OpenRAM/compiler/pinv.py

242 lines
11 KiB
Python
Raw Normal View History

2016-11-08 18:57:35 +01:00
import contact
import pgate
2016-11-08 18:57:35 +01:00
import debug
from tech import drc, parameter, spice, info
2016-11-08 18:57:35 +01:00
from ptx import ptx
from vector import vector
from math import ceil
from globals import OPTS
2017-11-30 21:15:20 +01:00
from utils import round_to_grid
2016-11-08 18:57:35 +01:00
class pinv(pgate.pgate):
2016-11-08 18:57:35 +01:00
"""
Pinv generates gds of a parametrically sized inverter. The
size is specified as the drive size (relative to minimum NMOS) and
a beta value for choosing the pmos size. The inverter's cell
height is usually the same as the 6t library cell and is measured
from center of rail to rail.. The route_output will route the
output to the right side of the cell for easier access.
2016-11-08 18:57:35 +01:00
"""
c = reload(__import__(OPTS.bitcell))
bitcell = getattr(c, OPTS.bitcell)
2016-11-08 18:57:35 +01:00
unique_id = 1
2017-12-01 17:31:16 +01:00
def __init__(self, size=1, beta=parameter["beta"], height=bitcell.height, route_output=True):
# We need to keep unique names because outputting to GDSII
# will use the last record with a given name. I.e., you will
# over-write a design in GDS if one has and the other doesn't
# have poly connected, for example.
name = "pinv_{}".format(pinv.unique_id)
pinv.unique_id += 1
pgate.pgate.__init__(self, name)
debug.info(2, "create pinv structure {0} with size of {1}".format(name, size))
2016-11-08 18:57:35 +01:00
self.nmos_size = size
self.pmos_size = beta*size
2016-11-08 18:57:35 +01:00
self.beta = beta
2017-11-30 22:42:55 +01:00
self.height = height # Maybe minimize height if not defined in future?
self.route_output = False
2016-11-08 18:57:35 +01:00
self.add_pins()
self.create_layout()
# for run-time, we won't check every transitor DRC/LVS independently
# but this may be uncommented for debug purposes
#self.DRC_LVS()
2016-11-08 18:57:35 +01:00
def add_pins(self):
2017-12-01 17:31:16 +01:00
""" Adds pins for spice netlist """
2016-11-08 18:57:35 +01:00
self.add_pin_list(["A", "Z", "vdd", "gnd"])
def create_layout(self):
2017-12-01 17:31:16 +01:00
""" Calls all functions related to the generation of the layout """
2016-11-08 18:57:35 +01:00
self.determine_tx_mults()
self.create_ptx()
self.setup_layout_constants()
self.add_supply_rails()
2016-11-08 18:57:35 +01:00
self.add_ptx()
self.extend_wells(self.well_pos)
2016-11-08 18:57:35 +01:00
self.add_well_contacts()
self.connect_rails()
self.route_input_gate(self.pmos_inst, self.nmos_inst, self.output_pos.y, "A", rotate=0)
self.route_outputs()
2016-11-08 18:57:35 +01:00
def determine_tx_mults(self):
"""
Determines the number of fingers needed to achieve the size within
the height constraint. This may fail if the user has a tight height.
"""
# Do a quick sanity check and bail if unlikely feasible height
# Sanity check. can we make an inverter in the height with minimum tx sizes?
# Assume we need 3 metal 1 pitches (2 power rails, one between the tx for the drain)
# plus the tx height
nmos = ptx(tx_type="nmos")
2017-12-01 00:58:16 +01:00
pmos = ptx(width=drc["minwidth_tx"], tx_type="pmos")
tx_height = nmos.poly_height + pmos.poly_height
2017-11-30 22:42:55 +01:00
# rotated m1 pitch or poly to active spacing
min_channel = max(contact.poly.width + self.m1_space,
contact.poly.width + 2*drc["poly_to_active"])
# This is the extra space needed to ensure DRC rules to the active contacts
extra_contact_space = max(-nmos.get_pin("D").by(),0)
2017-12-01 00:58:16 +01:00
# This is a poly-to-poly of a flipped cell
self.top_bottom_space = max(0.5*self.m1_width + self.m1_space + extra_contact_space,
drc["poly_extend_active"], self.poly_space)
total_height = tx_height + min_channel + 2*self.top_bottom_space
2017-12-01 00:58:16 +01:00
debug.check(self.height> total_height,"Cell height {0} too small for simple min height {1}.".format(self.height,total_height))
# Determine the height left to the transistors to determine the number of fingers
tx_height_available = self.height - min_channel - 2*self.top_bottom_space
# Divide the height in half. Could divide proportional to beta, but this makes
# connecting wells of multiple cells easier.
2017-12-01 00:58:16 +01:00
# Subtract the poly space under the rail of the tx
nmos_height_available = 0.5 * tx_height_available - 0.5*drc["poly_to_poly"]
pmos_height_available = 0.5 * tx_height_available - 0.5*drc["poly_to_poly"]
debug.info(2,"Height avail {0} PMOS height {1} NMOS height {2}".format(tx_height_available, nmos_height_available, pmos_height_available))
# Determine the number of mults for each to fit width into available space
self.nmos_width = self.nmos_size*drc["minwidth_tx"]
self.pmos_width = self.pmos_size*drc["minwidth_tx"]
nmos_required_mults = max(int(ceil(self.nmos_width/nmos_height_available)),1)
pmos_required_mults = max(int(ceil(self.pmos_width/pmos_height_available)),1)
# The mults must be the same for easy connection of poly
self.tx_mults = max(nmos_required_mults, pmos_required_mults)
# Recompute each mult width and check it isn't too small
# This could happen if the height is narrow and the size is small
# User should pick a bigger size to fix it...
2017-11-30 21:15:20 +01:00
# We also need to round the width to the grid or we will end up with LVS property
# mismatch errors when fingers are not a grid length and get rounded in the offset geometry.
self.nmos_width = round_to_grid(self.nmos_width / self.tx_mults)
debug.check(self.nmos_width>=drc["minwidth_tx"],"Cannot finger NMOS transistors to fit cell height.")
2017-11-30 21:15:20 +01:00
self.pmos_width = round_to_grid(self.pmos_width / self.tx_mults)
debug.check(self.pmos_width>=drc["minwidth_tx"],"Cannot finger PMOS transistors to fit cell height.")
def setup_layout_constants(self):
"""
Pre-compute some handy layout parameters.
"""
# the well width is determined the multi-finger PMOS device width plus
# the well contact width and half well enclosure on both sides
self.well_width = self.pmos.active_width + self.pmos.active_contact.width \
+ drc["active_to_body_active"] + 2*drc["well_enclosure_active"]
self.width = self.well_width
2017-11-30 22:42:55 +01:00
# Height is an input parameter, so it is not recomputed.
# This will help with the wells
self.well_pos = vector(0,0.4*self.height)
2016-11-08 18:57:35 +01:00
def create_ptx(self):
""" Create the PMOS and NMOS transistors. """
self.nmos = ptx(width=self.nmos_width,
2016-11-08 18:57:35 +01:00
mults=self.tx_mults,
tx_type="nmos",
connect_poly=True,
connect_active=True)
2016-11-08 18:57:35 +01:00
self.add_mod(self.nmos)
2017-11-30 20:56:40 +01:00
self.pmos = ptx(width=self.pmos_width,
2016-11-08 18:57:35 +01:00
mults=self.tx_mults,
tx_type="pmos",
connect_poly=True,
connect_active=True)
2016-11-08 18:57:35 +01:00
self.add_mod(self.pmos)
def add_supply_rails(self):
""" Add vdd/gnd rails to the top and bottom. """
2017-11-30 20:56:40 +01:00
self.add_layout_pin_center_rect(text="gnd",
layer="metal1",
offset=vector(0.5*self.width,0),
width=self.width)
2017-11-30 20:56:40 +01:00
self.add_layout_pin_center_rect(text="vdd",
layer="metal1",
offset=vector(0.5*self.width,self.height),
width=self.width)
2016-11-08 18:57:35 +01:00
def add_ptx(self):
"""
Add PMOS and NMOS to the layout at the upper-most and lowest position
to provide maximum routing in channel
"""
2017-12-01 00:58:16 +01:00
# place PMOS so it is half a poly spacing down from the top
2017-12-01 17:31:16 +01:00
self.pmos_pos = self.pmos.active_offset.scale(1,0) \
+ vector(0, self.height-self.pmos.active_height-self.top_bottom_space)
self.pmos_inst=self.add_inst(name="pinv_pmos",
mod=self.pmos,
2017-12-01 00:58:16 +01:00
offset=self.pmos_pos)
self.connect_inst(["Z", "A", "vdd", "vdd"])
2016-11-08 18:57:35 +01:00
# place NMOS so that it is half a poly spacing up from the bottom
self.nmos_pos = self.nmos.active_offset.scale(1,0) + vector(0,self.top_bottom_space)
self.nmos_inst=self.add_inst(name="pinv_nmos",
mod=self.nmos,
2017-12-01 17:31:16 +01:00
offset=self.nmos_pos)
2016-11-08 18:57:35 +01:00
self.connect_inst(["Z", "A", "gnd", "gnd"])
# Output position will be in between the PMOS and NMOS
self.output_pos = vector(0,0.5*(self.pmos_pos.y+self.nmos_pos.y+self.nmos.active_height))
2016-11-08 18:57:35 +01:00
def route_outputs(self):
""" Route the output (drains) together. Optionally, routes output to edge. """
# Get the drain pins
nmos_drain_pin = self.nmos_inst.get_pin("D")
pmos_drain_pin = self.pmos_inst.get_pin("D")
2017-12-01 00:58:16 +01:00
# Pick point at right most of NMOS and connect down to PMOS
nmos_drain_pos = nmos_drain_pin.ur() - vector(0.5*self.m1_width,0)
pmos_drain_pos = vector(nmos_drain_pos.x,pmos_drain_pin.bc().y)
self.add_path("metal1",[nmos_drain_pos,pmos_drain_pos])
# Remember the mid for the output
mid_drain_offset = vector(nmos_drain_pos.x,self.output_pos.y)
2016-11-08 18:57:35 +01:00
if self.route_output == True:
# This extends the output to the edge of the cell
output_offset = mid_drain_offset.scale(0,1) + vector(self.width,0)
2017-11-30 20:56:40 +01:00
self.add_layout_pin_center_segment(text="Z",
layer="metal1",
start=mid_drain_offset,
end=output_offset)
2016-11-08 18:57:35 +01:00
else:
# This leaves the output as an internal pin (min sized)
self.add_layout_pin_center_rect(text="Z",
layer="metal1",
offset=mid_drain_offset + vector(0.5*self.m1_width,0))
2016-11-08 18:57:35 +01:00
def add_well_contacts(self):
2017-12-01 17:31:16 +01:00
""" Add n/p well taps to the layout and connect to supplies """
self.add_nwell_contact(self.pmos, self.pmos_pos)
self.add_pwell_contact(self.nmos, self.nmos_pos)
2016-11-08 18:57:35 +01:00
def connect_rails(self):
""" Connect the nmos and pmos to its respective power rails """
2016-11-08 18:57:35 +01:00
self.connect_pin_to_rail(self.nmos_inst,"S","gnd")
self.connect_pin_to_rail(self.pmos_inst,"S","vdd")
2016-11-08 18:57:35 +01:00
def input_load(self):
return ((self.nmos_size+self.pmos_size)/parameter["min_tx_size"])*spice["min_tx_gate_c"]
def analytical_delay(self, slew, load=0.0):
r = spice["min_tx_r"]/(self.nmos_size/parameter["min_tx_size"])
2017-07-06 17:42:25 +02:00
c_para = spice["min_tx_drain_c"]*(self.nmos_size/parameter["min_tx_size"])#ff
return self.cal_delay_with_rc(r = r, c = c_para+load, slew = slew)