Added initial scripts and data to generate analytical model

This commit is contained in:
Hunter Nichols 2020-11-20 12:40:04 -08:00
parent b77f168270
commit 1143dbec94
4 changed files with 282 additions and 0 deletions

View File

@ -0,0 +1,9 @@
num_words,word_size,words_per_row,area,max_delay
16,2,1,88873,2.272
64,2,4,108116,2.721
16,1,1,86004,2.267
32,3,2,101618,2.634
32,2,2,95878,2.594
16,3,1,93009,2.292
64,1,4,95878,2.705
32,1,2,90139,2.552
1 num_words word_size words_per_row area max_delay
2 16 2 1 88873 2.272
3 64 2 4 108116 2.721
4 16 1 1 86004 2.267
5 32 3 2 101618 2.634
6 32 2 2 95878 2.594
7 16 3 1 93009 2.292
8 64 1 4 95878 2.705
9 32 1 2 90139 2.552

View File

@ -0,0 +1,32 @@
import mapping
import lr_scikit
import keras_models
train_sets = []
test_sets = []
filename = "delays.csv"
reference_dir = "data"
file_path = reference_dir +'/'+filename
num_points_train = 7
mp = mapping.mapping()
non_ip_samples, unused_samples = mp.sample_from_file(num_points_train, file_path, reference_dir)
nip_features_subset, nip_labels_subset = non_ip_samples[:, :-1], non_ip_samples[:,-1:]
nip_test_feature_subset, nip_test_labels_subset = unused_samples[:, :-1], unused_samples[:,-1:]
train_sets = [(nip_features_subset, nip_labels_subset)]
test_sets = [(nip_test_feature_subset, nip_test_labels_subset)]
runs_per_model = 1
for train_tuple, test_tuple in zip(train_sets, test_sets):
train_x, train_y = train_tuple
test_x, test_y = test_tuple
errors = {}
min_train_set = None
for _ in range(runs_per_model):
#new_error = lr_scikit.run_model(train_x, train_y, test_x, test_y)
new_error = keras_models.run_model(train_x, train_y, test_x, test_y)
print(new_error)

View File

@ -0,0 +1,25 @@
import os
from sklearn.linear_model import LinearRegression
import mapping
reference_dir = "data"
def run_model(x,y,test_x,test_y):
mp = mapping.mapping()
model = LinearRegression()
model.fit(x, y)
print(model.coef_)
print(model.intercept_)
pred = model.predict(test_x)
#print(pred)
unscaled_labels = mp.unscale_data(test_y.tolist(), reference_dir)
unscaled_preds = mp.unscale_data(pred.tolist(), reference_dir)
unscaled_labels, unscaled_preds = (list(t) for t in zip(*sorted(zip(unscaled_labels, unscaled_preds))))
avg_error = mp.abs_error(unscaled_labels, unscaled_preds)
max_error = mp.max_error(unscaled_labels, unscaled_preds)
min_error = mp.min_error(unscaled_labels, unscaled_preds)
errors = {"avg_error": avg_error, "max_error":max_error, "min_error":min_error}
return errors

View File

@ -0,0 +1,216 @@
import diversipy as dp
import csv
import math
import numpy as np
import os
class mapping():
def get_data_names(self, file_name):
with open(file_name, newline='') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
row_iter = 0
# reader is iterable not a list, probably a better way to do this
for row in csv_reader:
# Return names from first row
return row[0].split(',')
def get_data(self, file_name):
with open(file_name, newline='') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
row_iter = 0
for row in csv_reader:
#data = [int(csv_str) for csv_str in ', '.join(row)]
row_iter += 1
if row_iter == 1:
feature_names = row[0].split(',')
input_list = [[] for _ in feature_names]
scaled_list = [[] for _ in feature_names]
#label_list = []
continue
#print(row[0])
data = [float(csv_str) for csv_str in row[0].split(',')]
data[0] = math.log(data[0], 2)
#input_list.append(data)
for i in range(len(data)):
input_list[i].append(data[i])
#label_list.append([data[-1]])
#print(data)
return input_list
def apply_samples_to_data(self, all_data, algo_samples):
# Take samples from algorithm and match them to samples in data
data_samples, unused_data = [], []
sample_positions = set()
for sample in algo_samples:
sample_positions.add(self.find_sample_position_with_min_error(all_data, sample))
for i in range(len(all_data)):
if i in sample_positions:
data_samples.append(all_data[i])
else:
unused_data.append(all_data[i])
return data_samples, unused_data
def find_sample_position_with_min_error(self, data, sampled_vals):
min_error = 0
sample_pos = 0
count = 0
for data_slice in data:
error = self.squared_error(data_slice, sampled_vals)
if min_error == 0 or error < min_error:
min_error = error
sample_pos = count
count += 1
return sample_pos
def squared_error(self, list_a, list_b):
#print('a:',list_a, 'b:', list_b)
error_sum = 0;
for a,b in zip(list_a, list_b):
error_sum+=(a-b)**2
return error_sum
def get_max_min_from_datasets(self, dir):
if not os.path.isdir(dir):
print("Input Directory not found:",dir)
return [], [], []
# Assuming all files are CSV
data_files = [f for f in os.listdir(dir) if os.path.isfile(os.path.join(dir, f))]
maxs,mins,sums,total_count = [],[],[],0
for file in data_files:
data = self.get_data(os.path.join(dir, file))
# Get max, min, sum, and count from every file
data_max, data_min, data_sum, count = [],[],[], 0
for feature_list in data:
data_max.append(max(feature_list))
data_min.append(min(feature_list))
data_sum.append(sum(feature_list))
count = len(feature_list)
# Aggregate the data
if not maxs or not mins or not sums:
maxs,mins,sums,total_count = data_max,data_min,data_sum,count
else:
for i in range(len(maxs)):
maxs[i] = max(data_max[i], maxs[i])
mins[i] = min(data_min[i], mins[i])
sums[i] = data_sum[i]+sums[i]
total_count+=count
avgs = [s/total_count for s in sums]
return maxs,mins,avgs
def get_data_and_scale(self, file_name, sample_dir):
maxs,mins,avgs = self.get_max_min_from_datasets(sample_dir)
# Get data
all_data = self.get_data(file_name)
# Scale data from file
self_scaled_data = [[] for _ in range(len(all_data[0]))]
self_maxs,self_mins = [],[]
for feature_list, cur_max, cur_min in zip(all_data,maxs, mins):
for i in range(len(feature_list)):
self_scaled_data[i].append((feature_list[i]-cur_min)/(cur_max-cur_min))
return np.asarray(self_scaled_data)
def rescale_data(self, data, old_maxs, old_mins, new_maxs, new_mins):
# unscale from old values, rescale by new values
data_new_scaling = []
for data_row in data:
scaled_row = []
for val, old_max,old_min, cur_max, cur_min in zip(data_row, old_maxs,old_mins, new_maxs, new_mins):
unscaled_data = val*(old_max-old_min) + old_min
scaled_row.append((unscaled_data-cur_min)/(cur_max-cur_min))
data_new_scaling.append(scaled_row)
return data_new_scaling
def sample_from_file(self, num_samples, file_name, sample_dir=None):
if sample_dir:
maxs,mins,avgs = self.get_max_min_from_datasets(sample_dir)
else:
maxs,mins,avgs = [], [], []
# Get data
all_data = self.get_data(file_name)
# Get algorithms sample points, assuming hypercube for now
num_labels = 1
inp_dims = len(all_data) - num_labels
#samples = dp.hycusampling.lhd_matrix(num_samples, inp_dims)/num_samples
#samples = dp.hycusampling.halton(num_samples, inp_dims)
samples = dp.hycusampling.random_uniform(num_samples, inp_dims)
# Scale data from file
self_scaled_data = [[] for _ in range(len(all_data[0]))]
self_maxs,self_mins = [],[]
for feature_list in all_data:
max_val = max(feature_list)
self_maxs.append(max_val)
min_val = min(feature_list)
self_mins.append(min_val)
for i in range(len(feature_list)):
self_scaled_data[i].append((feature_list[i]-min_val)/(max_val-min_val))
# Apply algorithm sampling points to available data
sampled_data, unused_data = self.apply_samples_to_data(self_scaled_data,samples)
#print(sampled_data)
#unscale values and rescale using all available data (both sampled and unused points rescaled)
if len(maxs)!=0 and len(mins)!=0:
sampled_data = self.rescale_data(sampled_data, self_maxs,self_mins, maxs, mins)
unused_new_scaling = self.rescale_data(unused_data, self_maxs,self_mins, maxs, mins)
return np.asarray(sampled_data), np.asarray(unused_new_scaling)
def unscale_data(self, data, ref_dir, pos=None):
if ref_dir:
maxs,mins,avgs = self.get_max_min_from_datasets(ref_dir)
else:
print("Must provide reference data to unscale")
return None
# Hard coded to only convert the last max/min (i.e. the label of the data)
if pos == None:
maxs,mins,avgs = [maxs[-1]],[mins[-1]],[avgs[-1]]
else:
maxs,mins,avgs = [maxs[pos]],[mins[pos]],[avgs[pos]]
unscaled_data = []
for data_row in data:
unscaled_row = []
for val, cur_max, cur_min in zip(data_row, maxs, mins):
unscaled_val = val*(cur_max-cur_min) + cur_min
unscaled_row.append(unscaled_val)
unscaled_data.append(unscaled_row)
return unscaled_data
def abs_error(self, labels, preds):
total_error = 0
for label_i, pred_i in zip(labels, preds):
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
# print(cur_error)
total_error += cur_error
return total_error/len(labels)
def max_error(self, labels, preds):
mx_error = 0
for label_i, pred_i in zip(labels, preds):
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
mx_error = max(cur_error, mx_error)
return mx_error
def min_error(self, labels, preds):
mn_error = 1
for label_i, pred_i in zip(labels, preds):
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
mn_error = min(cur_error, mn_error)
return mn_error