iverilog/vvp/vvp_island.cc

768 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2008 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "vvp_island.h"
# include "compile.h"
# include "symbols.h"
# include "schedule.h"
# include <iostream>
# include <list>
# include <assert.h>
# include <stdlib.h>
# include <string.h>
#ifdef HAVE_MALLOC_H
# include <malloc.h>
#endif
/*
* Islands are mutually connected bidirectional meshes that have a
2008-06-10 18:02:24 +02:00
* discipline other than the implicit ddiscipline of the rest of the
* run time.
*
* In the vvp input, an island is created with this record:
*
* <label> .island ;
*
* The <label> is the name given to the island. Records after this
* build up the contents of the island. Ports are created like this:
*
* <label> .port <island>, <src> ;
* <label> .import <island>, <src> ;
* <label> .export <island> ;
*
* The .port, .import and .export records create I/O, input and output
* ports. The <label> is the name that branches within the island can
* use to link to the port, and the <island> is the label for the
* island. The input and I/O ports have a <src> label that links to the
* source net from the ddiscrete domain.
*
* Branches within the island may only reference labels within the
* island. This keeps the nets of the ocean of digital away from the
* branches of analog within the island.
*/
class vvp_island_branch;
class vvp_island_node;
class vvp_island : private vvp_gen_event_s {
public:
vvp_island();
virtual ~vvp_island();
// Ports call this method to flag that something happened at
// the input. The island will use this to create an active
// event. The run_run() method will then be called by the
// scheduler to process whatever happened.
void flag_island();
// This is the method that is called, eventually, to process
// whatever happened. The derived island class implements this
// method to give the island its character.
virtual void run_island() =0;
protected:
// The base class collects a list of all the branches in the
// island. The derived island class can access this list for
// scanning the mesh.
vvp_island_branch*branches_;
public: /* These methods are used during linking. */
// Add a port to the island. The key is added to the island
// ports symbol table.
void add_port(const char*key, vvp_net_t*net);
// Add a branch to the island.
void add_branch(vvp_island_branch*branch, const char*pa, const char*pb);
vvp_net_t* find_port(const char*key);
// Call this method when linking is done.
void compile_cleanup(void);
private:
void run_run();
bool flagged_;
private:
// During link, the vvp_island keeps these symbol tables for
// mapping labels local to the island. When linking is done,
// the compile_cleanup() method removes these tables.
symbol_map_s<vvp_net_t>*ports_;
symbol_map_s<vvp_island_branch>*anodes_;
symbol_map_s<vvp_island_branch>*bnodes_;
};
/*
* An island port is a functor that connects to the ddiscrete
* discipline outside the island. (There is also a vvp_net_t object
* that refers to this port.) When data comes to the port from outside,
* it is collected and saved, and the island is notified. When code
* inside the island sends data out of the island, it uses the "out"
* pointer from the vvp_net_t that refers to this object.
*/
class vvp_island_port : public vvp_net_fun_t {
public:
explicit vvp_island_port(vvp_island*ip);
~vvp_island_port();
virtual void recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit);
2008-06-04 02:31:15 +02:00
virtual void recv_vec4_pv(vvp_net_ptr_t port, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid);
virtual void recv_vec8(vvp_net_ptr_t port, const vvp_vector8_t&bit);
vvp_vector8_t invalue;
vvp_vector8_t outvalue;
private:
vvp_island*island_;
private: // not implemented
vvp_island_port(const vvp_island_port&);
vvp_island_port& operator = (const vvp_island_port&);
};
static vvp_vector8_t get_value(vvp_net_t*net)
{
vvp_island_port*fun = dynamic_cast<vvp_island_port*>(net->fun);
return fun->invalue;
}
static void send_value(vvp_net_t*net, const vvp_vector8_t&val)
{
vvp_island_port*fun = dynamic_cast<vvp_island_port*>(net->fun);
if (fun->outvalue .eeq(val))
return;
fun->outvalue = val;
vvp_send_vec8(net->out, fun->outvalue);
}
/*
* Branches are connected together to form a mesh of branches. Each
* endpoint (there are two) connects circularly to other branch
* endpoints that are connected together. This list of endpoints forms
* a node. Thus it is possible for branches to fully specify the mesh
* of the island.
*/
typedef vvp_sub_pointer_t<vvp_island_branch> vvp_branch_ptr_t;
struct vvp_island_branch {
virtual ~vvp_island_branch();
// Keep a list of branches in the island.
vvp_island_branch*next_branch;
// branch mesh connectivity. There is a pointer for each end
// that participates in a circular list.
vvp_sub_pointer_t<vvp_island_branch> link[2];
// Port connections
vvp_net_t*a;
vvp_net_t*b;
// Behavior. (This stuff should be moved to a derived
// class. The members here are specific to the tran island
// class.)
bool run_test_enabled();
void run_resolution();
bool active_high;
bool enabled_flag;
vvp_net_t*en;
int flags;
unsigned width, part, offset;
};
/*
* Implementations...
*/
vvp_island::vvp_island()
{
flagged_ = false;
branches_ = 0;
ports_ = 0;
anodes_ = 0;
bnodes_ = 0;
}
vvp_island::~vvp_island()
{
assert(0);
}
void vvp_island::flag_island()
{
if (flagged_ == true)
return;
schedule_generic(this, 0, false, false);
flagged_ = true;
}
/*
* This method handles the callback from the scheduler. It does basic
* housecleaning and calls the run_island() method implemented by the
* derived class.
*/
void vvp_island::run_run()
{
flagged_ = false;
run_island();
}
void vvp_island::add_port(const char*key, vvp_net_t*net)
{
if (ports_ == 0)
ports_ = new symbol_map_s<vvp_net_t>;
ports_->sym_set_value(key, net);
}
void vvp_island::add_branch(vvp_island_branch*branch, const char*pa, const char*pb)
{
vvp_island_branch*cur;
2008-06-02 04:42:44 +02:00
assert(ports_);
branch->a = ports_->sym_get_value(pa);
branch->b = ports_->sym_get_value(pb);
2008-06-04 02:31:15 +02:00
assert(branch->a && branch->b);
vvp_branch_ptr_t ptra (branch, 0);
vvp_branch_ptr_t ptrb (branch, 1);
if (anodes_ == 0)
anodes_ = new symbol_map_s<vvp_island_branch>;
if (bnodes_ == 0)
bnodes_ = new symbol_map_s<vvp_island_branch>;
if ((cur = anodes_->sym_get_value(pa))) {
branch->link[0] = cur->link[0];
cur->link[0] = ptra;
} else if ((cur = bnodes_->sym_get_value(pa))) {
branch->link[0] = cur->link[1];
cur->link[1] = ptra;
} else {
branch->link[0] = ptra;
anodes_->sym_set_value(pa, branch);
}
if ((cur = anodes_->sym_get_value(pb))) {
branch->link[1] = cur->link[0];
cur->link[0] = ptrb;
} else if ((cur = bnodes_->sym_get_value(pb))) {
branch->link[1] = cur->link[1];
cur->link[1] = ptrb;
} else {
branch->link[1] = ptrb;
bnodes_->sym_set_value(pb, branch);
}
branch->next_branch = branches_;
branches_ = branch;
}
vvp_net_t* vvp_island::find_port(const char*key)
{
2008-06-02 04:42:44 +02:00
if (ports_ == 0)
return 0;
else
return ports_->sym_get_value(key);
}
void vvp_island::compile_cleanup()
{
if (ports_) {
delete ports_;
ports_ = 0;
}
if (anodes_) {
delete anodes_;
anodes_ = 0;
}
if (bnodes_) {
delete bnodes_;
bnodes_ = 0;
}
}
vvp_island_port::vvp_island_port(vvp_island*ip)
: island_(ip)
{
}
vvp_island_port::~vvp_island_port()
{
}
void vvp_island_port::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit)
{
recv_vec8(port, vvp_vector8_t(bit, 6, 6));
}
2008-06-04 02:31:15 +02:00
void vvp_island_port::recv_vec4_pv(vvp_net_ptr_t port, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid)
{
vvp_vector8_t tmp(bit, 6, 6);
if (invalue.size()==0) {
assert(tmp.size() == wid);
invalue = part_expand(tmp, vwid, base);
} else {
assert(invalue.size() == vwid);
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
if ((base+idx) >= invalue.size())
break;
invalue.set_bit(base+idx, tmp.value(idx));
}
}
island_->flag_island();
}
void vvp_island_port::recv_vec8(vvp_net_ptr_t port, const vvp_vector8_t&bit)
{
if (invalue .eeq(bit))
return;
invalue = bit;
island_->flag_island();
}
vvp_island_branch::~vvp_island_branch()
{
}
/* **** TRANIF SUPPORT **** */
class vvp_island_tran : public vvp_island {
public:
void run_island();
};
void vvp_island_tran::run_island()
{
// Test to see if any of the branches are enabled.
bool runnable = false;
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) {
runnable |= cur->run_test_enabled();
}
if (runnable == false)
return;
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch)
cur->run_resolution();
}
bool vvp_island_branch::run_test_enabled()
{
flags = 0;
vvp_island_port*ep = en? dynamic_cast<vvp_island_port*> (en->fun) : 0;
// If there is no ep port (no "enabled" input) then this is a
// tran branch. Assume it is always enabled.
if (ep == 0) {
enabled_flag = true;
return true;
}
enabled_flag = false;
vvp_bit4_t enable_val = ep->invalue.value(0).value();
if (active_high==true && enable_val != BIT4_1)
return false;
if (active_high==false && enable_val != BIT4_0)
return false;
enabled_flag = true;
return true;
}
static vvp_branch_ptr_t next(vvp_branch_ptr_t cur)
{
vvp_island_branch*ptr = cur.ptr();
unsigned ab = cur.port();
return ptr->link[ab];
}
static void collect_node(list<vvp_branch_ptr_t>&conn, vvp_branch_ptr_t cur)
{
conn .push_back(cur);
for (vvp_branch_ptr_t idx = next(cur) ; idx != cur ; idx = next(idx))
conn.push_back(idx);
}
static void mark_done_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
tmp_ptr->flags |= 1 << tmp_ab;
}
}
static void mark_visited_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
tmp_ptr->flags |= 4 << tmp_ab;
}
}
static void clear_visited_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
tmp_ptr->flags &= ~(4 << tmp_ab);
}
}
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur);
static void resolve_values_from_connections(vvp_vector8_t&val,
list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_vector8_t tmp = get_value_from_branch(*idx);
if (val.size() == 0)
val = tmp;
else if (tmp.size() != 0)
val = resolve(val, tmp);
}
}
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur)
{
vvp_island_branch*ptr = cur.ptr();
unsigned ab = cur.port();
unsigned ab_other = ab^1;
// If the branch link is disabled, return nil.
if (ptr->enabled_flag == false)
return vvp_vector8_t();
vvp_branch_ptr_t other (ptr, ab_other);
// If the branch other side is already visited, return nil.
if (ptr->flags & (4<<ab_other))
return vvp_vector8_t();
// Other side net, and port value.
vvp_net_t*net_other = ab? ptr->a : ptr->b;
vvp_vector8_t val_other = get_value(net_other);
// recurse
list<vvp_branch_ptr_t> connections;
collect_node(connections, other);
mark_visited_flags(connections);
resolve_values_from_connections(val_other, connections);
// Remove visited flag
clear_visited_flags(connections);
if (val_other.size() == 0)
return val_other;
if (ptr->width) {
if (ab == 0) {
val_other = part_expand(val_other, ptr->width, ptr->offset);
} else {
val_other = val_other.subvalue(ptr->offset, ptr->part);
}
}
return val_other;
}
static void push_value_through_branches(const vvp_vector8_t&val,
list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
unsigned other_ab = tmp_ab^1;
// If other side already done, skip
if (tmp_ptr->flags & (1<<other_ab))
continue;
// If link is not enabled, skip.
if (! tmp_ptr->enabled_flag)
continue;
vvp_net_t*other_net = other_ab? tmp_ptr->b : tmp_ptr->a;
if (tmp_ptr->width == 0) {
// Mark this end as done
tmp_ptr->flags |= (1 << other_ab);
send_value(other_net, val);
} if (other_ab == 1) {
// Mark as done
tmp_ptr->flags |= (1 << other_ab);
vvp_vector8_t tmp = val.subvalue(tmp_ptr->offset, tmp_ptr->part);
send_value(other_net, tmp);
} else {
// Otherwise, the other side is not fully
// specified, so we can't take this shortcut.
}
}
}
void vvp_island_branch::run_resolution()
{
// Collect all the branch endpoints that are joined to my A
// side.
list<vvp_branch_ptr_t> connections;
bool processed_a_side = false;
vvp_vector8_t val;
if ((flags & 1) == 0) {
processed_a_side = true;
vvp_branch_ptr_t a_side(this, 0);
collect_node(connections, a_side);
// Mark my A side as done. Do this early to prevent recursing
// back. All the connections that share this port are also
// done. Make sure their flags are set appropriately.
mark_done_flags(connections);
val = get_value(a);
mark_visited_flags(connections); // Mark as visited.
// Now scan the other sides of all the branches connected to
// my A side. The get_value_from_branch() will recurse as
// necessary to depth-first walk the graph.
resolve_values_from_connections(val, connections);
// A side is done.
send_value(a, val);
// Clear the visited flags. This must be done so that other
// branches can read this input value.
clear_visited_flags(connections);
// Try to push the calculated value out through the
// branches. This is useful for A-side results because
// there is a high probability that the other side of
// all the connected branches is fully specified by this
// result.
push_value_through_branches(val, connections);
}
// If the B side got taken care of by above, then this branch
// is done. Stop now.
if (flags & 2)
return;
// Repeat the above for the B side.
connections.clear();
collect_node(connections, vvp_branch_ptr_t(this, 1));
mark_done_flags(connections);
if (enabled_flag && processed_a_side) {
// If this is a connected branch, then we know from the
// start that we have all the bits needed to complete
// the B side. Even if the B side is a part select, the
// simple part select must be correct because the
// recursive resolve_values_from_connections above must
// of cycled back to the B side of myself when resolving
// the connections.
if (width != 0)
val = val.subvalue(offset, part);
} else {
// If this branch is not enabled, then the B-side must
// be processed on its own.
val = get_value(b);
mark_visited_flags(connections);
resolve_values_from_connections(val, connections);
clear_visited_flags(connections);
}
send_value(b, val);
}
/* **** COMPILE/LINK SUPPORT **** */
/*
* We need to keep an island symbol table to make island labels to
* islands, and we need a list of the islands that we can run through
* during cleanup. After linking is done, the compile_island_cleanup() is
* called to erase both.
*/
static list<vvp_island*> island_list;
static symbol_map_s<vvp_island>* island_table = 0;
void compile_island(char*label, char*type)
{
if (island_table == 0)
island_table = new symbol_map_s<vvp_island>;
vvp_island*use_island = 0;
if (strcmp(type,"tran") == 0) {
use_island = new vvp_island_tran;
} else {
assert(0);
}
island_table->sym_set_value(label, use_island);
island_list.push_back(use_island);
free(label);
free(type);
}
void compile_island_port(char*label, char*island, char*src)
{
assert(island_table);
vvp_island*use_island = island_table->sym_get_value(island);
assert(use_island);
free(island);
vvp_net_t*net = new vvp_net_t;
vvp_island_port*fun = new vvp_island_port(use_island);
net->fun = fun;
// Get the source from outside the island
input_connect(net, 0, src);
// Define the functor outside the island.
define_functor_symbol(label, net);
// Also define it inside the island.
use_island->add_port(label, net);
free(label);
}
void compile_island_export(char*label, char*island)
{
fprintf(stderr, "XXXX %s .export %s;\n", label, island);
free(label);
free(island);
}
void compile_island_import(char*label, char*island, char*src)
{
assert(island_table);
vvp_island*use_island = island_table->sym_get_value(island);
assert(use_island);
free(island);
vvp_net_t*net = new vvp_net_t;
vvp_island_port*fun = new vvp_island_port(use_island);
net->fun = fun;
// Get the source from outside the island
input_connect(net, 0, src);
// Define the functor only inside the island.
use_island->add_port(label, net);
free(label);
}
void compile_island_tranif(int sense, char*island, char*pa, char*pb, char*pe)
{
assert(island_table);
vvp_island*use_island = island_table->sym_get_value(island);
assert(use_island);
free(island);
vvp_island_branch*br = new vvp_island_branch;
if (sense)
br->active_high = true;
else
br->active_high = false;
if (pe == 0) {
br->en = 0;
} else {
br->en = use_island->find_port(pe);
assert(br->en);
free(pe);
}
br->width = 0;
br->part = 0;
br->offset = 0;
use_island->add_branch(br, pa, pb);
free(pa);
free(pb);
}
void compile_island_tranvp(char*island, char*pa, char*pb,
unsigned wid, unsigned par, unsigned off)
{
assert(island_table);
vvp_island*use_island = island_table->sym_get_value(island);
assert(use_island);
free(island);
vvp_island_branch*br = new vvp_island_branch;
br->active_high = false;
br->en = 0;
br->width = wid;
br->part = par;
br->offset = off;
use_island->add_branch(br, pa, pb);
free(pa);
free(pb);
}
void compile_island_cleanup(void)
{
// Call the per-island cleanup to get rid of local symbol tables.
for (list<vvp_island*>::iterator cur = island_list.begin()
; cur != island_list.end() ; cur ++ ) {
(*cur)->compile_cleanup();
}
island_list.clear();
// Remove the island symbol table itself.
if (island_table) {
delete island_table;
island_table = 0;
}
}