mirror of https://github.com/VLSIDA/OpenRAM.git
Changed linear regression model to reference data in tech dir vs local ref.
This commit is contained in:
parent
d111041385
commit
dcd20a250a
|
|
@ -12,11 +12,13 @@ from globals import OPTS,find_exe,get_tool
|
|||
from .lib import *
|
||||
from .delay import *
|
||||
from .elmore import *
|
||||
from .linear_regression import *
|
||||
from .setup_hold import *
|
||||
from .functional import *
|
||||
from .simulation import *
|
||||
from .measurements import *
|
||||
from .model_check import *
|
||||
from .analytical_util import *
|
||||
|
||||
debug.info(1,"Initializing characterizer...")
|
||||
OPTS.spice_exe = ""
|
||||
|
|
|
|||
|
|
@ -1,10 +1,10 @@
|
|||
import diversipy as dp
|
||||
#import diversipy as dp
|
||||
import csv
|
||||
import math
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
def get_data_names(self, file_name):
|
||||
def get_data_names(file_name):
|
||||
with open(file_name, newline='') as csvfile:
|
||||
csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
|
||||
row_iter = 0
|
||||
|
|
@ -13,7 +13,7 @@ def get_data_names(self, file_name):
|
|||
# Return names from first row
|
||||
return row[0].split(',')
|
||||
|
||||
def get_data(self, file_name):
|
||||
def get_data(file_name):
|
||||
with open(file_name, newline='') as csvfile:
|
||||
csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
|
||||
row_iter = 0
|
||||
|
|
@ -36,12 +36,12 @@ def get_data(self, file_name):
|
|||
#print(data)
|
||||
return input_list
|
||||
|
||||
def apply_samples_to_data(self, all_data, algo_samples):
|
||||
def apply_samples_to_data(all_data, algo_samples):
|
||||
# Take samples from algorithm and match them to samples in data
|
||||
data_samples, unused_data = [], []
|
||||
sample_positions = set()
|
||||
for sample in algo_samples:
|
||||
sample_positions.add(self.find_sample_position_with_min_error(all_data, sample))
|
||||
sample_positions.add(find_sample_position_with_min_error(all_data, sample))
|
||||
|
||||
for i in range(len(all_data)):
|
||||
if i in sample_positions:
|
||||
|
|
@ -51,19 +51,19 @@ def apply_samples_to_data(self, all_data, algo_samples):
|
|||
|
||||
return data_samples, unused_data
|
||||
|
||||
def find_sample_position_with_min_error(self, data, sampled_vals):
|
||||
def find_sample_position_with_min_error(data, sampled_vals):
|
||||
min_error = 0
|
||||
sample_pos = 0
|
||||
count = 0
|
||||
for data_slice in data:
|
||||
error = self.squared_error(data_slice, sampled_vals)
|
||||
error = squared_error(data_slice, sampled_vals)
|
||||
if min_error == 0 or error < min_error:
|
||||
min_error = error
|
||||
sample_pos = count
|
||||
count += 1
|
||||
return sample_pos
|
||||
|
||||
def squared_error(self, list_a, list_b):
|
||||
def squared_error(list_a, list_b):
|
||||
#print('a:',list_a, 'b:', list_b)
|
||||
error_sum = 0;
|
||||
for a,b in zip(list_a, list_b):
|
||||
|
|
@ -71,7 +71,7 @@ def squared_error(self, list_a, list_b):
|
|||
return error_sum
|
||||
|
||||
|
||||
def get_max_min_from_datasets(self, dir):
|
||||
def get_max_min_from_datasets(dir):
|
||||
if not os.path.isdir(dir):
|
||||
print("Input Directory not found:",dir)
|
||||
return [], [], []
|
||||
|
|
@ -80,7 +80,7 @@ def get_max_min_from_datasets(self, dir):
|
|||
data_files = [f for f in os.listdir(dir) if os.path.isfile(os.path.join(dir, f))]
|
||||
maxs,mins,sums,total_count = [],[],[],0
|
||||
for file in data_files:
|
||||
data = self.get_data(os.path.join(dir, file))
|
||||
data = get_data(os.path.join(dir, file))
|
||||
# Get max, min, sum, and count from every file
|
||||
data_max, data_min, data_sum, count = [],[],[], 0
|
||||
for feature_list in data:
|
||||
|
|
@ -102,11 +102,11 @@ def get_max_min_from_datasets(self, dir):
|
|||
avgs = [s/total_count for s in sums]
|
||||
return maxs,mins,avgs
|
||||
|
||||
def get_data_and_scale(self, file_name, sample_dir):
|
||||
maxs,mins,avgs = self.get_max_min_from_datasets(sample_dir)
|
||||
def get_data_and_scale(file_name, sample_dir):
|
||||
maxs,mins,avgs = get_max_min_from_datasets(sample_dir)
|
||||
|
||||
# Get data
|
||||
all_data = self.get_data(file_name)
|
||||
all_data = get_data(file_name)
|
||||
|
||||
# Scale data from file
|
||||
self_scaled_data = [[] for _ in range(len(all_data[0]))]
|
||||
|
|
@ -117,7 +117,7 @@ def get_data_and_scale(self, file_name, sample_dir):
|
|||
|
||||
return np.asarray(self_scaled_data)
|
||||
|
||||
def rescale_data(self, data, old_maxs, old_mins, new_maxs, new_mins):
|
||||
def rescale_data(data, old_maxs, old_mins, new_maxs, new_mins):
|
||||
# unscale from old values, rescale by new values
|
||||
data_new_scaling = []
|
||||
for data_row in data:
|
||||
|
|
@ -130,21 +130,22 @@ def rescale_data(self, data, old_maxs, old_mins, new_maxs, new_mins):
|
|||
|
||||
return data_new_scaling
|
||||
|
||||
def sample_from_file(self, num_samples, file_name, sample_dir=None):
|
||||
def sample_from_file(num_samples, file_name, sample_dir=None):
|
||||
if sample_dir:
|
||||
maxs,mins,avgs = self.get_max_min_from_datasets(sample_dir)
|
||||
maxs,mins,avgs = get_max_min_from_datasets(sample_dir)
|
||||
else:
|
||||
maxs,mins,avgs = [], [], []
|
||||
|
||||
# Get data
|
||||
all_data = self.get_data(file_name)
|
||||
all_data = get_data(file_name)
|
||||
|
||||
# Get algorithms sample points, assuming hypercube for now
|
||||
num_labels = 1
|
||||
inp_dims = len(all_data) - num_labels
|
||||
#samples = dp.hycusampling.lhd_matrix(num_samples, inp_dims)/num_samples
|
||||
#samples = dp.hycusampling.halton(num_samples, inp_dims)
|
||||
samples = dp.hycusampling.random_uniform(num_samples, inp_dims)
|
||||
#samples = dp.hycusampling.random_uniform(num_samples, inp_dims)
|
||||
samples = None
|
||||
|
||||
|
||||
# Scale data from file
|
||||
|
|
@ -158,19 +159,19 @@ def sample_from_file(self, num_samples, file_name, sample_dir=None):
|
|||
for i in range(len(feature_list)):
|
||||
self_scaled_data[i].append((feature_list[i]-min_val)/(max_val-min_val))
|
||||
# Apply algorithm sampling points to available data
|
||||
sampled_data, unused_data = self.apply_samples_to_data(self_scaled_data,samples)
|
||||
sampled_data, unused_data = apply_samples_to_data(self_scaled_data,samples)
|
||||
#print(sampled_data)
|
||||
|
||||
#unscale values and rescale using all available data (both sampled and unused points rescaled)
|
||||
if len(maxs)!=0 and len(mins)!=0:
|
||||
sampled_data = self.rescale_data(sampled_data, self_maxs,self_mins, maxs, mins)
|
||||
unused_new_scaling = self.rescale_data(unused_data, self_maxs,self_mins, maxs, mins)
|
||||
sampled_data = rescale_data(sampled_data, self_maxs,self_mins, maxs, mins)
|
||||
unused_new_scaling = rescale_data(unused_data, self_maxs,self_mins, maxs, mins)
|
||||
|
||||
return np.asarray(sampled_data), np.asarray(unused_new_scaling)
|
||||
|
||||
def unscale_data(self, data, ref_dir, pos=None):
|
||||
def unscale_data(data, ref_dir, pos=None):
|
||||
if ref_dir:
|
||||
maxs,mins,avgs = self.get_max_min_from_datasets(ref_dir)
|
||||
maxs,mins,avgs = get_max_min_from_datasets(ref_dir)
|
||||
else:
|
||||
print("Must provide reference data to unscale")
|
||||
return None
|
||||
|
|
@ -190,7 +191,7 @@ def unscale_data(self, data, ref_dir, pos=None):
|
|||
|
||||
return unscaled_data
|
||||
|
||||
def abs_error(self, labels, preds):
|
||||
def abs_error(labels, preds):
|
||||
total_error = 0
|
||||
for label_i, pred_i in zip(labels, preds):
|
||||
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
|
||||
|
|
@ -198,14 +199,14 @@ def abs_error(self, labels, preds):
|
|||
total_error += cur_error
|
||||
return total_error/len(labels)
|
||||
|
||||
def max_error(self, labels, preds):
|
||||
def max_error(labels, preds):
|
||||
mx_error = 0
|
||||
for label_i, pred_i in zip(labels, preds):
|
||||
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
|
||||
mx_error = max(cur_error, mx_error)
|
||||
return mx_error
|
||||
|
||||
def min_error(self, labels, preds):
|
||||
def min_error(labels, preds):
|
||||
mn_error = 1
|
||||
for label_i, pred_i in zip(labels, preds):
|
||||
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
|
||||
|
|
|
|||
|
|
@ -13,6 +13,7 @@ from .setup_hold import *
|
|||
from .delay import *
|
||||
from .elmore import *
|
||||
from .charutils import *
|
||||
from .linear_regression import *
|
||||
import tech
|
||||
import numpy as np
|
||||
from globals import OPTS
|
||||
|
|
@ -584,9 +585,13 @@ class lib:
|
|||
def compute_delay(self):
|
||||
"""Compute SRAM delays for current corner"""
|
||||
if self.use_model:
|
||||
self.d = elmore(self.sram, self.sp_file, self.corner)
|
||||
char_results = self.d.analytical_delay(self.slews,self.loads)
|
||||
self.char_sram_results, self.char_port_results = char_results
|
||||
#FIXME: ML models only designed for delay. Cannot produce all values for Lib
|
||||
d = linear_regression()
|
||||
char_results = d.get_prediction()
|
||||
|
||||
#self.d = elmore(self.sram, self.sp_file, self.corner)
|
||||
# char_results = self.d.analytical_delay(self.slews,self.loads)
|
||||
# self.char_sram_results, self.char_port_results = char_results
|
||||
else:
|
||||
self.d = delay(self.sram, self.sp_file, self.corner)
|
||||
if (self.sram.num_spare_rows == 0):
|
||||
|
|
|
|||
|
|
@ -1,25 +1,64 @@
|
|||
# See LICENSE for licensing information.
|
||||
#
|
||||
# Copyright (c) 2016-2019 Regents of the University of California and The Board
|
||||
# of Regents for the Oklahoma Agricultural and Mechanical College
|
||||
# (acting for and on behalf of Oklahoma State University)
|
||||
# All rights reserved.
|
||||
#
|
||||
|
||||
import os
|
||||
from sklearn.linear_model import LinearRegression
|
||||
import mapping
|
||||
from .analytical_util import *
|
||||
from globals import OPTS
|
||||
import debug
|
||||
|
||||
reference_dir = "data"
|
||||
relative_data_path = "/sim_data"
|
||||
data_filename = "data.csv"
|
||||
tech_path = os.environ.get('OPENRAM_TECH')
|
||||
data_dir = tech_path+'/'+OPTS.tech_name+relative_data_path
|
||||
|
||||
def run_model(x,y,test_x,test_y):
|
||||
mp = mapping.mapping()
|
||||
model = LinearRegression()
|
||||
model.fit(x, y)
|
||||
print(model.coef_)
|
||||
print(model.intercept_)
|
||||
class linear_regression():
|
||||
|
||||
pred = model.predict(test_x)
|
||||
def get_prediction(self):
|
||||
|
||||
#print(pred)
|
||||
unscaled_labels = mp.unscale_data(test_y.tolist(), reference_dir)
|
||||
unscaled_preds = mp.unscale_data(pred.tolist(), reference_dir)
|
||||
unscaled_labels, unscaled_preds = (list(t) for t in zip(*sorted(zip(unscaled_labels, unscaled_preds))))
|
||||
avg_error = mp.abs_error(unscaled_labels, unscaled_preds)
|
||||
max_error = mp.max_error(unscaled_labels, unscaled_preds)
|
||||
min_error = mp.min_error(unscaled_labels, unscaled_preds)
|
||||
train_sets = []
|
||||
test_sets = []
|
||||
|
||||
file_path = data_dir +'/'+data_filename
|
||||
num_points_train = 5
|
||||
|
||||
errors = {"avg_error": avg_error, "max_error":max_error, "min_error":min_error}
|
||||
return errors
|
||||
non_ip_samples, unused_samples = sample_from_file(num_points_train, file_path, data_dir)
|
||||
nip_features_subset, nip_labels_subset = non_ip_samples[:, :-1], non_ip_samples[:,-1:]
|
||||
nip_test_feature_subset, nip_test_labels_subset = unused_samples[:, :-1], unused_samples[:,-1:]
|
||||
|
||||
train_sets = [(nip_features_subset, nip_labels_subset)]
|
||||
test_sets = [(nip_test_feature_subset, nip_test_labels_subset)]
|
||||
|
||||
runs_per_model = 1
|
||||
|
||||
for train_tuple, test_tuple in zip(train_sets, test_sets):
|
||||
train_x, train_y = train_tuple
|
||||
test_x, test_y = test_tuple
|
||||
|
||||
errors = {}
|
||||
min_train_set = None
|
||||
for _ in range(runs_per_model):
|
||||
new_error = self.run_model(train_x, train_y, test_x, test_y, data_dir)
|
||||
debug.info(1, "Model Error: {}".format(new_error))
|
||||
|
||||
def run_model(x,y,test_x,test_y, reference_dir):
|
||||
model = LinearRegression()
|
||||
model.fit(x, y)
|
||||
|
||||
pred = model.predict(test_x)
|
||||
|
||||
#print(pred)
|
||||
unscaled_labels = unscale_data(test_y.tolist(), reference_dir)
|
||||
unscaled_preds = unscale_data(pred.tolist(), reference_dir)
|
||||
unscaled_labels, unscaled_preds = (list(t) for t in zip(*sorted(zip(unscaled_labels, unscaled_preds))))
|
||||
avg_error = abs_error(unscaled_labels, unscaled_preds)
|
||||
max_error = max_error(unscaled_labels, unscaled_preds)
|
||||
min_error = min_error(unscaled_labels, unscaled_preds)
|
||||
|
||||
errors = {"avg_error": avg_error, "max_error":max_error, "min_error":min_error}
|
||||
return errors
|
||||
Loading…
Reference in New Issue