19 06:26:58 +01:00
break;
case NetLogic::NAND:
tmp = new NetLogic(scope,
2000-11-19 06:26:58 +01:00
obj->name(), 2,
NetLogic::NOT, 1);
2000-11-19 06:26:58 +01:00
break;
default:
assert(0);
}
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
2000-11-19 06:26:58 +01:00
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
connect(obj->pin(1), tmp->pin(1));
delete obj;
count += 1;
return;
}
/* Finally, this cleans up the gate by creating a
new [N]AND gate that has the right number of
2000-11-19 06:26:58 +01:00
inputs, connected in the right place. */
if (top < obj->pin_count()) {
NetLogic*tmp = new NetLogic(scope,
2000-11-19 06:26:58 +01:00
obj->name(), top,
obj->type(), 1);
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
2000-11-19 06:26:58 +01:00
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
for (unsigned idx = 0 ; idx < top ; idx += 1)
connect(tmp->pin(idx), obj->pin(idx));
delete obj;
count += 1;
return;
}
break;
}
case NetLogic::NOR:
case NetLogic::OR: {
unsigned top = obj->pin_count();
unsigned idx = 1;
/* Eliminate all the 0 inputs. They have no effect
on the output of an OR gate. */
while (idx < top) {
if (! obj->pin(idx).nexus()->drivers_constant()) {
idx += 1;
continue;
}
2002-06-25 03:33:22 +02:00
if (obj->pin(idx).nexus()->driven_value() == verinum::V0) {
obj->pin(idx).unlink();
top -= 1;
if (idx < top) {
connect(obj->pin(idx), obj->pin(top));
obj->pin(top).unlink();
}
continue;
}
2002-06-25 03:33:22 +02:00
if (obj->pin(idx).nexus()->driven_value() != verinum::V1) {
idx += 1;
continue;
}
/* Oops! We just stumbled on a driven-1 input
to the OR gate. That means we can replace
the whole bloody thing with a constant
driver and exit now. */
NetConst*tmp;
switch (obj->type()) {
case NetLogic::OR:
tmp = new NetConst(scope, obj->name(), verinum::V1);
break;
case NetLogic::NOR:
tmp = new NetConst(scope, obj->name(), verinum::V0);
break;
default:
assert(0);
}
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If all the inputs were eliminated, then replace
the gate with a constant 0 and I am done. */
if (top == 1) {
NetConst*tmp;
switch (obj->type()) {
case NetLogic::OR:
tmp = new NetConst(scope, obj->name(), verinum::V0);
break;
case NetLogic::NOR:
tmp = new NetConst(scope, obj->name(), verinum::V1);
break;
default:
assert(0);
}
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If we are down to only one input, then replace
the OR with a BUF and exit now. */
if (top == 2) {
NetLogic*tmp;
switch (obj->type()) {
case NetLogic::OR:
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::BUF, 1);
break;
case NetLogic::NOR:
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::NOT, 1);
break;
default:
assert(0);
}
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
connect(obj->pin(1), tmp->pin(1));
delete obj;
count += 1;
return;
}
/* Finally, this cleans up the gate by creating a
new [N]OR gate that has the right number of
inputs, connected in the right place. */
if (top < obj->pin_count()) {
NetLogic*tmp = new NetLogic(scope,
obj->name(), top,
obj->type(), 1);
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
for (unsigned idx = 0 ; idx < top ; idx += 1)
connect(tmp->pin(idx), obj->pin(idx));
delete obj;
count += 1;
return;
}
break;
}
case NetLogic::XNOR:
2000-10-06 23:26:34 +02:00
case NetLogic::XOR: {
unsigned top = obj->pin_count();
unsigned idx = 1;
/* Eliminate all the 0 inputs. They have no effect
2002-02-03 01:06:28 +01:00
on the output of an XOR gate. The eliminate works
by unlinking the current input and relinking the
last input to this position. It's like bubbling
all the 0 inputs to the end. */
2000-10-06 23:26:34 +02:00
while (idx < top) {
if (! obj->pin(idx).nexus()->drivers_constant()) {
2000-10-06 23:26:34 +02:00
idx += 1;
continue;
}
2002-06-25 03:33:22 +02:00
if (obj->pin(idx).nexus()->driven_value() == verinum::V0) {
2000-10-06 23:26:34 +02:00
obj->pin(idx).unlink();
top -= 1;
if (idx < top) {
connect(obj->pin(idx), obj->pin(top));
obj->pin(top).unlink();
}
} else {
idx += 1;
}
}
/* Look for pairs of constant 1 inputs. If I find a
pair, then eliminate both. Each iteration through
the loop, the `one' variable holds the index to
the previous V1, or 0 if there is none.
The `ones' variable counts the number of V1
inputs. After this loop completes, `ones' will be
0 or 1. */
unsigned one = 0, ones = 0;
idx = 1;
while (idx < top) {
if (! obj->pin(idx).nexus()->drivers_constant()) {
idx += 1;
continue;
}
2002-06-25 03:33:22 +02:00
if (obj->pin(idx).nexus()->driven_value() == verinum::V1) {
if (one == 0) {
one = idx;
ones += 1;
idx += 1;
continue;
}
2002-04-14 04:51:37 +02:00
/* Here we found two constant V1
inputs. Unlink both. */
obj->pin(idx).unlink();
top -= 1;
if (idx < top) {
connect(obj->pin(idx), obj->pin(top));
obj->pin(top).unlink();
}
obj->pin(one).unlink();
top -= 1;
if (one < top) {
connect(obj->pin(one), obj->pin(top));
obj->pin(top).unlink();
}
2002-04-14 04:51:37 +02:00
/* Reset ones counter and one index,
start looking for the next pair. */
assert(ones == 1);
ones = 0;
2002-04-14 04:51:37 +02:00
one = 0;
continue;
}
idx += 1;
}
/* If all the inputs were eliminated, then replace
2002-02-03 01:06:28 +01:00
the gate with a constant value and I am done. */
if (top == 1) {
verinum::V out = obj->type()==NetLogic::XNOR
? verinum::V1
: verinum::V0;
NetConst*tmp = new NetConst(scope, obj->name(), out);
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If there is a stray V1 input and only one other
input, then replace the gate with an inverter and
we are done. */
if ((top == 3) && (ones == 1)) {
unsigned save;
if (! obj->pin(1).nexus()->drivers_constant())
save = 1;
2002-06-25 03:33:22 +02:00
else if (obj->pin(1).nexus()->driven_value() != verinum::V1)
save = 1;
else
save = 2;
NetLogic*tmp;
if (obj->type() == NetLogic::XOR)
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::NOT, 1);
else
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::BUF, 1);
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
connect(obj->pin(save), tmp->pin(1));
delete obj;
count += 1;
return;
}
/* If we are down to only one input, then replace
the XOR with a BUF and exit now. */
2000-10-06 23:26:34 +02:00
if (top == 2) {
NetLogic*tmp;
if (obj->type() == NetLogic::XOR)
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::BUF, 1);
else
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::NOT, 1);
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
2000-10-06 23:26:34 +02:00
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
connect(obj->pin(1), tmp->pin(1));
delete obj;
count += 1;
return;
}
/* Finally, this cleans up the gate by creating a
new XOR gate that has the right number of
inputs, connected in the right place. */
2000-10-06 23:26:34 +02:00
if (top < obj->pin_count()) {
NetLogic*tmp = new NetLogic(scope,
2000-10-07 21:45:42 +02:00
obj->name(), top,
obj->type(), 1);
2000-10-06 23:26:34 +02:00
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
for (unsigned idx = 0 ; idx < top ; idx += 1)
connect(tmp->pin(idx), obj->pin(idx));
delete obj;
count += 1;
return;
}
break;
2000-10-06 23:26:34 +02:00
}
default:
break;
}
}
2000-07-15 07:13:43 +02:00
/*
2003-01-30 17:23:07 +01:00
* This detects the case where the mux selects between a value and
2000-07-15 07:13:43 +02:00
* Vz. In this case, replace the device with a bufif with the sel
* input used to enable the output.
*/
void cprop_functor::lpm_mux(Design*des, NetMux*obj)
{
if (obj->size() != 2)
return;
if (obj->sel_width() != 1)
return;
/* If the first input is all constant Vz, then replace the
NetMux with an array of BUFIF1 devices, with the enable
connected to the select input. */
bool flag = true;
if (! obj->pin_Data(0).nexus()->drivers_constant()) {
flag = false;
}
if (flag && obj->pin_Data(0).nexus()->driven_value() != verinum::Vz) {
flag = false;
2000-07-15 07:13:43 +02:00
}
if (flag) {
NetScope*scope = obj->scope();
NetLogic*tmp = new NetLogic(obj->scope(),
scope->local_symbol(),
3, NetLogic::BUFIF1, obj->width());
des->add_node(tmp);
connect(obj->pin_Result(), tmp->pin(0));
connect(obj->pin_Data(1), tmp->pin(1));
if (obj->width() == 1) {
/* Special case that the expression is 1 bit
wide. Connect the select directly to the
enable. */
connect(obj->pin_Sel(), tmp->pin(2));
} else {
/* General case that the expression is arbitrarily
wide. Replicate the enable signal (which we
assume is 1 bit wide) to match the expression,
and connect the enable vector to the enable
input of the gate. */
NetReplicate*rtmp = new NetReplicate(scope,
scope->local_symbol(),
obj->width(),
obj->width());
des->add_node(rtmp);
connect(obj->pin_Sel(), rtmp->pin(1));
connect(tmp->pin(2), rtmp->pin(0));
NetNet*rsig = new NetNet(scope, scope->local_symbol(),
NetNet::WIRE, obj->width());
rsig->local_flag(true);
connect(tmp->pin(2), rsig->pin(0));
2000-07-15 07:13:43 +02:00
}
count += 1;
delete obj;
return;
}
2000-07-15 07:13:43 +02:00
/* If instead the second input is all constant Vz, replace the
NetMux with an array of BUFIF0 devices. */
flag = true;
if (! obj->pin_Data(1).nexus()->drivers_constant()) {
flag = false;
}
2000-07-15 07:13:43 +02:00
if (flag && obj->pin_Data(1).nexus()->driven_value() != verinum::Vz) {
flag = false;
2000-07-15 07:13:43 +02:00
}
if (flag) {
NetScope*scope = obj->scope();
NetLogic*tmp = new NetLogic(obj->scope(),
scope->local_symbol(),
3, NetLogic::BUFIF0, obj->width());
connect(obj->pin_Result(), tmp->pin(0));
connect(obj->pin_Data(0), tmp->pin(1));
connect(obj->pin_Sel(), tmp->pin(2));
des->add_node(tmp);
2000-07-15 07:13:43 +02:00
count += 1;
delete obj;
return;
}
}
/*
* This functor looks to see if the constant is connected to nothing
* but signals. If that is the case, delete the dangling constant and
* the now useless signals. This functor is applied after the regular
* functor to clean up dangling constants that might be left behind.
*/
struct cprop_dc_functor : public functor_t {
virtual void lpm_const(Design*des, NetConst*obj);
};
void cprop_dc_functor::lpm_const(Design*des, NetConst*obj)
{
2000-07-25 04:55:13 +02:00
// 'bz constant values drive high impedance to whatever is
2003-01-27 06:09:17 +01:00
// connected to it. In other words, it is a noop.
2000-07-25 04:55:13 +02:00
{ unsigned tmp = 0;
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1)
if (obj->value(idx) == verinum::Vz) {
obj->pin(idx).unlink();
tmp += 1;
}
if (tmp == obj->pin_count()) {
delete obj;
return;
}
}
// For each bit, if this is the only driver, then set the
// initial value of all the signals to this value.
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1) {
if (count_outputs(obj->pin(idx)) > 1)
continue;
Nexus*nex = obj->pin(idx).nexus();
for (Link*clnk = nex->first_nlink()
; clnk ; clnk = clnk->next_nlink()) {
NetObj*cur;
unsigned pin;
clnk->cur_link(cur, pin);
NetNet*tmp = dynamic_cast<NetNet*>(cur);
if (tmp == 0)
continue;
tmp->pin(pin).set_init(obj->value(idx));
}
}
// If there are any links that take input, the constant is
// used structurally somewhere.
1999-12-17 04:38:46 +01:00
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1)
if (count_inputs(obj->pin(idx)) > 0)
return;
// Look for signals that have NetESignal nodes attached to
2002-02-03 01:06:28 +01:00
// them. If I find any, then this constant is used by a
// behavioral expression somewhere.
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1) {
Nexus*nex = obj->pin(idx).nexus();
for (Link*clnk = nex->first_nlink()
; clnk ; clnk = clnk->next_nlink()) {
2000-06-25 00:55:19 +02:00
NetObj*cur;
unsigned pin;
clnk->cur_link(cur, pin);
NetNet*tmp = dynamic_cast<NetNet*>(cur);
if (tmp == 0)
continue;
assert(tmp->scope());
// If the net is a signal name from the source,
// then users will probably want to see it in the
// waveform dump, so unhooking the constant will
// make it look wrong.
if (! tmp->local_flag())
return;
// If the net has an eref, then there is an
// expression somewhere that reads this signal. So
// the constant does get read.
if (tmp->peek_eref() > 0)
return;
// If the net is a port of the root module, then
// the constant may be driving something outside
// the design, so do not eliminate it.
if ((tmp->port_type() != NetNet::NOT_A_PORT)
&& (tmp->scope()->parent() == 0))
return;
}
}
// Done. Delete me.
delete obj;
}
void cprop(Design*des)
{
2003-01-30 17:23:07 +01:00
// Continually propagate constants until a scan finds nothing
// to do.
cprop_functor prop;
do {
prop.count = 0;
des->functor(&prop);
} while (prop.count > 0);
cprop_dc_functor dc;
des->functor(&dc);
}
/*
* $Log: cprop.cc,v $
2005-02-12 23:52:45 +01:00
* Revision 1.51 2005/02/12 22:52:45 steve
* Fix copyright notice.
*
* Revision 1.50 2005/02/12 06:25:40 steve
* Restructure NetMux devices to pass vectors.
* Generate NetMux devices from ternary expressions,
* Reduce NetMux devices to bufif when appropriate.
*
* Revision 1.49 2005/01/16 04:20:32 steve
* Implement LPM_COMPARE nodes as two-input vector functors.
*
* Revision 1.48 2004/12/11 02:31:25 steve
* Rework of internals to carry vectors through nexus instead
* of single bits. Make the ivl, tgt-vvp and vvp initial changes
* down this path.
*
2004-02-20 19:53:33 +01:00
* Revision 1.47 2004/02/20 18:53:34 steve
* Addtrbute keys are perm_strings.
*
* Revision 1.46 2003/11/08 17:53:34 steve
* Do not remove constants accessible to VPI.
*
* Revision 1.45 2003/10/31 02:40:06 steve
* Donot elide FF that has set or clr connections.
*
2003-04-25 07:06:32 +02:00
* Revision 1.44 2003/04/25 05:06:32 steve
* Handle X values in constant == nets.
*
* Revision 1.43 2003/03/06 00:28:41 steve
* All NetObj objects have lex_string base names.
*
* Revision 1.42 2003/02/26 01:29:24 steve
* LPM objects store only their base names.
*
2003-01-30 17:23:07 +01:00
* Revision 1.41 2003/01/30 16:23:07 steve
* Spelling fixes.
*
2003-01-27 06:09:17 +01:00
* Revision 1.40 2003/01/27 05:09:17 steve
* Spelling fixes.
*
* Revision 1.39 2002/08/20 04:12:22 steve
* Copy gate delays when doing gate delay substitutions.
*
* Revision 1.38 2002/08/12 01:34:58 steve
* conditional ident string using autoconfig.
*
2002-06-25 03:33:22 +02:00
* Revision 1.37 2002/06/25 01:33:22 steve
* Cache calculated driven value.
*
* Revision 1.36 2002/06/24 01:49:38 steve
* Make link_drive_constant cache its results in
* the Nexus, to improve cprop performance.
*
* Revision 1.35 2002/05/26 01:39:02 steve
* Carry Verilog 2001 attributes with processes,
* all the way through to the ivl_target API.
*
* Divide signal reference counts between rval
* and lval references.
*/