iverilog/vvp/vthread.cc

3221 lines
77 KiB
C++
Raw Normal View History

2001-03-11 01:29:38 +01:00
/*
2004-06-19 17:52:53 +02:00
* Copyright (c) 2001-2004 Stephen Williams (steve@icarus.com)
2001-03-11 01:29:38 +01:00
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CVS_IDENT
2005-03-06 18:07:48 +01:00
#ident "$Id: vthread.cc,v 1.132 2005/03/06 17:07:48 steve Exp $"
2001-03-11 01:29:38 +01:00
#endif
2003-11-10 21:19:32 +01:00
# include "config.h"
2001-03-11 01:29:38 +01:00
# include "vthread.h"
# include "codes.h"
# include "schedule.h"
2001-03-11 23:42:11 +01:00
# include "functor.h"
2002-03-18 01:19:34 +01:00
# include "ufunc.h"
2001-11-06 04:07:21 +01:00
# include "event.h"
# include "vpi_priv.h"
2001-09-15 20:27:04 +02:00
#ifdef HAVE_MALLOC_H
# include <malloc.h>
2001-09-15 20:27:04 +02:00
#endif
# include <stdlib.h>
# include <limits.h>
# include <string.h>
# include <math.h>
2001-03-11 23:42:11 +01:00
# include <assert.h>
2001-03-11 01:29:38 +01:00
2001-06-23 20:26:26 +02:00
#include <stdio.h>
2002-05-31 02:05:49 +02:00
/* This is the size of an unsigned long in bits. This is just a
convenience macro. */
# define CPU_WORD_BITS (8*sizeof(unsigned long))
# define TOP_BIT (1UL << (CPU_WORD_BITS-1))
2001-04-13 05:55:18 +02:00
/*
* This vhtread_s structure describes all there is to know about a
* thread, including its program counter, all the private bits it
* holds, and its place in other lists.
*
*
* ** Notes On The Interactions of %fork/%join/%end:
*
* The %fork instruction creates a new thread and pushes that onto the
* stack of children for the thread. This new thread, then, becomes
2003-02-10 00:33:26 +01:00
* the new direct descendant of the thread. This new thread is
2001-04-13 05:55:18 +02:00
* therefore also the first thread to be reaped when the parent does a
* %join.
*
* It is a programming error for a thread that created threads to not
* %join as many as it created before it %ends. The linear stack for
* tracking thread relationships will create a mess otherwise. For
* example, if A creates B then C, the stack is:
*
* A --> C --> B
*
* If C then %forks X, the stack is:
*
* A --> C --> X --> B
*
* If C %ends without a join, then the stack is:
*
* A --> C(zombie) --> X --> B
*
* If A then executes 2 %joins, it will reap C and X (when it ends)
2001-04-13 05:55:18 +02:00
* leaving B in purgatory. What's worse, A will block on the schedules
* of X and C instead of C and B, possibly creating incorrect timing.
*
* The schedule_parent_on_end flag is used by threads to tell their
* children that they are waiting for it to end. It is set by a %join
* instruction if the child is not already done. The thread that
* executes a %join instruction sets the flag in its child.
*
* The i_have_ended flag, on the other hand, is used by threads to
* tell their parents that they are already dead. A thread that
* executes %end will set its own i_have_ended flag and let its parent
* reap it when the parent does the %join. If a thread has its
* schedule_parent_on_end flag set already when it %ends, then it
* reaps itself and simply schedules its parent. If a child has its
* i_have_ended flag set when a thread executes %join, then it is free
* to reap the child immediately.
2001-04-13 05:55:18 +02:00
*/
2001-03-11 01:29:38 +01:00
struct vthread_s {
/* This is the program counter. */
vvp_code_t pc;
2001-04-13 05:55:18 +02:00
/* These hold the private thread bits. */
2002-05-31 02:05:49 +02:00
unsigned long *bits;
/* These are the word registers. */
union {
long w_int;
double w_real;
} words[16];
unsigned nbits;
2001-04-13 05:55:18 +02:00
/* My parent sets this when it wants me to wake it up. */
unsigned schedule_parent_on_end :1;
2001-04-18 06:21:23 +02:00
unsigned i_have_ended :1;
2001-04-13 05:55:18 +02:00
unsigned waiting_for_event :1;
unsigned is_scheduled :1;
unsigned fork_count :8;
2001-04-13 05:55:18 +02:00
/* This points to the sole child of the thread. */
2001-03-30 06:55:22 +02:00
struct vthread_s*child;
2001-04-13 05:55:18 +02:00
/* This points to my parent, if I have one. */
struct vthread_s*parent;
/* This is used for keeping wait queues. */
2001-04-18 06:21:23 +02:00
struct vthread_s*wait_next;
/* These are used to keep the thread in a scope. */
struct vthread_s*scope_next, *scope_prev;
2001-03-11 01:29:38 +01:00
};
2002-05-31 02:05:49 +02:00
#if SIZEOF_UNSIGNED_LONG == 8
# define THR_BITS_INIT 0xaaaaaaaaaaaaaaaaUL
#else
# define THR_BITS_INIT 0xaaaaaaaaUL
#endif
static void thr_check_addr(struct vthread_s*thr, unsigned addr)
{
while (thr->nbits <= addr) {
2002-05-31 02:05:49 +02:00
unsigned word_cnt = thr->nbits/(CPU_WORD_BITS/2) + 1;
thr->bits = (unsigned long*)
realloc(thr->bits, word_cnt*sizeof(unsigned long));
thr->bits[word_cnt-1] = THR_BITS_INIT;
thr->nbits = word_cnt * (CPU_WORD_BITS/2);
}
}
static inline vvp_bit4_t thr_get_bit(struct vthread_s*thr, unsigned addr)
{
assert(addr < thr->nbits);
2002-05-31 02:05:49 +02:00
unsigned idx = addr % (CPU_WORD_BITS/2);
addr /= (CPU_WORD_BITS/2);
return (vvp_bit4_t) ((thr->bits[addr] >> (idx*2)) & 3UL);
}
static inline void thr_put_bit(struct vthread_s*thr,
unsigned addr, unsigned val)
{
2002-05-31 02:05:49 +02:00
if (addr >= thr->nbits)
thr_check_addr(thr, addr);
2002-05-31 02:05:49 +02:00
unsigned idx = addr % (CPU_WORD_BITS/2);
addr /= (CPU_WORD_BITS/2);
unsigned long mask = 3UL << (idx*2);
unsigned long tmp = val;
thr->bits[addr] = (thr->bits[addr] & ~mask) | (tmp << (idx*2));
}
static inline void thr_clr_bit_(struct vthread_s*thr, unsigned addr)
{
unsigned idx = addr % (CPU_WORD_BITS/2);
addr /= (CPU_WORD_BITS/2);
unsigned long mask = 3UL << (idx*2);
thr->bits[addr] &= ~mask;
}
unsigned vthread_get_bit(struct vthread_s*thr, unsigned addr)
{
return thr_get_bit(thr, addr);
}
void vthread_put_bit(struct vthread_s*thr, unsigned addr, unsigned bit)
{
thr_put_bit(thr, addr, bit);
}
double vthread_get_real(struct vthread_s*thr, unsigned addr)
{
return thr->words[addr].w_real;
}
void vthread_put_real(struct vthread_s*thr, unsigned addr, double val)
{
thr->words[addr].w_real = val;
}
2001-07-04 06:57:10 +02:00
static unsigned long* vector_to_array(struct vthread_s*thr,
unsigned addr, unsigned wid)
{
2002-05-31 02:05:49 +02:00
unsigned awid = (wid + CPU_WORD_BITS - 1) / (CPU_WORD_BITS);
2001-07-04 06:57:10 +02:00
unsigned long*val = new unsigned long[awid];
for (unsigned idx = 0 ; idx < awid ; idx += 1)
val[idx] = 0;
2001-07-04 06:57:10 +02:00
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
unsigned long bit = thr_get_bit(thr, addr);
2001-07-04 06:57:10 +02:00
if (bit & 2)
goto x_out;
2002-05-31 02:05:49 +02:00
val[idx/CPU_WORD_BITS] |= bit << (idx % CPU_WORD_BITS);
2001-07-04 06:57:10 +02:00
if (addr >= 4)
addr += 1;
}
return val;
x_out:
delete[]val;
return 0;
}
/*
* This function gets from the thread a vector of bits starting from
* the addressed location and for the specified width.
*/
static vvp_vector4_t vthread_bits_to_vector(struct vthread_s*thr,
unsigned bit, unsigned wid)
{
/* Make a vector of the desired width. */
vvp_vector4_t value (wid);
if (bit >= 4) {
for (unsigned idx = 0; idx < wid; idx +=1, bit += 1) {
vvp_bit4_t bit_val = thr_get_bit(thr, bit);
value.set_bit(idx, bit_val);
}
} else {
vvp_bit4_t bit_val = (vvp_bit4_t)bit;
for (unsigned idx = 0; idx < wid; idx +=1, bit += 1) {
value.set_bit(idx, bit_val);
}
}
return value;
}
2001-03-11 01:29:38 +01:00
/*
* Create a new thread with the given start address.
*/
vthread_t vthread_new(vvp_code_t pc, struct __vpiScope*scope)
2001-03-11 01:29:38 +01:00
{
vthread_t thr = new struct vthread_s;
2001-04-13 05:55:18 +02:00
thr->pc = pc;
2002-05-31 02:05:49 +02:00
thr->bits = (unsigned long*)malloc(4 * sizeof(unsigned long));
2003-08-01 02:58:03 +02:00
thr->bits[0] = THR_BITS_INIT;
thr->bits[1] = THR_BITS_INIT;
thr->bits[2] = THR_BITS_INIT;
thr->bits[3] = THR_BITS_INIT;
2002-05-31 02:05:49 +02:00
thr->nbits = 4 * (CPU_WORD_BITS/2);
2001-04-13 05:55:18 +02:00
thr->child = 0;
thr->parent = 0;
thr->wait_next = 0;
2001-04-18 06:21:23 +02:00
/* If the target scope never held a thread, then create a
header cell for it. This is a stub to make circular lists
easier to work with. */
if (scope->threads == 0) {
scope->threads = new struct vthread_s;
scope->threads->pc = codespace_null();
2001-04-18 06:21:23 +02:00
scope->threads->bits = 0;
scope->threads->nbits = 0;
scope->threads->child = 0;
scope->threads->parent = 0;
scope->threads->scope_prev = scope->threads;
scope->threads->scope_next = scope->threads;
}
{ vthread_t tmp = scope->threads;
thr->scope_next = tmp->scope_next;
thr->scope_prev = tmp;
thr->scope_next->scope_prev = thr;
thr->scope_prev->scope_next = thr;
}
2001-04-13 05:55:18 +02:00
thr->schedule_parent_on_end = 0;
2001-05-02 03:37:38 +02:00
thr->is_scheduled = 0;
2001-04-13 05:55:18 +02:00
thr->i_have_ended = 0;
thr->waiting_for_event = 0;
thr->is_scheduled = 0;
thr->fork_count = 0;
2001-03-11 01:29:38 +01:00
thr_put_bit(thr, 0, 0);
thr_put_bit(thr, 1, 1);
thr_put_bit(thr, 2, 2);
thr_put_bit(thr, 3, 3);
2001-04-18 06:21:23 +02:00
2001-03-11 01:29:38 +01:00
return thr;
}
2001-07-20 06:57:00 +02:00
/*
* Reaping pulls the thread out of the stack of threads. If I have a
* child, then hand it over to my parent.
*/
2001-03-30 06:55:22 +02:00
static void vthread_reap(vthread_t thr)
{
2001-04-13 05:55:18 +02:00
free(thr->bits);
2001-04-18 06:21:23 +02:00
thr->bits = 0;
2001-04-13 05:55:18 +02:00
if (thr->child) {
assert(thr->child->parent == thr);
2001-04-13 05:55:18 +02:00
thr->child->parent = thr->parent;
}
if (thr->parent) {
assert(thr->parent->child == thr);
2001-04-13 05:55:18 +02:00
thr->parent->child = thr->child;
}
2001-04-13 05:55:18 +02:00
2001-04-18 06:21:23 +02:00
thr->child = 0;
thr->parent = 0;
thr->scope_next->scope_prev = thr->scope_prev;
thr->scope_prev->scope_next = thr->scope_next;
thr->pc = codespace_null();
/* If this thread is not scheduled, then is it safe to delete
it now. Otherwise, let the schedule event (which will
execute the thread at of_ZOMBIE) delete the object. */
if ((thr->is_scheduled == 0) && (thr->waiting_for_event == 0)) {
assert(thr->fork_count == 0);
2002-09-22 01:47:30 +02:00
assert(thr->wait_next == 0);
delete thr;
}
2001-03-30 06:55:22 +02:00
}
void vthread_mark_scheduled(vthread_t thr)
{
while (thr != 0) {
assert(thr->is_scheduled == 0);
thr->is_scheduled = 1;
thr = thr->wait_next;
}
}
2001-03-11 01:29:38 +01:00
/*
* This function runs each thread by fetching an instruction,
* incrementing the PC, and executing the instruction. The thread may
* be the head of a list, so each thread is run so far as possible.
2001-03-11 01:29:38 +01:00
*/
void vthread_run(vthread_t thr)
{
while (thr != 0) {
vthread_t tmp = thr->wait_next;
thr->wait_next = 0;
assert(thr->is_scheduled);
thr->is_scheduled = 0;
2001-03-11 01:29:38 +01:00
for (;;) {
vvp_code_t cp = thr->pc;
thr->pc += 1;
/* Run the opcode implementation. If the execution of
the opcode returns false, then the thread is meant to
be paused, so break out of the loop. */
bool rc = (cp->opcode)(thr, cp);
if (rc == false)
break;
}
thr = tmp;
2001-03-11 01:29:38 +01:00
}
}
/*
* The CHUNK_LINK instruction is a specla next pointer for linking
* chunks of code space. It's like a simplified %jmp.
*/
bool of_CHUNK_LINK(vthread_t thr, vvp_code_t code)
{
assert(code->cptr);
thr->pc = code->cptr;
return true;
}
2001-04-13 05:55:18 +02:00
/*
2001-04-18 06:21:23 +02:00
* This is called by an event functor to wake up all the threads on
2001-04-13 05:55:18 +02:00
* its list. I in fact created that list in the %wait instruction, and
* I also am certain that the waiting_for_event flag is set.
*/
void vthread_schedule_list(vthread_t thr)
{
for (vthread_t cur = thr ; cur ; cur = cur->wait_next) {
assert(cur->waiting_for_event);
cur->waiting_for_event = 0;
}
schedule_vthread(thr, 0);
}
2001-04-13 05:55:18 +02:00
2001-04-01 08:12:13 +02:00
bool of_AND(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-04-01 08:12:13 +02:00
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2001-04-01 08:12:13 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if ((lb == 0) || (rb == 0)) {
thr_put_bit(thr, idx1, 0);
} else if ((lb == 1) && (rb == 1)) {
thr_put_bit(thr, idx1, 1);
} else {
thr_put_bit(thr, idx1, 2);
}
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
return true;
}
2001-06-22 02:03:05 +02:00
2001-03-31 03:59:58 +02:00
bool of_ADD(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-03-31 03:59:58 +02:00
unsigned long*lva = vector_to_array(thr, cp->bit_idx[0], cp->number);
unsigned long*lvb = vector_to_array(thr, cp->bit_idx[1], cp->number);
2001-07-04 06:57:10 +02:00
if (lva == 0 || lvb == 0)
goto x_out;
2001-03-31 03:59:58 +02:00
2001-06-22 02:03:05 +02:00
unsigned long carry;
carry = 0;
2002-05-31 02:05:49 +02:00
for (unsigned idx = 0 ; (idx*CPU_WORD_BITS) < cp->number ; idx += 1) {
unsigned long tmp = lvb[idx] + carry;
unsigned long sum = lva[idx] + tmp;
carry = 0;
if (tmp < lvb[idx])
carry = 1;
if (sum < tmp)
carry = 1;
if (sum < lva[idx])
carry = 1;
lva[idx] = sum;
2001-06-22 02:03:05 +02:00
}
2001-03-31 03:59:58 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
2002-05-31 02:05:49 +02:00
unsigned bit = lva[idx/CPU_WORD_BITS] >> (idx % CPU_WORD_BITS);
thr_put_bit(thr, cp->bit_idx[0]+idx, (bit&1) ? 1 : 0);
2001-03-31 03:59:58 +02:00
}
2001-06-22 02:03:05 +02:00
delete[]lva;
2001-07-04 06:57:10 +02:00
delete[]lvb;
2001-06-22 02:03:05 +02:00
2001-03-31 03:59:58 +02:00
return true;
x_out:
2001-06-22 02:03:05 +02:00
delete[]lva;
2001-07-04 06:57:10 +02:00
delete[]lvb;
2001-06-22 02:03:05 +02:00
2001-03-31 03:59:58 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
2001-03-31 03:59:58 +02:00
return true;
}
bool of_ADD_WR(vthread_t thr, vvp_code_t cp)
{
double l = thr->words[cp->bit_idx[0]].w_real;
double r = thr->words[cp->bit_idx[1]].w_real;
thr->words[cp->bit_idx[0]].w_real = l + r;
return true;
}
/*
* This is %addi, add-immediate. The first value is a vector, the
* second value is the immediate value in the bin_idx[1] position. The
* immediate value can be up to 16 bits, which are then padded to the
* width of the vector with zero.
*/
bool of_ADDI(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2002-05-31 02:05:49 +02:00
unsigned word_count = (cp->number+CPU_WORD_BITS-1)/CPU_WORD_BITS;
unsigned long*lva = vector_to_array(thr, cp->bit_idx[0], cp->number);
unsigned long*lvb;
if (lva == 0)
goto x_out;
lvb = new unsigned long[word_count];
lvb[0] = cp->bit_idx[1];
for (unsigned idx = 1 ; idx < word_count ; idx += 1)
lvb[idx] = 0;
unsigned long carry;
carry = 0;
2002-05-31 02:05:49 +02:00
for (unsigned idx = 0 ; (idx*CPU_WORD_BITS) < cp->number ; idx += 1) {
unsigned long tmp = lvb[idx] + carry;
unsigned long sum = lva[idx] + tmp;
carry = 0;
if (tmp < lvb[idx])
carry = 1;
if (sum < tmp)
carry = 1;
if (sum < lva[idx])
carry = 1;
lva[idx] = sum;
}
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
2002-05-31 02:05:49 +02:00
unsigned bit = lva[idx/CPU_WORD_BITS] >> (idx % CPU_WORD_BITS);
thr_put_bit(thr, cp->bit_idx[0]+idx, (bit&1) ? 1 : 0);
}
delete[]lva;
delete[]lvb;
return true;
x_out:
delete[]lva;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
return true;
}
bool of_ASSIGN_D(vthread_t thr, vvp_code_t cp)
{
#if 0
assert(cp->bit_idx[0] < 4);
unsigned char bit_val = thr_get_bit(thr, cp->bit_idx[1]);
schedule_assign(cp->iptr, bit_val, thr->words[cp->bit_idx[0]].w_int);
#else
fprintf(stderr, "XXXX forgot how to implemented %%assign/d\n");
#endif
return true;
}
2002-11-08 05:59:57 +01:00
/*
* This is %assign/v0 <label>, <delay>, <bit>
* Index register 0 contains a vector width.
*/
bool of_ASSIGN_V0(vthread_t thr, vvp_code_t cp)
{
unsigned wid = thr->words[0].w_int;
2002-11-08 05:59:57 +01:00
assert(wid > 0);
unsigned delay = cp->bit_idx[0];
unsigned bit = cp->bit_idx[1];
vvp_vector4_t value = vthread_bits_to_vector(thr, bit, wid);
2002-11-08 05:59:57 +01:00
vvp_net_ptr_t ptr (cp->net, 0);
schedule_assign_vector(ptr, value, delay);
2002-11-08 05:59:57 +01:00
return true;
}
/*
* This is %assign/wr <vpi-label>, <delay>, <index>
*
* This assigns (after a delay) a value to a real variable. Use the
* vpi_put_value function to do the assign, with the delay written
* into the vpiInertialDelay carrying the desired delay.
*/
bool of_ASSIGN_WR(vthread_t thr, vvp_code_t cp)
{
unsigned delay = cp->bit_idx[0];
s_vpi_time del;
del.type = vpiSimTime;
vpip_time_to_timestruct(&del, schedule_simtime() + delay);
struct __vpiHandle*tmp = cp->handle;
t_vpi_value val;
val.format = vpiRealVal;
val.value.real = thr->words[cp->bit_idx[1]].w_real;
vpi_put_value(tmp, &val, &del, vpiInertialDelay);
return true;
}
2001-08-27 00:59:32 +02:00
bool of_ASSIGN_X0(vthread_t thr, vvp_code_t cp)
{
#if 0
unsigned char bit_val = thr_get_bit(thr, cp->bit_idx[1]);
vvp_ipoint_t itmp = ipoint_index(cp->iptr, thr->words[0].w_int);
schedule_assign(itmp, bit_val, cp->bit_idx[0]);
#else
fprintf(stderr, "XXXX forgot how to implement %%assign/x0\n");
#endif
2001-08-27 00:59:32 +02:00
return true;
}
bool of_ASSIGN_MEM(vthread_t thr, vvp_code_t cp)
{
#if 0
unsigned char bit_val = thr_get_bit(thr, cp->bit_idx[1]);
schedule_memory(cp->mem, thr->words[3].w_int, bit_val, cp->bit_idx[0]);
#else
fprintf(stderr, "XXXX %%assign/m is obsolete.\n");
#endif
return true;
}
2005-03-06 18:07:48 +01:00
/* %assign/mv <memory>, <delay>, <bit>
* This generates an assignment event to a memory. Index register 0
* contains the width of the vector (and the word) and index register
* 3 contains the cannonical address of the word in memory.
*/
bool of_ASSIGN_MV(vthread_t thr, vvp_code_t cp)
{
2005-03-06 18:07:48 +01:00
unsigned wid = thr->words[0].w_int;
unsigned adr = thr->words[3].w_int;
assert(wid > 0);
unsigned delay = cp->bit_idx[0];
unsigned bit = cp->bit_idx[1];
vvp_vector4_t value = vthread_bits_to_vector(thr, bit, wid);
schedule_assign_memory_word(cp->mem, adr, value, delay);
return true;
}
bool of_BLEND(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if (lb != rb)
thr_put_bit(thr, idx1, 2);
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
return true;
}
bool of_BREAKPOINT(vthread_t thr, vvp_code_t cp)
{
return true;
}
/*
* the %cassign/v instruction invokes a continuous assign of a
* constant value to a signal. The instruction arguments are:
*
* %cassign/v <net>, <base>, <wid> ;
*
* Where the <net> is the net label assembled into a vvp_net pointer,
* and the <base> and <wid> are stashed in the bit_idx array.
*
* This instruction writes vvp_vector4_t values to port-1 of the
* target signal.
*/
bool of_CASSIGN_V(vthread_t thr, vvp_code_t cp)
{
vvp_net_t*net = cp->net;
unsigned base = cp->bit_idx[0];
unsigned wid = cp->bit_idx[1];
/* Collect the thread bits into a vector4 item. */
vvp_vector4_t value = vthread_bits_to_vector(thr, base, wid);
/* set the value into port 1 of the destination. */
vvp_net_ptr_t ptr (net, 1);
vvp_send_vec4(ptr, value);
return true;
}
bool of_CMPS(vthread_t thr, vvp_code_t cp)
{
unsigned eq = 1;
unsigned eeq = 1;
unsigned lt = 0;
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2001-12-31 01:01:16 +01:00
unsigned end1 = (idx1 < 4)? idx1 : idx1 + cp->number - 1;
unsigned end2 = (idx2 < 4)? idx2 : idx2 + cp->number - 1;
unsigned sig1 = thr_get_bit(thr, end1);
unsigned sig2 = thr_get_bit(thr, end2);
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lv = thr_get_bit(thr, idx1);
unsigned rv = thr_get_bit(thr, idx2);
if (lv > rv) {
lt = 0;
eeq = 0;
} else if (lv < rv) {
lt = 1;
eeq = 0;
}
if (eq != 2) {
if ((lv == 0) && (rv != 0))
eq = 0;
if ((lv == 1) && (rv != 1))
eq = 0;
if ((lv | rv) >= 2)
eq = 2;
}
if (idx1 >= 4) idx1 += 1;
if (idx2 >= 4) idx2 += 1;
}
if (eq == 2)
lt = 2;
else if ((sig1 == 1) && (sig2 == 0))
lt = 1;
else if ((sig1 == 0) && (sig2 == 1))
lt = 0;
2001-12-31 01:01:16 +01:00
/* Correct the lt bit to account for the sign of the parameters. */
if (lt < 2) {
sig1 = thr_get_bit(thr, end1);
sig2 = thr_get_bit(thr, end2);
/* If both numbers are negative, then switch the
direction of the lt. */
if ((sig1 == 1) && (sig2 == 1) && (eq != 0))
lt ^= 1;
/* If the first is negative and the last positive, then
a < b for certain. */
if ((sig1 == 1) && (sig2 == 0))
lt = 1;
/* If the first is positive and the last negative, then
a > b for certain. */
if ((sig1 == 0) && (sig2 == 1))
lt = 0;
}
thr_put_bit(thr, 4, eq);
thr_put_bit(thr, 5, lt);
thr_put_bit(thr, 6, eeq);
return true;
}
2002-06-02 20:55:58 +02:00
bool of_CMPIU(vthread_t thr, vvp_code_t cp)
{
unsigned eq = 1;
unsigned eeq = 1;
unsigned lt = 0;
unsigned idx1 = cp->bit_idx[0];
unsigned imm = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lv = thr_get_bit(thr, idx1);
unsigned rv = imm & 1;
imm >>= 1;
if (lv > rv) {
lt = 0;
eeq = 0;
} else if (lv < rv) {
lt = 1;
eeq = 0;
}
if (eq != 2) {
if ((lv == 0) && (rv != 0))
eq = 0;
if ((lv == 1) && (rv != 1))
eq = 0;
if ((lv | rv) >= 2)
eq = 2;
}
if (idx1 >= 4) idx1 += 1;
}
if (eq == 2)
lt = 2;
thr_put_bit(thr, 4, eq);
thr_put_bit(thr, 5, lt);
thr_put_bit(thr, 6, eeq);
return true;
}
bool of_CMPU(vthread_t thr, vvp_code_t cp)
{
unsigned eq = 1;
unsigned eeq = 1;
unsigned lt = 0;
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lv = thr_get_bit(thr, idx1);
unsigned rv = thr_get_bit(thr, idx2);
if (lv > rv) {
lt = 0;
eeq = 0;
} else if (lv < rv) {
lt = 1;
eeq = 0;
}
if (eq != 2) {
if ((lv == 0) && (rv != 0))
eq = 0;
if ((lv == 1) && (rv != 1))
eq = 0;
if ((lv | rv) >= 2)
eq = 2;
}
if (idx1 >= 4) idx1 += 1;
if (idx2 >= 4) idx2 += 1;
}
if (eq == 2)
lt = 2;
thr_put_bit(thr, 4, eq);
thr_put_bit(thr, 5, lt);
thr_put_bit(thr, 6, eeq);
return true;
}
bool of_CMPX(vthread_t thr, vvp_code_t cp)
{
unsigned eq = 1;
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lv = thr_get_bit(thr, idx1);
unsigned rv = thr_get_bit(thr, idx2);
if ((lv < 2) && (rv < 2) && (lv != rv)) {
eq = 0;
break;
}
if (idx1 >= 4) idx1 += 1;
if (idx2 >= 4) idx2 += 1;
}
thr_put_bit(thr, 4, eq);
return true;
}
bool of_CMPWR(vthread_t thr, vvp_code_t cp)
{
double l = thr->words[cp->bit_idx[0]].w_real;
double r = thr->words[cp->bit_idx[1]].w_real;
unsigned eq = (l == r)? 1 : 0;
unsigned lt = (l < r)? 1 : 0;
thr_put_bit(thr, 4, eq);
thr_put_bit(thr, 5, lt);
return true;
}
bool of_CMPZ(vthread_t thr, vvp_code_t cp)
{
unsigned eq = 1;
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lv = thr_get_bit(thr, idx1);
unsigned rv = thr_get_bit(thr, idx2);
if ((lv < 3) && (rv < 3) && (lv != rv)) {
eq = 0;
break;
}
if (idx1 >= 4) idx1 += 1;
if (idx2 >= 4) idx2 += 1;
}
thr_put_bit(thr, 4, eq);
return true;
}
bool of_CVT_IR(vthread_t thr, vvp_code_t cp)
{
double r = thr->words[cp->bit_idx[1]].w_real;
thr->words[cp->bit_idx[0]].w_int = (long)(r);
return true;
}
bool of_CVT_RI(vthread_t thr, vvp_code_t cp)
{
long r = thr->words[cp->bit_idx[1]].w_int;
thr->words[cp->bit_idx[0]].w_real = (double)(r);
return true;
}
2003-02-27 21:36:29 +01:00
bool of_CVT_VR(vthread_t thr, vvp_code_t cp)
{
double r = thr->words[cp->bit_idx[1]].w_real;
long rl = (long)r;
unsigned base = cp->bit_idx[0];
unsigned wid = cp->number;
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
thr_put_bit(thr, base+idx, (rl&1)? 1 : 0);
rl >>= 1;
}
return true;
}
/*
* This implements the %deassign instruction. All we do is write a
* long(1) to port-3 of the addressed net. This turns off an active
* continuous assign activated by %cassign/v
*/
bool of_DEASSIGN(vthread_t thr, vvp_code_t cp)
{
vvp_net_t*net = cp->net;
vvp_net_ptr_t ptr (net, 3);
vvp_send_long(ptr, 1);
return true;
}
2001-03-11 01:29:38 +01:00
bool of_DELAY(vthread_t thr, vvp_code_t cp)
{
//printf("thread %p: %%delay %lu\n", thr, cp->number);
2001-03-11 01:29:38 +01:00
schedule_vthread(thr, cp->number);
return false;
}
2001-07-19 06:40:55 +02:00
bool of_DELAYX(vthread_t thr, vvp_code_t cp)
{
unsigned long delay;
assert(cp->number < 4);
delay = thr->words[cp->number].w_int;
2001-07-19 06:40:55 +02:00
schedule_vthread(thr, delay);
return false;
}
static bool do_disable(vthread_t thr, vthread_t match)
{
bool flag = false;
/* Pull the target thread out of its scope. */
thr->scope_next->scope_prev = thr->scope_prev;
thr->scope_prev->scope_next = thr->scope_next;
/* Turn the thread off by setting is program counter to
zero and setting an OFF bit. */
thr->pc = codespace_null();
thr->i_have_ended = 1;
/* Turn off all the children of the thread. Simulate a %join
for as many times as needed to clear the results of all the
%forks that this thread has done. */
while (thr->fork_count > 0) {
vthread_t tmp = thr->child;
assert(tmp);
assert(tmp->parent == thr);
tmp->schedule_parent_on_end = 0;
if (do_disable(tmp, match))
flag = true;
thr->fork_count -= 1;
vthread_reap(tmp);
}
if (thr->schedule_parent_on_end) {
/* If a parent is waiting in a %join, wake it up. */
assert(thr->parent);
assert(thr->parent->fork_count > 0);
thr->parent->fork_count -= 1;
schedule_vthread(thr->parent, 0, true);
vthread_reap(thr);
} else if (thr->parent) {
/* If the parent is yet to %join me, let its %join
do the reaping. */
//assert(tmp->is_scheduled == 0);
} else {
2003-02-10 00:33:26 +01:00
/* No parent at all. Goodbye. */
vthread_reap(thr);
}
return flag || (thr == match);
}
2001-04-18 06:21:23 +02:00
/*
* Implement the %disable instruction by scanning the target scope for
* all the target threads. Kill the target threads and wake up a
* parent that is attempting a %join.
*/
bool of_DISABLE(vthread_t thr, vvp_code_t cp)
{
struct __vpiScope*scope = (struct __vpiScope*)cp->handle;
if (scope->threads == 0)
return true;
struct vthread_s*head = scope->threads;
2002-05-27 02:53:10 +02:00
bool disabled_myself_flag = false;
2001-04-18 06:21:23 +02:00
while (head->scope_next != head) {
vthread_t tmp = head->scope_next;
2002-05-27 02:53:10 +02:00
/* If I am disabling myself, that remember that fact so
that I can finish this statement differently. */
if (tmp == thr)
disabled_myself_flag = true;
if (do_disable(tmp, thr))
disabled_myself_flag = true;
2001-04-18 06:21:23 +02:00
}
2002-05-27 02:53:10 +02:00
return ! disabled_myself_flag;
2001-04-18 06:21:23 +02:00
}
2002-04-14 20:41:34 +02:00
static void divide_bits(unsigned len, unsigned char*lbits,
const unsigned char*rbits)
{
unsigned char *a, *b, *z, *t;
a = new unsigned char[len+1];
b = new unsigned char[len+1];
z = new unsigned char[len+1];
t = new unsigned char[len+1];
unsigned char carry;
unsigned char temp;
int mxa = -1, mxz = -1;
int i;
int current, copylen;
for (unsigned idx = 0 ; idx < len ; idx += 1) {
unsigned lb = lbits[idx];
unsigned rb = rbits[idx];
z[idx]=lb;
a[idx]=1-rb; // for 2s complement add..
}
z[len]=0;
a[len]=1;
for(i=0;i<(int)len+1;i++) {
b[i]=0;
}
for(i=len-1;i>=0;i--) {
if(!a[i]) {
mxa=i;
break;
}
}
2002-04-14 20:41:34 +02:00
for(i=len-1;i>=0;i--) {
if(z[i]) {
mxz=i;
break;
}
}
if((mxa>mxz)||(mxa==-1)) {
if(mxa==-1) {
fprintf(stderr, "Division By Zero error, exiting.\n");
exit(255);
}
2002-04-14 20:41:34 +02:00
goto tally;
}
copylen = mxa + 2;
current = mxz - mxa;
2002-04-14 20:41:34 +02:00
while(current > -1) {
carry = 1;
for(i=0;i<copylen;i++) {
temp = z[i+current] + a[i] + carry;
t[i] = (temp&1);
carry = (temp>>1);
}
2002-04-14 20:41:34 +02:00
if(carry) {
for(i=0;i<copylen;i++) {
z[i+current] = t[i];
}
b[current] = 1;
}
2002-04-14 20:41:34 +02:00
current--;
}
tally:
for (unsigned idx = 0 ; idx < len ; idx += 1) {
// n.b., z[] has the remainder...
lbits[idx] = b[idx];
}
delete []t;
delete []z;
delete []b;
delete []a;
}
2001-10-16 03:26:54 +02:00
bool of_DIV(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-10-16 03:26:54 +02:00
if(cp->number <= 8*sizeof(unsigned long)) {
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2001-10-16 03:26:54 +02:00
unsigned long lv = 0, rv = 0;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if ((lb | rb) & 2)
goto x_out;
lv |= lb << idx;
rv |= rb << idx;
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
2001-10-21 01:20:32 +02:00
if (rv == 0)
goto x_out;
2001-10-16 03:26:54 +02:00
lv /= rv;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, (lv&1) ? 1 : 0);
2001-10-16 03:26:54 +02:00
lv >>= 1;
}
return true;
} else {
2002-04-14 20:41:34 +02:00
/* Make a string of the bits of the numbers to be
divided. Then divide them, and write the results into
the thread. */
unsigned char*lbits = new unsigned char[cp->number];
unsigned char*rbits = new unsigned char[cp->number];
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2002-05-24 06:55:13 +02:00
bool rval_is_zero = true;
2002-04-14 20:41:34 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
lbits[idx] = thr_get_bit(thr, idx1);
rbits[idx] = thr_get_bit(thr, idx2);
if ((lbits[idx] | rbits[idx]) > 1) {
delete[]lbits;
delete[]rbits;
goto x_out;
}
2002-05-24 06:55:13 +02:00
if (rbits[idx] != 0)
rval_is_zero = false;
2002-04-14 20:41:34 +02:00
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
2002-05-24 06:55:13 +02:00
/* Notice the special case of divide by 0. */
if (rval_is_zero) {
delete[]lbits;
delete[]rbits;
goto x_out;
}
2002-04-14 20:41:34 +02:00
divide_bits(cp->number, lbits, rbits);
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, lbits[idx]);
}
delete[]lbits;
delete[]rbits;
return true;
}
2001-10-16 03:26:54 +02:00
2002-04-14 20:41:34 +02:00
x_out:
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
2001-10-16 03:26:54 +02:00
2002-04-14 20:41:34 +02:00
return true;
}
2001-10-16 03:26:54 +02:00
2002-04-14 20:41:34 +02:00
static void negate_bits(unsigned len, unsigned char*bits)
{
unsigned char carry = 1;
for (unsigned idx = 0 ; idx < len ; idx += 1) {
carry += bits[idx]? 0 : 1;
bits[idx] = carry & 1;
carry >>= 1;
}
}
bool of_DIV_S(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
if(cp->number <= 8*sizeof(long)) {
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2002-04-14 20:41:34 +02:00
long lv = 0, rv = 0;
2001-10-16 03:26:54 +02:00
2002-04-14 20:41:34 +02:00
unsigned lb = 0;
unsigned rb = 0;
2001-10-16 03:26:54 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
2002-04-14 20:41:34 +02:00
lb = thr_get_bit(thr, idx1);
rb = thr_get_bit(thr, idx2);
2001-10-16 03:26:54 +02:00
2002-04-14 20:41:34 +02:00
if ((lb | rb) & 2)
2001-10-16 03:26:54 +02:00
goto x_out;
2002-04-14 20:41:34 +02:00
lv |= (long)lb << idx;
rv |= (long)rb << idx;
2001-10-16 03:26:54 +02:00
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
2002-04-14 20:41:34 +02:00
/* Extend the sign to fill the native long. */
for (unsigned idx = cp->number; idx < (8*sizeof lv); idx += 1) {
lv |= (long)lb << idx;
rv |= (long)rb << idx;
2001-10-16 03:26:54 +02:00
}
2002-04-14 20:41:34 +02:00
if (rv == 0)
goto x_out;
lv /= rv;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, (lv&1) ? 1 : 0);
lv >>= 1;
2001-10-16 03:26:54 +02:00
}
2002-04-14 20:41:34 +02:00
} else {
unsigned char*lbits = new unsigned char[cp->number];
unsigned char*rbits = new unsigned char[cp->number];
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2002-05-24 06:55:13 +02:00
bool rval_is_zero = true;
2002-04-14 20:41:34 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
lbits[idx] = thr_get_bit(thr, idx1);
rbits[idx] = thr_get_bit(thr, idx2);
if ((lbits[idx] | rbits[idx]) > 1) {
delete[]lbits;
delete[]rbits;
goto x_out;
2001-10-16 03:26:54 +02:00
}
2002-04-14 20:41:34 +02:00
2002-05-24 06:55:13 +02:00
if (rbits[idx] != 0)
rval_is_zero = false;
2002-04-14 20:41:34 +02:00
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
2001-10-16 03:26:54 +02:00
}
2002-05-24 06:55:13 +02:00
/* Notice the special case of divide by 0. */
if (rval_is_zero) {
delete[]lbits;
delete[]rbits;
goto x_out;
}
2002-04-14 20:41:34 +02:00
/* Signed division is unsigned division on the absolute
values of the operands, then corrected for the number
of signs. */
unsigned sign_flag = 0;
if (lbits[cp->number-1]) {
sign_flag += 1;
negate_bits(cp->number, lbits);
}
if (rbits[cp->number-1]) {
sign_flag += 1;
negate_bits(cp->number, rbits);
2001-10-16 03:26:54 +02:00
}
2002-04-14 20:41:34 +02:00
divide_bits(cp->number, lbits, rbits);
if (sign_flag & 1) {
negate_bits(cp->number, lbits);
2001-10-16 03:26:54 +02:00
}
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
2002-04-14 20:41:34 +02:00
thr_put_bit(thr, cp->bit_idx[0]+idx, lbits[idx]);
2001-10-16 03:26:54 +02:00
}
2002-04-14 20:41:34 +02:00
delete[]lbits;
delete[]rbits;
2001-10-16 03:26:54 +02:00
}
2002-04-14 20:41:34 +02:00
return true;
2001-10-16 03:26:54 +02:00
x_out:
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
2001-10-16 03:26:54 +02:00
return true;
}
bool of_DIV_WR(vthread_t thr, vvp_code_t cp)
{
double l = thr->words[cp->bit_idx[0]].w_real;
double r = thr->words[cp->bit_idx[1]].w_real;
thr->words[cp->bit_idx[0]].w_real = l / r;
return true;
}
2001-04-13 05:55:18 +02:00
/*
* This terminates the current thread. If there is a parent who is
* waiting for me to die, then I schedule it. At any rate, I mark
* myself as a zombie by setting my pc to 0.
2001-07-20 06:57:00 +02:00
*
* It is possible for this thread to have children at this %end. This
* means that my child is really my sibling created by my parent, and
* my parent will do the proper %joins in due course. For example:
*
* %fork child_1, test;
* %fork child_2, test;
* ... parent code ...
* %join;
* %join;
* %end;
*
* child_1 ;
* %end;
* child_2 ;
* %end;
*
* In this example, the main thread creates threads child_1 and
* child_2. It is possible that this thread is child_2, so there is a
* parent pointer and a child pointer, even though I did no
* %forks or %joins. This means that I have a ->child pointer and a
* ->parent pointer.
*
* If the main thread has executed the first %join, then it is waiting
* for me, and I will be reaped right away.
*
* If the main thread has not executed a %join yet, then this thread
* becomes a zombie. The main thread executes its %join eventually,
* reaping me at that time.
*
* It does not matter the order that child_1 and child_2 threads call
* %end -- child_2 will be reaped by the first %join, and child_1 will
* be reaped by the second %join.
2001-04-13 05:55:18 +02:00
*/
2001-04-18 06:21:23 +02:00
bool of_END(vthread_t thr, vvp_code_t)
2001-03-11 01:29:38 +01:00
{
2001-04-13 05:55:18 +02:00
assert(! thr->waiting_for_event);
assert( thr->fork_count == 0 );
2001-04-13 05:55:18 +02:00
thr->i_have_ended = 1;
thr->pc = codespace_null();
2001-04-13 05:55:18 +02:00
/* If I have a parent who is waiting for me, then mark that I
have ended, and schedule that parent. Also, finish the
%join for the parent. */
2001-04-13 05:55:18 +02:00
if (thr->schedule_parent_on_end) {
assert(thr->parent);
assert(thr->parent->fork_count > 0);
thr->parent->fork_count -= 1;
schedule_vthread(thr->parent, 0, true);
vthread_reap(thr);
2001-04-13 05:55:18 +02:00
return false;
}
/* If I have no parents, then no one can %join me and there is
no reason to stick around. This can happen, for example if
2001-07-20 06:57:00 +02:00
I am an ``initial'' thread.
If I have children at this point, then I must have been the
main thread (there is no other parent) and an error (not
enough %joins) has been detected. */
2001-04-13 05:55:18 +02:00
if (thr->parent == 0) {
2001-07-20 06:57:00 +02:00
assert(thr->child == 0);
2001-04-13 05:55:18 +02:00
vthread_reap(thr);
return false;
}
/* If I make it this far, then I have a parent who may wish
to %join me. Remain a zombie so that it can. */
2001-03-11 01:29:38 +01:00
return false;
}
2004-12-15 18:17:42 +01:00
/*
* The %force/v instruction invokes a force assign of a constant value
* to a signal. The instruction arguments are:
*
* %force/v <net>, <base>, <wid> ;
*
* where the <net> is the net label assembled into a vvp_net pointer,
* and the <base> and <wid> are stashed in the bit_idx array.
*
* The instruction writes a vvp_vector4_t value to port-2 of the
* target signal.
*/
bool of_FORCE_V(vthread_t thr, vvp_code_t cp)
{
vvp_net_t*net = cp->net;
unsigned base = cp->bit_idx[0];
unsigned wid = cp->bit_idx[1];
/* Collect the thread bits into a vector4 item. */
vvp_vector4_t value = vthread_bits_to_vector(thr, base, wid);
/* set the value into port 1 of the destination. */
vvp_net_ptr_t ptr (net, 2);
vvp_send_vec4(ptr, value);
return true;
}
2001-04-13 05:55:18 +02:00
/*
* The %fork instruction causes a new child to be created and pushed
* in front of any existing child. This causes the new child to be the
* parent of any previous children, and for me to be the parent of the
* new child.
*/
2001-03-30 06:55:22 +02:00
bool of_FORK(vthread_t thr, vvp_code_t cp)
{
vthread_t child = vthread_new(cp->cptr2, cp->scope);
2001-04-13 05:55:18 +02:00
child->child = thr->child;
child->parent = thr;
2001-03-30 06:55:22 +02:00
thr->child = child;
2001-04-13 05:55:18 +02:00
if (child->child) {
assert(child->child->parent == thr);
child->child->parent = child;
}
thr->fork_count += 1;
schedule_vthread(child, 0, true);
2001-03-30 06:55:22 +02:00
return true;
}
bool of_INV(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
for (unsigned idx = 0 ; idx < cp->bit_idx[1] ; idx += 1) {
vvp_bit4_t val = thr_get_bit(thr, cp->bit_idx[0]+idx);
switch (val) {
case BIT4_0:
val = BIT4_1;
break;
case BIT4_1:
val = BIT4_0;
break;
default:
val = BIT4_X;
break;
}
thr_put_bit(thr, cp->bit_idx[0]+idx, val);
}
return true;
}
/*
** Index registers, unsigned arithmetic.
*/
bool of_IX_ADD(vthread_t thr, vvp_code_t cp)
{
thr->words[cp->bit_idx[0] & 3].w_int += cp->number;
return true;
}
bool of_IX_SUB(vthread_t thr, vvp_code_t cp)
{
thr->words[cp->bit_idx[0] & 3].w_int -= cp->number;
return true;
}
bool of_IX_MUL(vthread_t thr, vvp_code_t cp)
{
thr->words[cp->bit_idx[0] & 3].w_int *= cp->number;
return true;
}
bool of_IX_LOAD(vthread_t thr, vvp_code_t cp)
{
thr->words[cp->bit_idx[0] & 3].w_int = cp->number;
2001-05-01 07:00:02 +02:00
return true;
}
2002-08-18 03:05:50 +02:00
/*
* Load a vector into an index register. The format of the
* opcode is:
*
* %ix/get <ix>, <base>, <wid>
*
* where <ix> is the index register, <base> is the base of the
* vector and <wid> is the width in bits.
*
* Index registers only hold binary values, so if any of the
* bits of the vector are x or z, then set the value to 0,
* set bit[4] to 1, and give up.
2002-08-18 03:05:50 +02:00
*/
bool of_IX_GET(vthread_t thr, vvp_code_t cp)
{
unsigned index = cp->bit_idx[0];
unsigned base = cp->bit_idx[1];
unsigned width = cp->number;
unsigned long v = 0;
bool unknown_flag = false;
for (unsigned i = 0 ; i<width ; i += 1) {
unsigned char vv = thr_get_bit(thr, base);
if (vv&2) {
2002-08-18 03:05:50 +02:00
v = 0UL;
unknown_flag = true;
break;
}
v |= vv << i;
if (base >= 4)
base += 1;
}
thr->words[index].w_int = v;
/* Set bit 4 as a flag if the input is unknown. */
thr_put_bit(thr, 4, unknown_flag? 1 : 0);
return true;
}
2001-04-13 05:55:18 +02:00
/*
* The various JMP instruction work simply by pulling the new program
* counter from the instruction and resuming. If the jump is
* conditional, then test the bit for the expected value first.
*/
2001-03-20 07:16:23 +01:00
bool of_JMP(vthread_t thr, vvp_code_t cp)
{
thr->pc = cp->cptr;
/* Normally, this returns true so that the processor just
keeps going to the next instruction. However, if there was
a $stop or vpiStop, returning false here can break the
simulation out of a hung loop. */
if (schedule_stopped()) {
schedule_vthread(thr, 0, false);
return false;
}
return true;
2001-03-20 07:16:23 +01:00
}
bool of_JMP0(vthread_t thr, vvp_code_t cp)
{
if (thr_get_bit(thr, cp->bit_idx[0]) == 0)
thr->pc = cp->cptr;
/* Normally, this returns true so that the processor just
keeps going to the next instruction. However, if there was
a $stop or vpiStop, returning false here can break the
simulation out of a hung loop. */
if (schedule_stopped()) {
schedule_vthread(thr, 0, false);
return false;
}
return true;
}
bool of_JMP0XZ(vthread_t thr, vvp_code_t cp)
{
if (thr_get_bit(thr, cp->bit_idx[0]) != 1)
thr->pc = cp->cptr;
/* Normally, this returns true so that the processor just
keeps going to the next instruction. However, if there was
a $stop or vpiStop, returning false here can break the
simulation out of a hung loop. */
if (schedule_stopped()) {
schedule_vthread(thr, 0, false);
return false;
}
return true;
}
2001-03-31 19:36:02 +02:00
bool of_JMP1(vthread_t thr, vvp_code_t cp)
{
if (thr_get_bit(thr, cp->bit_idx[0]) == 1)
2001-03-31 19:36:02 +02:00
thr->pc = cp->cptr;
/* Normally, this returns true so that the processor just
keeps going to the next instruction. However, if there was
a $stop or vpiStop, returning false here can break the
simulation out of a hung loop. */
if (schedule_stopped()) {
schedule_vthread(thr, 0, false);
return false;
}
return true;
2001-03-31 19:36:02 +02:00
}
2001-04-13 05:55:18 +02:00
/*
* The %join instruction causes the thread to wait for the one and
* only child to die. If it is already dead (and a zombie) then I
* reap it and go on. Otherwise, I tell the child that I am ready for
* it to die, and it will reschedule me when it does.
*/
2001-03-30 06:55:22 +02:00
bool of_JOIN(vthread_t thr, vvp_code_t cp)
{
assert(thr->child);
2001-04-13 05:55:18 +02:00
assert(thr->child->parent == thr);
2001-04-18 06:21:23 +02:00
assert(thr->fork_count > 0);
2001-04-18 06:21:23 +02:00
/* If the child has already ended, reap it now. */
2001-04-13 05:55:18 +02:00
if (thr->child->i_have_ended) {
thr->fork_count -= 1;
2001-03-30 06:55:22 +02:00
vthread_reap(thr->child);
return true;
}
2001-04-18 06:21:23 +02:00
/* Otherwise, I get to start waiting. */
2001-04-13 05:55:18 +02:00
thr->child->schedule_parent_on_end = 1;
2001-03-30 06:55:22 +02:00
return false;
}
bool of_LOAD_MEM(vthread_t thr, vvp_code_t cp)
{
#if 0
assert(cp->bit_idx[0] >= 4);
unsigned char val = memory_get(cp->mem, thr->words[3].w_int);
thr_put_bit(thr, cp->bit_idx[0], val);
#else
fprintf(stderr, "XXXX %%load/m is obsolete\n");
#endif
return true;
}
/*
* %load/mv <bit>, <mem-label>, <wid> ;
*
* <bit> is the thread bit address for the result
* <mem-label> is the memory device to access, and
* <wid> is the width of the word to read.
*
* The address of the word in the memory is in index register 3.
*/
bool of_LOAD_MV(vthread_t thr, vvp_code_t cp)
{
unsigned bit = cp->bit_idx[0];
unsigned wid = cp->bit_idx[1];
unsigned adr = thr->words[3].w_int;
vvp_vector4_t word = memory_get_word(cp->mem, adr);
if (word.size() != wid) {
fprintf(stderr, "internal error: mem width=%u, word.size()=%u, wid=%u\n",
memory_word_width(cp->mem), word.size(), wid);
}
assert(word.size() == wid);
for (unsigned idx = 0 ; idx < wid ; idx += 1, bit += 1) {
vvp_bit4_t val = word.value(idx);
thr_put_bit(thr, bit, val);
}
return true;
}
/*
* %load/nx <bit>, <vpi-label>, <idx> ; Load net/indexed.
*
* cp->bit_idx[0] contains the <bit> value, an index into the thread
* bit register.
*
* cp->bin_idx[1] is the <idx> value from the words array.
*
* cp->handle is the linked reference to the __vpiSignal that we are
* to read from.
*/
bool of_LOAD_NX(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
assert(cp->bit_idx[1] < 4);
assert(cp->handle->vpi_type->type_code == vpiNet);
struct __vpiSignal*sig =
reinterpret_cast<struct __vpiSignal*>(cp->handle);
unsigned idx = thr->words[cp->bit_idx[1]].w_int;
vvp_fun_signal*fun = dynamic_cast<vvp_fun_signal*>(sig->node->fun);
assert(sig != 0);
vvp_bit4_t val = fun->value(idx);
thr_put_bit(thr, cp->bit_idx[0], val);
return true;
}
/* %load/v <bit>, <label>, <wid>
*
* Implement the %load/v instruction. Load the vector value of the
* requested width from the <label> functor starting in the thread bit
* <bit>.
*
* The <bit> value is the destination in the thread vector store, and
* is in cp->bit_idx[0].
*
* The <wid> value is the expected with of the vector, and is in
* cp->bit_idx[1].
*
* The functor to read from is the vvp_net_t object pointed to by the
* cp->net pointer.
*/
2002-11-07 03:32:39 +01:00
bool of_LOAD_VEC(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
assert(cp->bit_idx[1] > 0);
unsigned bit = cp->bit_idx[0];
unsigned wid = cp->bit_idx[1];
vvp_net_t*net = cp->net;
/* For the %load to work, the functor must actually be a
signal functor. Only signals save their vector value. */
vvp_fun_signal*sig = dynamic_cast<vvp_fun_signal*> (net->fun);
assert(sig);
2002-11-07 03:32:39 +01:00
for (unsigned idx = 0; idx < wid; idx += 1, bit += 1) {
vvp_bit4_t val = sig->value(idx);
thr_put_bit(thr, bit, val);
2002-11-07 03:32:39 +01:00
}
return true;
}
bool of_LOAD_WR(vthread_t thr, vvp_code_t cp)
{
struct __vpiHandle*tmp = cp->handle;
t_vpi_value val;
val.format = vpiRealVal;
vpi_get_value(tmp, &val);
thr->words[cp->bit_idx[0]].w_real = val.value.real;
return true;
}
2005-01-22 01:58:22 +01:00
/*
* %load/x <bit>, <functor>, <index>
*
* <bit> is the destination thread bit and must be >= 4.
*/
bool of_LOAD_X(vthread_t thr, vvp_code_t cp)
{
2005-01-22 01:58:22 +01:00
// <bit> is the thread bit to load
assert(cp->bit_idx[0] >= 4);
2005-01-22 01:58:22 +01:00
unsigned bit = cp->bit_idx[0];
// <index> is the index register to use. The actual index into
// the vector is the value of the index register.
unsigned index_idx = cp->bit_idx[1];
unsigned index = thr->words[index_idx].w_int;
// <functor> is converted to a vvp_net_t pointer from which we
// read our value.
vvp_net_t*net = cp->net;
// For the %load to work, the functor must actually be a
// signal functor. Only signals save their vector value.
vvp_fun_signal*sig = dynamic_cast<vvp_fun_signal*> (net->fun);
assert(sig);
vvp_bit4_t val = index >= sig->size()? BIT4_X : sig->value(index);
thr_put_bit(thr, bit, val);
return true;
}
bool of_LOADI_WR(vthread_t thr, vvp_code_t cp)
{
unsigned idx = cp->bit_idx[0];
double mant = cp->number;
int exp = cp->bit_idx[1];
double sign = (exp & 0x4000)? -1.0 : 1.0;
exp &= 0x1fff;
mant = sign * ldexp(mant, exp - 0x1000);
thr->words[idx].w_real = mant;
return true;
}
2004-06-19 17:52:53 +02:00
static void do_verylong_mod(vthread_t thr, vvp_code_t cp,
bool left_is_neg, bool right_is_neg)
2001-05-24 06:20:10 +02:00
{
2004-06-19 17:52:53 +02:00
bool out_is_neg = left_is_neg != right_is_neg;
int len=cp->number;
unsigned char *a, *z, *t;
a = new unsigned char[len+1];
z = new unsigned char[len+1];
t = new unsigned char[len+1];
unsigned char carry;
unsigned char temp;
int mxa = -1, mxz = -1;
int i;
int current, copylen;
2001-05-24 06:20:10 +02:00
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2001-05-24 06:20:10 +02:00
2004-06-19 17:52:53 +02:00
unsigned lb_carry = left_is_neg? 1 : 0;
unsigned rb_carry = right_is_neg? 1 : 0;
2001-05-24 06:20:10 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
2004-06-19 17:52:53 +02:00
if ((lb | rb) & 2) {
delete []t;
delete []z;
delete []a;
2001-05-24 06:20:10 +02:00
goto x_out;
2004-06-19 17:52:53 +02:00
}
2001-05-24 06:20:10 +02:00
2004-06-19 17:52:53 +02:00
if (left_is_neg) {
lb = (1-lb) + lb_carry;
lb_carry = (lb & ~1)? 1 : 0;
lb &= 1;
}
if (right_is_neg) {
rb = (1-rb) + rb_carry;
rb_carry = (rb & ~1)? 1 : 0;
rb &= 1;
}
z[idx]=lb;
a[idx]=1-rb; // for 2s complement add..
2001-05-24 06:20:10 +02:00
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
2004-06-19 17:52:53 +02:00
z[len]=0;
a[len]=1;
2001-10-21 01:20:32 +02:00
2004-06-19 17:52:53 +02:00
for(i=len-1;i>=0;i--) {
if(!a[i]) {
mxa=i;
break;
}
}
2001-05-24 06:20:10 +02:00
2004-06-19 17:52:53 +02:00
for(i=len-1;i>=0;i--) {
if(z[i]) {
mxz=i;
break;
}
2001-05-24 06:20:10 +02:00
}
2004-06-19 17:52:53 +02:00
if((mxa>mxz)||(mxa==-1)) {
if(mxa==-1) {
delete []t;
delete []z;
delete []a;
goto x_out;
}
2001-05-24 06:20:10 +02:00
2004-06-19 17:52:53 +02:00
goto tally;
}
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
copylen = mxa + 2;
current = mxz - mxa;
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
while(current > -1) {
carry = 1;
for(i=0;i<copylen;i++) {
temp = z[i+current] + a[i] + carry;
t[i] = (temp&1);
carry = (temp>>1);
}
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
if(carry) {
for(i=0;i<copylen;i++) {
z[i+current] = t[i];
}
}
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
current--;
}
tally:
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
carry = out_is_neg? 1 : 0;
2001-10-16 03:26:54 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
2004-06-19 17:52:53 +02:00
unsigned ob = z[idx];
if (out_is_neg) {
ob = (1-ob) + carry;
carry = (ob & ~1)? 1 : 0;
ob = ob & 1;
}
thr_put_bit(thr, cp->bit_idx[0]+idx, ob);
}
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
delete []t;
delete []z;
delete []a;
return;
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
x_out:
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
return;
}
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
bool of_MOD(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
if(cp->number <= 8*sizeof(unsigned long long)) {
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
unsigned long long lv = 0, rv = 0;
2001-10-16 03:26:54 +02:00
2004-06-19 17:52:53 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned long long lb = thr_get_bit(thr, idx1);
unsigned long long rb = thr_get_bit(thr, idx2);
if ((lb | rb) & 2)
goto x_out;
lv |= lb << idx;
rv |= rb << idx;
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
if (rv == 0)
goto x_out;
lv %= rv;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, (lv&1) ? 1 : 0);
lv >>= 1;
}
return true;
} else {
do_verylong_mod(thr, cp, false, false);
return true;
2001-10-16 03:26:54 +02:00
}
2004-06-19 17:52:53 +02:00
x_out:
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
2001-10-16 03:26:54 +02:00
return true;
}
2004-06-19 17:52:53 +02:00
bool of_MOD_S(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
/* Handle the case that we can fit the bits into a long-long
variable. We cause use native % to do the work. */
if(cp->number <= 8*sizeof(long long)) {
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
long long lv = 0, rv = 0;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
long long lb = thr_get_bit(thr, idx1);
long long rb = thr_get_bit(thr, idx2);
if ((lb | rb) & 2)
goto x_out;
lv |= lb << idx;
rv |= rb << idx;
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
if (rv == 0)
goto x_out;
/* Sign extend the signed operands. */
if (lv & (1LL << (cp->number-1)))
2004-06-19 17:52:53 +02:00
lv |= -1LL << cp->number;
if (rv & (1LL << (cp->number-1)))
2004-06-19 17:52:53 +02:00
rv |= -1LL << cp->number;
lv %= rv;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, (lv&1) ? 1 : 0);
lv >>= 1;
}
return true;
} else {
bool left_is_neg
= thr_get_bit(thr,cp->bit_idx[0]+cp->number-1) == 1;
bool right_is_neg
= thr_get_bit(thr,cp->bit_idx[1]+cp->number-1) == 1;
do_verylong_mod(thr, cp, left_is_neg, right_is_neg);
return true;
}
2001-05-24 06:20:10 +02:00
x_out:
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
2001-05-24 06:20:10 +02:00
return true;
}
/*
* %mov <dest>, <src>, <wid>
* This instruction is implemented by the of_MOV function
2003-02-10 00:33:26 +01:00
* below. However, during runtime vvp might notice that the
* parameters have certain properties that make it possible to
* replace the of_MOV opcode with a more specific instruction that
* more directly does the job. All the of_MOV*_ functions are
* functions that of_MOV might use to replace itself.
*/
static bool of_MOV0_a_(vthread_t thr, vvp_code_t cp)
2002-05-31 02:05:49 +02:00
{
if ((cp->bit_idx[0]+cp->number) > thr->nbits)
thr_check_addr(thr, cp->bit_idx[0]+cp->number-1);
2002-05-31 02:05:49 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_clr_bit_(thr, cp->bit_idx[0]+idx);
return true;
}
static bool of_MOV0_b_(vthread_t thr, vvp_code_t cp)
{
if (cp->bit_idx[1] >= thr->nbits)
thr_check_addr(thr, cp->bit_idx[1]);
thr->bits[cp->bit_idx[0]] &= cp->number;
return true;
}
static bool of_MOV1XZ_(vthread_t thr, vvp_code_t cp)
{
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, cp->bit_idx[1]);
return true;
}
static bool of_MOV_(vthread_t thr, vvp_code_t cp)
{
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx,
thr_get_bit(thr, cp->bit_idx[1]+idx));
return true;
}
bool of_MOV(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
if (cp->bit_idx[1] >= 4) {
cp->opcode = &of_MOV_;
return cp->opcode(thr, cp);
2002-05-31 02:05:49 +02:00
} else if (cp->bit_idx[1] == 0) {
/* Detect the special case where this is really just a
large clear. Rewrite the instruction to skip this
test next time around, and use a precoded opcode. */
unsigned test_addr = cp->bit_idx[0] + cp->number - 1;
unsigned addr1 = cp->bit_idx[0] / (CPU_WORD_BITS/2);
unsigned addr2 = (test_addr) / (CPU_WORD_BITS/2);
if (addr1 == addr2) {
unsigned sh1 = cp->bit_idx[0] % (CPU_WORD_BITS/2);
unsigned sh2 = (test_addr % (CPU_WORD_BITS/2)) + 1;
unsigned long mask;
if ( (sh2-sh1) == CPU_WORD_BITS/2)
mask = 0UL;
else
mask = ULONG_MAX << ((sh2 - sh1) * 2UL);
mask = (~mask) << sh1*2UL;
cp->number = ~mask;
cp->bit_idx[0] = addr1;
cp->bit_idx[1] = test_addr;
cp->opcode = &of_MOV0_b_;
return cp->opcode(thr, cp);
} else {
cp->opcode = &of_MOV0_a_;
return cp->opcode(thr, cp);
}
2002-05-31 02:05:49 +02:00
} else {
cp->opcode = &of_MOV1XZ_;
return cp->opcode(thr, cp);
}
return true;
}
bool of_MUL(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
if(cp->number <= 8*sizeof(unsigned long)) {
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
unsigned long lv = 0, rv = 0;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned long lb = thr_get_bit(thr, idx1);
unsigned long rb = thr_get_bit(thr, idx2);
if ((lb | rb) & 2)
goto x_out;
lv |= lb << idx;
rv |= rb << idx;
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
lv *= rv;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, (lv&1) ? 1 : 0);
lv >>= 1;
}
return true;
} else {
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
unsigned char *a, *b, *sum;
a = new unsigned char[cp->number];
b = new unsigned char[cp->number];
sum = new unsigned char[cp->number];
int mxa = -1;
int mxb = -1;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if ((lb | rb) & 2)
{
delete[]sum;
delete[]b;
delete[]a;
goto x_out;
}
2001-10-14 19:36:18 +02:00
if((a[idx] = lb)) mxa=idx+1;
if((b[idx] = rb)) mxb=idx;
sum[idx]=0;
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
// do "unsigned ZZ sum = a * b" the hard way..
for(int i=0;i<=mxb;i++)
{
if(b[i])
{
unsigned char carry=0;
unsigned char temp;
for(int j=0;j<=mxa;j++)
{
if(i+j>=(int)cp->number) break;
temp=sum[i+j]+a[j]+carry;
sum[i+j]=(temp&1);
carry=(temp>>1);
}
}
}
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, sum[idx]);
}
delete[]sum;
delete[]b;
delete[]a;
return true;
}
x_out:
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
return true;
}
bool of_MUL_WR(vthread_t thr, vvp_code_t cp)
{
double l = thr->words[cp->bit_idx[0]].w_real;
double r = thr->words[cp->bit_idx[1]].w_real;
thr->words[cp->bit_idx[0]].w_real = l * r;
return true;
}
2002-05-31 22:04:22 +02:00
bool of_MULI(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
/* If the value fits into a native unsigned long, then make an
unsigned long variable with the numbers, to a native
multiply, and work with that. */
if(cp->number <= 8*sizeof(unsigned long)) {
unsigned idx1 = cp->bit_idx[0];
unsigned long lv = 0, rv = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
if (lb & 2)
goto x_out;
lv |= lb << idx;
idx1 += 1;
}
lv *= rv;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, (lv&1) ? 1 : 0);
lv >>= 1;
}
return true;
}
/* number is too large for local long, so do bitwise
multiply. */
unsigned idx1; idx1 = cp->bit_idx[0];
unsigned imm; imm = cp->bit_idx[1];
unsigned char *a, *b, *sum;
a = new unsigned char[cp->number];
b = new unsigned char[cp->number];
sum = new unsigned char[cp->number];
int mxa; mxa = -1;
int mxb; mxb = -1;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = imm & 1;
imm >>= 1;
if (lb & 2) {
delete[]sum;
delete[]b;
delete[]a;
goto x_out;
}
if((a[idx] = lb)) mxa=idx+1;
if((b[idx] = rb)) mxb=idx;
sum[idx]=0;
idx1 += 1;
}
// do "unsigned ZZ sum = a * b" the hard way..
2002-05-31 22:04:22 +02:00
for(int i=0;i<=mxb;i++) {
if(b[i]) {
unsigned char carry=0;
unsigned char temp;
for(int j=0;j<=mxa;j++) {
if(i+j>=(int)cp->number) break;
temp=sum[i+j]+a[j]+carry;
sum[i+j]=(temp&1);
carry=(temp>>1);
}
}
}
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
thr_put_bit(thr, cp->bit_idx[0]+idx, sum[idx]);
}
delete[]sum;
delete[]b;
delete[]a;
return true;
x_out:
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
return true;
}
2002-09-12 17:49:43 +02:00
bool of_NAND(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if ((lb == 0) || (rb == 0)) {
thr_put_bit(thr, idx1, 1);
} else if ((lb == 1) && (rb == 1)) {
thr_put_bit(thr, idx1, 0);
} else {
thr_put_bit(thr, idx1, 2);
}
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
return true;
}
2001-03-11 01:29:38 +01:00
bool of_NOOP(vthread_t thr, vvp_code_t cp)
{
return true;
}
2001-04-02 00:25:33 +02:00
bool of_NORR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-04-02 00:25:33 +02:00
unsigned lb = 1;
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned rb = thr_get_bit(thr, idx2+idx);
if (rb == 1) {
lb = 0;
break;
}
if (rb != 0)
lb = 2;
}
thr_put_bit(thr, cp->bit_idx[0], lb);
return true;
}
bool of_ANDR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned lb = 1;
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned rb = thr_get_bit(thr, idx2+idx);
if (rb == 0) {
lb = 0;
break;
}
if (rb != 1)
lb = 2;
}
thr_put_bit(thr, cp->bit_idx[0], lb);
return true;
}
bool of_NANDR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-04-02 00:25:33 +02:00
unsigned lb = 0;
unsigned idx2 = cp->bit_idx[1];
2001-04-02 00:25:33 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned rb = thr_get_bit(thr, idx2+idx);
if (rb == 0) {
lb = 1;
break;
}
if (rb != 1)
lb = 2;
}
thr_put_bit(thr, cp->bit_idx[0], lb);
return true;
}
bool of_ORR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned lb = 0;
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned rb = thr_get_bit(thr, idx2+idx);
2001-04-02 00:25:33 +02:00
if (rb == 1) {
lb = 1;
break;
}
if (rb != 0)
lb = 2;
}
thr_put_bit(thr, cp->bit_idx[0], lb);
2001-04-02 00:25:33 +02:00
return true;
}
bool of_XORR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned lb = 0;
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned rb = thr_get_bit(thr, idx2+idx);
if (rb == 1)
lb ^= 1;
else if (rb != 0) {
lb = 2;
break;
}
}
thr_put_bit(thr, cp->bit_idx[0], lb);
return true;
}
bool of_XNORR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned lb = 1;
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned rb = thr_get_bit(thr, idx2+idx);
if (rb == 1)
lb ^= 1;
else if (rb != 0) {
lb = 2;
break;
}
}
thr_put_bit(thr, cp->bit_idx[0], lb);
return true;
}
bool of_OR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if ((lb == 1) || (rb == 1)) {
thr_put_bit(thr, idx1, 1);
} else if ((lb == 0) && (rb == 0)) {
thr_put_bit(thr, idx1, 0);
} else {
thr_put_bit(thr, idx1, 2);
}
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
return true;
}
2002-09-18 06:29:55 +02:00
bool of_NOR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if ((lb == 1) || (rb == 1)) {
thr_put_bit(thr, idx1, 0);
} else if ((lb == 0) && (rb == 0)) {
thr_put_bit(thr, idx1, 1);
} else {
thr_put_bit(thr, idx1, 2);
}
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
return true;
}
/*
* These implement the %release/net and %release/reg instructions. The
* %release/net instruction applies to a net kind of functor by
* sending the release/net command to the command port. (See vvp_net.h
* for details.) The %release/reg instruction is the same, but sends
* the release/reg command instead. These are very similar to the
* %deassign instruction.
*/
bool of_RELEASE_NET(vthread_t thr, vvp_code_t cp)
{
vvp_net_t*net = cp->net;
vvp_net_ptr_t ptr (net, 3);
vvp_send_long(ptr, 2);
return true;
}
bool of_RELEASE_REG(vthread_t thr, vvp_code_t cp)
{
vvp_net_t*net = cp->net;
vvp_net_ptr_t ptr (net, 3);
vvp_send_long(ptr, 3);
return true;
}
static const unsigned char strong_values[4] = {St0, St1, StX, HiZ};
/*
* This implements the "%set/mv <label>, <bit>, <wid>" instruction. In
* this case, the <label> is a memory label, and the <bit> and <wid>
* are the thread vector of a value to be written in.
*/
bool of_SET_MV(vthread_t thr, vvp_code_t cp)
{
unsigned bit = cp->bit_idx[0];
unsigned wid = cp->bit_idx[1];
unsigned adr = thr->words[3].w_int;
/* Make a vector of the desired width. */
vvp_vector4_t value = vthread_bits_to_vector(thr, bit, wid);
memory_set_word(cp->mem, adr, value);
return true;
}
/*
* This implements the "%set/v <label>, <bit>, <wid>" instruction.
*
* The <label> is a reference to a vvp_net_t object, and it is in
* cp->net.
*
* The <bit> is the thread bit address, and is in cp->bin_idx[0].
*
* The <wid> is the width of the vector I'm to make, and is in
* cp->bin_idx[1].
*/
2002-11-07 03:32:39 +01:00
bool of_SET_VEC(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[1] > 0);
unsigned bit = cp->bit_idx[0];
unsigned wid = cp->bit_idx[1];
2002-11-07 03:32:39 +01:00
/* Make a vector of the desired width. */
vvp_vector4_t value = vthread_bits_to_vector(thr, bit, wid);
/* set the value into port 0 of the destination. */
vvp_net_ptr_t ptr (cp->net, 0);
vvp_send_vec4(ptr, value);
2002-11-07 03:32:39 +01:00
return true;
}
bool of_SET_WORDR(vthread_t thr, vvp_code_t cp)
{
struct __vpiHandle*tmp = cp->handle;
t_vpi_value val;
val.format = vpiRealVal;
val.value.real = thr->words[cp->bit_idx[0]].w_real;
vpi_put_value(tmp, &val, 0, vpiNoDelay);
return true;
}
2002-01-26 03:08:07 +01:00
/*
* Implement the %set/x instruction:
*
* %set/x <functor>, <bit>
2002-01-26 03:08:07 +01:00
*
* The single bit goes into the indexed functor. Abort the instruction
* if the index is outside the target vector dimensions. Get the
* target vector dimensions from the vvp_fun_signal addressed by the
* vvp_net pointer.
2002-01-26 03:08:07 +01:00
*/
bool of_SET_X0(vthread_t thr, vvp_code_t cp)
2001-08-27 00:59:32 +02:00
{
vvp_net_t*net = cp->net;
vvp_bit4_t bit_val = thr_get_bit(thr, cp->bit_idx[0]);
2001-08-27 00:59:32 +02:00
// Implicitly, we get the base into the target vector from the
// X0 register.
2003-05-26 06:44:54 +02:00
long idx = thr->words[0].w_int;
vvp_fun_signal*sig = dynamic_cast<vvp_fun_signal*> (net->fun);
2003-05-26 06:44:54 +02:00
/* If idx < 0, then the index value is probably generated from
an undefined value. At any rate, this is defined to have no
effect so quit now. */
if (idx < 0)
return true;
if ((unsigned)idx >= sig->size())
2003-05-26 06:44:54 +02:00
return true;
// Make a 1-bit vector that will go to the target
vvp_vector4_t bit (1);
bit.set_bit(0, bit_val);
2003-05-26 06:44:54 +02:00
vvp_net_ptr_t ptr (net, 0);
vvp_send_vec4_pv(ptr, bit, idx, 1, sig->size());
2003-05-26 06:44:54 +02:00
return true;
}
2001-06-23 20:26:26 +02:00
bool of_SHIFTL_I0(vthread_t thr, vvp_code_t cp)
{
unsigned base = cp->bit_idx[0];
2001-06-23 20:26:26 +02:00
unsigned wid = cp->number;
unsigned long shift = thr->words[0].w_int;
2001-06-23 20:26:26 +02:00
assert(base >= 4);
2001-06-23 20:26:26 +02:00
if (shift >= wid) {
for (unsigned idx = 0 ; idx < wid ; idx += 1)
thr_put_bit(thr, base+idx, 0);
} else if (shift > 0) {
for (unsigned idx = wid ; idx > shift ; idx -= 1) {
unsigned src = base+idx-shift-1;
unsigned dst = base + idx - 1;
thr_put_bit(thr, dst, thr_get_bit(thr, src));
}
for (unsigned idx = 0 ; idx < shift ; idx += 1)
thr_put_bit(thr, base+idx, 0);
}
return true;
}
/*
* This is an unsigned right shift:
*
* %shiftr/i0 <bit>, <wid>
*
* The vector at address <bit> with width <wid> is shifted right a
* number of bits stored in index/word register 0.
*/
bool of_SHIFTR_I0(vthread_t thr, vvp_code_t cp)
{
unsigned base = cp->bit_idx[0];
unsigned wid = cp->number;
unsigned long shift = thr->words[0].w_int;
if (shift >= wid) {
for (unsigned idx = 0 ; idx < wid ; idx += 1)
thr_put_bit(thr, base+idx, 0);
} else if (shift > 0) {
for (unsigned idx = 0 ; idx < (wid-shift) ; idx += 1) {
unsigned src = base + idx + shift;
unsigned dst = base + idx;
thr_put_bit(thr, dst, thr_get_bit(thr, src));
}
for (unsigned idx = (wid-shift) ; idx < wid ; idx += 1)
thr_put_bit(thr, base+idx, 0);
}
return true;
}
2003-06-18 05:55:18 +02:00
bool of_SHIFTR_S_I0(vthread_t thr, vvp_code_t cp)
{
unsigned base = cp->bit_idx[0];
unsigned wid = cp->number;
unsigned long shift = thr->words[0].w_int;
unsigned sign = thr_get_bit(thr, base+wid-1);
if (shift >= wid) {
for (unsigned idx = 0 ; idx < wid ; idx += 1)
thr_put_bit(thr, base+idx, sign);
} else if (shift > 0) {
for (unsigned idx = 0 ; idx < (wid-shift) ; idx += 1) {
unsigned src = base + idx + shift;
unsigned dst = base + idx;
thr_put_bit(thr, dst, thr_get_bit(thr, src));
}
for (unsigned idx = (wid-shift) ; idx < wid ; idx += 1)
thr_put_bit(thr, base+idx, sign);
}
return true;
}
2001-05-02 03:57:25 +02:00
bool of_SUB(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-05-02 03:57:25 +02:00
unsigned long*lva = vector_to_array(thr, cp->bit_idx[0], cp->number);
unsigned long*lvb = vector_to_array(thr, cp->bit_idx[1], cp->number);
2001-07-04 06:57:10 +02:00
if (lva == 0 || lvb == 0)
goto x_out;
2001-05-02 03:57:25 +02:00
unsigned carry;
2001-07-04 06:57:10 +02:00
carry = 1;
2001-05-02 03:57:25 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned long tmp;
unsigned sum = carry;
2002-05-31 02:05:49 +02:00
tmp = lva[idx/CPU_WORD_BITS];
sum += 1 & (tmp >> (idx%CPU_WORD_BITS));
2002-05-31 02:05:49 +02:00
tmp = lvb[idx/CPU_WORD_BITS];
sum += 1 & ~(tmp >> (idx%CPU_WORD_BITS));
carry = sum / 2;
thr_put_bit(thr, cp->bit_idx[0]+idx, (sum&1) ? 1 : 0);
2001-05-02 03:57:25 +02:00
}
2001-07-04 06:57:10 +02:00
delete[]lva;
delete[]lvb;
2001-05-02 03:57:25 +02:00
return true;
x_out:
2001-07-04 06:57:10 +02:00
delete[]lva;
delete[]lvb;
2001-05-02 03:57:25 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
2001-05-02 03:57:25 +02:00
return true;
}
2003-02-06 18:41:47 +01:00
bool of_SUB_WR(vthread_t thr, vvp_code_t cp)
{
double l = thr->words[cp->bit_idx[0]].w_real;
double r = thr->words[cp->bit_idx[1]].w_real;
thr->words[cp->bit_idx[0]].w_real = l - r;
return true;
}
bool of_SUBI(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
unsigned word_count = (cp->number+CPU_WORD_BITS-1)/CPU_WORD_BITS;
unsigned long*lva = vector_to_array(thr, cp->bit_idx[0], cp->number);
unsigned long*lvb;
if (lva == 0)
goto x_out;
lvb = new unsigned long[word_count];
2003-09-01 06:03:38 +02:00
lvb[0] = cp->bit_idx[1];
lvb[0] = ~lvb[0];
for (unsigned idx = 1 ; idx < word_count ; idx += 1)
2003-09-01 06:03:38 +02:00
lvb[idx] = ~0UL;
unsigned long carry;
carry = 1;
for (unsigned idx = 0 ; (idx*CPU_WORD_BITS) < cp->number ; idx += 1) {
unsigned long tmp = lvb[idx] + carry;
unsigned long sum = lva[idx] + tmp;
2003-09-01 06:03:38 +02:00
carry = 0UL;
if (tmp < lvb[idx])
carry = 1;
if (sum < tmp)
carry = 1;
if (sum < lva[idx])
carry = 1;
lva[idx] = sum;
}
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned bit = lva[idx/CPU_WORD_BITS] >> (idx % CPU_WORD_BITS);
thr_put_bit(thr, cp->bit_idx[0]+idx, (bit&1) ? 1 : 0);
}
delete[]lva;
delete[]lvb;
return true;
x_out:
delete[]lva;
for (unsigned idx = 0 ; idx < cp->number ; idx += 1)
thr_put_bit(thr, cp->bit_idx[0]+idx, 2);
return true;
}
bool of_VPI_CALL(vthread_t thr, vvp_code_t cp)
{
// printf("thread %p: %%vpi_call\n", thr);
vpip_execute_vpi_call(thr, cp->handle);
if (schedule_stopped()) {
if (! schedule_finished())
schedule_vthread(thr, 0, false);
return false;
}
return schedule_finished()? false : true;
}
/* %wait <label>;
* Implement the wait by locating the vvp_net_T for the event, and
* adding this thread to the threads list for the event. The some
* argument is the reference to the functor to wait for. This must be
* an event object of some sort.
*/
bool of_WAIT(vthread_t thr, vvp_code_t cp)
{
2001-04-13 05:55:18 +02:00
assert(! thr->waiting_for_event);
thr->waiting_for_event = 1;
vvp_net_t*net = cp->net;
/* Get the functor as a waitable_hooks_s object. */
waitable_hooks_s*ep = dynamic_cast<waitable_hooks_s*> (net->fun);
assert(ep);
/* Add this thread to the list in the event. */
2001-04-18 06:21:23 +02:00
thr->wait_next = ep->threads;
ep->threads = thr;
/* Return false to suspend this thread. */
return false;
}
2001-04-13 05:55:18 +02:00
2001-04-15 06:07:56 +02:00
bool of_XNOR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-04-15 06:07:56 +02:00
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2001-04-15 06:07:56 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if ((lb == 1) && (rb == 1)) {
thr_put_bit(thr, idx1, 1);
} else if ((lb == 0) && (rb == 0)) {
thr_put_bit(thr, idx1, 1);
} else if ((lb == 1) && (rb == 0)) {
thr_put_bit(thr, idx1, 0);
} else if ((lb == 0) && (rb == 1)) {
thr_put_bit(thr, idx1, 0);
} else {
thr_put_bit(thr, idx1, 2);
}
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
return true;
}
2001-04-15 18:37:48 +02:00
bool of_XOR(vthread_t thr, vvp_code_t cp)
{
assert(cp->bit_idx[0] >= 4);
2001-04-15 18:37:48 +02:00
unsigned idx1 = cp->bit_idx[0];
unsigned idx2 = cp->bit_idx[1];
2001-04-15 18:37:48 +02:00
for (unsigned idx = 0 ; idx < cp->number ; idx += 1) {
unsigned lb = thr_get_bit(thr, idx1);
unsigned rb = thr_get_bit(thr, idx2);
if ((lb == 1) && (rb == 1)) {
thr_put_bit(thr, idx1, 0);
} else if ((lb == 0) && (rb == 0)) {
thr_put_bit(thr, idx1, 0);
} else if ((lb == 1) && (rb == 0)) {
thr_put_bit(thr, idx1, 1);
} else if ((lb == 0) && (rb == 1)) {
thr_put_bit(thr, idx1, 1);
} else {
thr_put_bit(thr, idx1, 2);
}
idx1 += 1;
if (idx2 >= 4)
idx2 += 1;
}
return true;
}
2001-04-18 06:21:23 +02:00
bool of_ZOMBIE(vthread_t thr, vvp_code_t)
2001-04-13 05:55:18 +02:00
{
thr->pc = codespace_null();
2001-04-18 06:21:23 +02:00
if ((thr->parent == 0) && (thr->child == 0))
delete thr;
2001-04-13 05:55:18 +02:00
return false;
}
2002-03-18 01:19:34 +01:00
/*
* These are phantom opcode used to call user defined functions.
* They are used in code generated by the .ufunc statement. They
* contain a pointer to executable code of the function, and to a
2002-03-18 01:19:34 +01:00
* ufunc_core object that has all the port information about the
* function.
*/
bool of_FORK_UFUNC(vthread_t thr, vvp_code_t cp)
2002-03-18 01:19:34 +01:00
{
/* Copy all the inputs to the ufunc object to the port
variables of the function. This copies all the values
atomically. */
cp->ufunc_core_ptr->assign_bits_to_ports();
assert(thr->child == 0);
assert(thr->fork_count == 0);
/* Create a temporary thread, and push its execution. This is
done so that the assign_bits_to_ports above is atomic with
this startup. */
2002-03-18 01:19:34 +01:00
vthread_t child = vthread_new(cp->cptr, cp->ufunc_core_ptr->scope());
child->child = 0;
child->parent = thr;
thr->child = child;
thr->fork_count += 1;
schedule_vthread(child, 0, true);
/* After this function, the .ufunc code has placed an of_JOIN
to pause this thread. Since the child was pushed by the
flag to schecule_vthread, the called function starts up
immediately. */
return true;
}
bool of_JOIN_UFUNC(vthread_t thr, vvp_code_t cp)
{
2002-03-18 01:19:34 +01:00
/* Now copy the output from the result variable to the output
ports of the .ufunc device. */
cp->ufunc_core_ptr->finish_thread(thr);
return true;
}
2001-03-11 01:29:38 +01:00
/*
* $Log: vthread.cc,v $
2005-03-06 18:07:48 +01:00
* Revision 1.132 2005/03/06 17:07:48 steve
* Non blocking assign to memory words.
*
* Revision 1.131 2005/03/05 05:45:18 steve
* Check that lead.mv vector width matches word.
*
* Revision 1.130 2005/03/03 04:33:10 steve
* Rearrange how memories are supported as vvp_vector4 arrays.
*
* Revision 1.129 2005/02/14 01:50:23 steve
* Signals may receive part vectors from %set/x0
* instructions. Re-implement the %set/x0 to do
* just that. Remove the useless %set/x0/x instruction.
*
* Revision 1.128 2005/02/12 06:13:22 steve
* Add debug dumps for vectors, and fix vvp_scaler_t make from BIT4_X values.
*
* Revision 1.127 2005/01/28 05:34:25 steve
* Add vector4 implementation of .arith/mult.
*
2005-01-22 01:58:22 +01:00
* Revision 1.126 2005/01/22 00:58:22 steve
* Implement the %load/x instruction.
*
* Revision 1.125 2004/12/17 04:47:47 steve
* Replace single release with release/net and release/reg.
*
2004-12-15 18:17:42 +01:00
* Revision 1.124 2004/12/15 17:17:42 steve
* Add the force/v instruction.
*
* Revision 1.123 2004/12/11 02:31:30 steve
* Rework of internals to carry vectors through nexus instead
* of single bits. Make the ivl, tgt-vvp and vvp initial changes
* down this path.
*
* Revision 1.122 2004/10/04 01:11:00 steve
* Clean up spurious trailing white space.
*
* Revision 1.121 2004/06/19 16:17:02 steve
* Watch type of mak bit matches masked value.
*
2004-06-19 17:52:53 +02:00
* Revision 1.120 2004/06/19 15:52:53 steve
* Add signed modulus operator.
*
* Revision 1.119 2004/06/04 23:26:34 steve
* Pick sign bit from the right place in the exponent number.
*
* Revision 1.118 2004/05/19 03:26:25 steve
* Support delayed/non-blocking assignment to reals and others.
*
2003-11-10 21:19:32 +01:00
* Revision 1.117 2003/11/10 20:19:32 steve
* Include config.h
*
* Revision 1.116 2003/09/26 02:15:15 steve
* Slight performance tweaks of scheduler.
*
2003-09-01 06:03:38 +02:00
* Revision 1.115 2003/09/01 04:03:38 steve
* 32bit vs 64bit handling in SUBI.
*
2003-08-01 02:58:03 +02:00
* Revision 1.114 2003/08/01 00:58:03 steve
* Initialize allocated memory.
*
* Revision 1.113 2003/07/21 02:39:15 steve
* Overflow of unsigned when calculating unsigned long value.
*
* Revision 1.112 2003/07/03 20:03:36 steve
* Remove the vvp_cpoint_t indirect code pointer.
*
2003-06-18 05:55:18 +02:00
* Revision 1.111 2003/06/18 03:55:19 steve
* Add arithmetic shift operators.
*
* Revision 1.110 2003/06/17 21:28:59 steve
* Remove short int restrictions from vvp opcodes. (part 2)
*
* Revision 1.109 2003/06/17 19:17:42 steve
* Remove short int restrictions from vvp opcodes.
*
2003-05-26 06:44:54 +02:00
* Revision 1.108 2003/05/26 04:44:54 steve
* Add the set/x0/x instruction.
*
* Revision 1.107 2003/05/07 03:39:12 steve
* ufunc calls to functions can have scheduling complexities.
*
* Revision 1.106 2003/03/28 02:33:57 steve
* Add support for division of real operands.
*
* Revision 1.105 2003/03/13 04:36:57 steve
* Remove the obsolete functor delete functions.
*
2003-02-27 21:36:29 +01:00
* Revision 1.104 2003/02/27 20:36:29 steve
* Add the cvt/vr instruction.
*
* Revision 1.103 2003/02/22 06:26:58 steve
* When checking for stop, remember to reschedule.
*
* Revision 1.102 2003/02/22 02:52:06 steve
* Check for stopped flag in certain strategic points.
*
2003-02-10 00:33:26 +01:00
* Revision 1.101 2003/02/09 23:33:26 steve
* Spelling fixes.
*
2003-02-06 18:41:47 +01:00
* Revision 1.100 2003/02/06 17:41:47 steve
* Add the %sub/wr instruction.
2001-03-11 01:29:38 +01:00
*/