OpenRAM/compiler/characterizer/linear_regression.py

64 lines
2.4 KiB
Python
Raw Normal View History

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import os
from sklearn.linear_model import LinearRegression
from .analytical_util import *
from globals import OPTS
import debug
relative_data_path = "/sim_data"
data_filename = "data.csv"
tech_path = os.environ.get('OPENRAM_TECH')
data_dir = tech_path+'/'+OPTS.tech_name+relative_data_path
class linear_regression():
def get_prediction(self):
train_sets = []
test_sets = []
file_path = data_dir +'/'+data_filename
num_points_train = 5
non_ip_samples, unused_samples = sample_from_file(num_points_train, file_path, data_dir)
nip_features_subset, nip_labels_subset = non_ip_samples[:, :-1], non_ip_samples[:,-1:]
nip_test_feature_subset, nip_test_labels_subset = unused_samples[:, :-1], unused_samples[:,-1:]
train_sets = [(nip_features_subset, nip_labels_subset)]
test_sets = [(nip_test_feature_subset, nip_test_labels_subset)]
runs_per_model = 1
for train_tuple, test_tuple in zip(train_sets, test_sets):
train_x, train_y = train_tuple
test_x, test_y = test_tuple
errors = {}
min_train_set = None
for _ in range(runs_per_model):
new_error = self.run_model(train_x, train_y, test_x, test_y, data_dir)
debug.info(1, "Model Error: {}".format(new_error))
def run_model(x,y,test_x,test_y, reference_dir):
model = LinearRegression()
model.fit(x, y)
pred = model.predict(test_x)
#print(pred)
unscaled_labels = unscale_data(test_y.tolist(), reference_dir)
unscaled_preds = unscale_data(pred.tolist(), reference_dir)
unscaled_labels, unscaled_preds = (list(t) for t in zip(*sorted(zip(unscaled_labels, unscaled_preds))))
avg_error = abs_error(unscaled_labels, unscaled_preds)
max_error = max_error(unscaled_labels, unscaled_preds)
min_error = min_error(unscaled_labels, unscaled_preds)
errors = {"avg_error": avg_error, "max_error":max_error, "min_error":min_error}
return errors