When IdString refcounting was expensive, it made sense to pass it by const reference
instead of by value, to avoid refcount churn. Now that IdString is not refcounted,
it's slightly more efficient to pass it by value.
`CellTypes::eval()` is more generic but also more limited. `ConstEval::eval()` requires more setup (both in code and at runtime) but has more complete support.
Still unsupported:
- wide muxes (`$_MUX16_` and friends)
Partially supported types have comments in `test_cell.cc`.
Fix `CellTypes::eval() for `$_NMUX_`.
Fix `RTLIL::Cell::fixup_parameters()` for $concat, $bwmux and $bweqx.
The new bitwise case equality (`$bweqx`) and bitwise mux (`$bwmux`)
cells enable compact encoding and decoding of 3-valued logic signals
using multiple 2-valued signals.
* Change simlib's $mux cell to use the ternary operator as $_MUX_
already does
* Stop opt_expr -keepdc from changing S=x to S=0
* Change const eval of $mux and $pmux to match the updated simlib
(fixes sim)
* The sat behavior of $mux already matches the updated simlib
The verilog frontend uses $mux for the ternary operators and this
changes all interpreations of the $mux cell (that I found) to match the
verilog simulation behavior for the ternary operator. For 'if' and
'case' expressions the frontend may also use $mux but uses $eqx if the
verilog simulation behavior is requested with the '-ifx' option.
For $pmux there is a remaining mismatch between the sat behavior and the
simlib behavior. Resolving this requires more discussion, as the $pmux
cell does not directly correspond to a specific verilog construct.
These can be used to protect undefined flip-flop initialization values
from optimizations that are not sound for formal verification and can
help mapping all solver-provided values in witness traces for flows that
use different backends simultaneously.
The new types include:
- FFs with async reset and enable (`$adffe`, `$_DFFE_[NP][NP][01][NP]_`)
- FFs with sync reset (`$sdff`, `$_SDFF_[NP][NP][01]_`)
- FFs with sync reset and enable, reset priority (`$sdffs`, `$_SDFFE_[NP][NP][01][NP]_`)
- FFs with sync reset and enable, enable priority (`$sdffce`, `$_SDFFCE_[NP][NP][01][NP]_`)
- FFs with async reset, set, and enable (`$dffsre`, `$_DFFSRE_[NP][NP][NP][NP]_`)
- latches with reset or set (`$adlatch`, `$_DLATCH_[NP][NP][01]_`)
The new FF types are not actually used anywhere yet (this is left
for future commits).
The $div and $mod cells use truncating division semantics (rounding
towards 0), as defined by e.g. Verilog. Another rounding mode, flooring
(rounding towards negative infinity), can be used in e.g. VHDL. The
new $divfloor cell provides this flooring division.
This commit also fixes the handling of $div in opt_expr, which was
previously optimized as if it was $divfloor.
The $div and $mod cells use truncating division semantics (rounding
towards 0), as defined by e.g. Verilog. Another rounding mode, flooring
(rounding towards negative infinity), can be used in e.g. VHDL. The
new $modfloor cell provides this flooring modulo (also known as "remainder"
in several languages, but this name is ambiguous).
This commit also fixes the handling of $mod in opt_expr, which was
previously optimized as if it was $modfloor.