2013-01-05 11:13:26 +01:00
/ *
* yosys - - Yosys Open SYnthesis Suite
*
2021-06-08 00:39:36 +02:00
* Copyright ( C ) 2012 Claire Xenia Wolf < claire @ yosyshq . com >
2015-07-02 11:14:30 +02:00
*
2013-01-05 11:13:26 +01:00
* Permission to use , copy , modify , and / or distribute this software for any
* purpose with or without fee is hereby granted , provided that the above
* copyright notice and this permission notice appear in all copies .
2015-07-02 11:14:30 +02:00
*
2013-01-05 11:13:26 +01:00
* THE SOFTWARE IS PROVIDED " AS IS " AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS . IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL , DIRECT , INDIRECT , OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN
* ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
*
* - - -
*
* The Simulation Library .
*
2015-08-14 22:23:01 +02:00
* This Verilog library contains simple simulation models for the internal
2013-01-05 11:13:26 +01:00
* cells ( $not , . . . ) generated by the frontends and used in most passes .
*
* This library can be used to verify the internal netlists as generated
* by the different frontends and passes .
*
* Note that memory can only be simulated when all $memrd and $memwr cells
* have been merged to stand - alone $mem cells ( this is what the " memory_collect "
* pass is doing ) .
*
*/
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $not (A, Y)
//-
//- A bit-wise inverter. This corresponds to the Verilog unary prefix '~' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $not ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = ~ $signed ( A ) ;
end else begin : BLOCK2
assign Y = ~ A ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $pos (A, Y)
//-
//- A buffer. This corresponds to the Verilog unary prefix '+' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $pos ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) ;
end else begin : BLOCK2
assign Y = A ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $neg (A, Y)
//-
//- An arithmetic inverter. This corresponds to the Verilog unary prefix '-' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $neg ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
2014-09-02 17:48:41 +02:00
assign Y = - $signed ( A ) ;
2014-01-29 00:36:03 +01:00
end else begin : BLOCK2
2014-09-02 17:48:41 +02:00
assign Y = - A ;
2014-01-29 00:36:03 +01:00
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $and (A, B, Y)
//-
//- A bit-wise AND. This corresponds to the Verilog '&' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $and ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) & $signed ( B ) ;
end else begin : BLOCK2
assign Y = A & B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $or (A, B, Y)
//-
//- A bit-wise OR. This corresponds to the Verilog '|' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $or ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) | $signed ( B ) ;
end else begin : BLOCK2
assign Y = A | B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $xor (A, B, Y)
//-
//- A bit-wise XOR. This corresponds to the Verilog '^' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $xor ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) ^ $signed ( B ) ;
end else begin : BLOCK2
assign Y = A ^ B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $xnor (A, B, Y)
//-
//- A bit-wise XNOR. This corresponds to the Verilog '~^' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $xnor ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) ~ ^ $signed ( B ) ;
end else begin : BLOCK2
assign Y = A ~ ^ B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
2021-01-04 08:52:59 +01:00
//- $reduce_and (A, Y)
2016-03-29 15:12:14 +02:00
//-
//- An AND reduction. This corresponds to the Verilog unary prefix '&' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $reduce_and ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
output [ Y_WIDTH - 1 : 0 ] Y ;
2013-01-05 11:13:26 +01:00
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = & $signed ( A ) ;
end else begin : BLOCK2
assign Y = & A ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
2021-01-04 08:52:59 +01:00
//- $reduce_or (A, Y)
2016-03-29 15:12:14 +02:00
//-
//- An OR reduction. This corresponds to the Verilog unary prefix '|' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $reduce_or ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
output [ Y_WIDTH - 1 : 0 ] Y ;
2013-01-05 11:13:26 +01:00
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = | $signed ( A ) ;
end else begin : BLOCK2
assign Y = | A ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
2021-01-04 08:52:59 +01:00
//- $reduce_xor (A, Y)
2016-03-29 15:12:14 +02:00
//-
//- A XOR reduction. This corresponds to the Verilog unary prefix '^' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $reduce_xor ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
output [ Y_WIDTH - 1 : 0 ] Y ;
2013-01-05 11:13:26 +01:00
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = ^ $signed ( A ) ;
end else begin : BLOCK2
assign Y = ^ A ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
2021-01-04 08:52:59 +01:00
//- $reduce_xnor (A, Y)
2016-03-29 15:12:14 +02:00
//-
//- A XNOR reduction. This corresponds to the Verilog unary prefix '~^' operator.
//-
2013-01-05 11:13:26 +01:00
module \ $reduce_xnor ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
output [ Y_WIDTH - 1 : 0 ] Y ;
2013-01-05 11:13:26 +01:00
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = ~ ^ $signed ( A ) ;
end else begin : BLOCK2
assign Y = ~ ^ A ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2016-03-29 15:12:14 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
2021-01-04 08:52:59 +01:00
//- $reduce_bool (A, Y)
2016-03-29 15:12:14 +02:00
//-
//- An OR reduction. This cell type is used instead of $reduce_or when a signal is
//- implicitly converted to a boolean signal, e.g. for operands of '&&' and '||'.
//-
2013-01-05 11:13:26 +01:00
module \ $reduce_bool ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
output [ Y_WIDTH - 1 : 0 ] Y ;
2013-01-05 11:13:26 +01:00
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = ! ( ! $signed ( A ) ) ;
end else begin : BLOCK2
assign Y = ! ( ! A ) ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $shl ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) < < B ;
end else begin : BLOCK2
assign Y = A < < B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $shr ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) > > B ;
end else begin : BLOCK2
assign Y = A > > B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $sshl ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) < < < B ;
end else begin : BLOCK2
assign Y = A < < < B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $sshr ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) > > > B ;
end else begin : BLOCK2
assign Y = A > > > B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2014-07-29 14:42:33 +02:00
module \ $shift ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
output [ Y_WIDTH - 1 : 0 ] Y ;
generate
2020-07-03 13:13:21 +02:00
if ( A_SIGNED ) begin : BLOCK1
if ( B_SIGNED ) begin : BLOCK2
assign Y = $signed ( B ) < 0 ? $signed ( A ) < < - B : $signed ( A ) > > B ;
end else begin : BLOCK3
assign Y = $signed ( A ) > > B ;
end
end else begin : BLOCK4
if ( B_SIGNED ) begin : BLOCK5
assign Y = $signed ( B ) < 0 ? A < < - B : A > > B ;
end else begin : BLOCK6
assign Y = A > > B ;
end
2014-07-29 14:42:33 +02:00
end
endgenerate
endmodule
// --------------------------------------------------------
module \ $shiftx ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
output [ Y_WIDTH - 1 : 0 ] Y ;
generate
2014-07-29 19:23:31 +02:00
if ( Y_WIDTH > 0 )
if ( B_SIGNED ) begin : BLOCK1
assign Y = A [ $signed ( B ) + : Y_WIDTH ] ;
end else begin : BLOCK2
assign Y = A [ B + : Y_WIDTH ] ;
end
2014-07-29 14:42:33 +02:00
endgenerate
endmodule
// --------------------------------------------------------
2014-09-08 12:15:39 +02:00
module \ $fa ( A , B , C , X , Y ) ;
parameter WIDTH = 1 ;
input [ WIDTH - 1 : 0 ] A , B , C ;
output [ WIDTH - 1 : 0 ] X , Y ;
wire [ WIDTH - 1 : 0 ] t1 , t2 , t3 ;
assign t1 = A ^ B , t2 = A & B , t3 = C & t1 ;
2014-09-08 16:59:39 +02:00
assign Y = t1 ^ C , X = ( t2 | t3 ) ^ ( Y ^ Y ) ;
2014-09-08 12:15:39 +02:00
endmodule
// --------------------------------------------------------
2019-08-09 21:33:39 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $lcu (P, G, CI, CO)
//-
//- Lookahead carry unit
//- A building block dedicated to fast computation of carry-bits used in binary
//- arithmetic operations. By replacing the ripple carry structure used in full-adder
//- blocks, the more significant bits of the sum can be expected to be computed more
//- quickly.
//- Typically created during `techmap` of $alu cells (see the "_90_alu" rule in
//- +/techmap.v).
2019-08-09 18:48:17 +02:00
module \ $lcu ( P , G , CI , CO ) ;
2014-09-08 13:28:23 +02:00
parameter WIDTH = 1 ;
2019-08-09 21:33:39 +02:00
input [ WIDTH - 1 : 0 ] P ; // Propagate
input [ WIDTH - 1 : 0 ] G ; // Generate
input CI ; // Carry-in
2014-09-08 13:28:23 +02:00
2019-08-08 19:05:28 +02:00
output reg [ WIDTH - 1 : 0 ] CO ; // Carry-out
2014-09-08 13:28:23 +02:00
integer i ;
always @ * begin
CO = ' bx ;
if ( ^ { P , G , CI } ! = = 1 ' bx ) begin
CO [ 0 ] = G [ 0 ] | | ( P [ 0 ] & & CI ) ;
for ( i = 1 ; i < WIDTH ; i = i + 1 )
CO [ i ] = G [ i ] | | ( P [ i ] & & CO [ i - 1 ] ) ;
end
end
endmodule
// --------------------------------------------------------
2019-08-09 21:33:39 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $alu (A, B, CI, BI, X, Y, CO)
//-
//- Arithmetic logic unit.
//- A building block supporting both binary addition/subtraction operations, and
//- indirectly, comparison operations.
//- Typically created by the `alumacc` pass, which transforms:
//- $add, $sub, $lt, $le, $ge, $gt, $eq, $eqx, $ne, $nex
//- cells into this $alu cell.
//-
2014-08-30 18:59:05 +02:00
module \ $alu ( A , B , CI , BI , X , Y , CO ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 1 ;
parameter B_WIDTH = 1 ;
parameter Y_WIDTH = 1 ;
2019-08-09 21:33:39 +02:00
input [ A_WIDTH - 1 : 0 ] A ; // Input operand
input [ B_WIDTH - 1 : 0 ] B ; // Input operand
output [ Y_WIDTH - 1 : 0 ] X ; // A xor B (sign-extended, optional B inversion,
// used in combination with
// reduction-AND for $eq/$ne ops)
output [ Y_WIDTH - 1 : 0 ] Y ; // Sum
2014-08-30 18:59:05 +02:00
2019-08-09 21:33:39 +02:00
input CI ; // Carry-in (set for $sub)
input BI ; // Invert-B (set for $sub)
output [ Y_WIDTH - 1 : 0 ] CO ; // Carry-out
2014-08-30 18:59:05 +02:00
wire [ Y_WIDTH - 1 : 0 ] AA , BB ;
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign AA = $signed ( A ) , BB = BI ? ~ $signed ( B ) : $signed ( B ) ;
end else begin : BLOCK2
assign AA = $unsigned ( A ) , BB = BI ? ~ $unsigned ( B ) : $unsigned ( B ) ;
end
endgenerate
2014-09-02 23:21:59 +02:00
// this is 'x' if Y and CO should be all 'x', and '0' otherwise
wire y_co_undef = ^ { A , A , B , B , CI , CI , BI , BI } ;
2014-08-30 18:59:05 +02:00
assign X = AA ^ BB ;
2019-08-09 18:48:17 +02:00
// Full adder
2014-09-02 23:21:59 +02:00
assign Y = ( AA + BB + CI ) ^ { Y_WIDTH { y_co_undef } } ;
2014-08-30 18:59:05 +02:00
function get_carry ;
input a , b , c ;
get_carry = ( a & b ) | ( a & c ) | ( b & c ) ;
endfunction
genvar i ;
generate
2014-09-02 23:21:59 +02:00
assign CO [ 0 ] = get_carry ( AA [ 0 ] , BB [ 0 ] , CI ) ^ y_co_undef ;
2014-08-30 18:59:05 +02:00
for ( i = 1 ; i < Y_WIDTH ; i = i + 1 ) begin : BLOCK3
2014-09-02 23:21:59 +02:00
assign CO [ i ] = get_carry ( AA [ i ] , BB [ i ] , CO [ i - 1 ] ) ^ y_co_undef ;
2014-08-30 18:59:05 +02:00
end
endgenerate
endmodule
// --------------------------------------------------------
2013-01-05 11:13:26 +01:00
module \ $lt ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) < $signed ( B ) ;
end else begin : BLOCK2
assign Y = A < B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $le ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) < = $signed ( B ) ;
end else begin : BLOCK2
assign Y = A < = B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $eq ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) = = $signed ( B ) ;
end else begin : BLOCK2
assign Y = A = = B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $ne ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) ! = $signed ( B ) ;
end else begin : BLOCK2
assign Y = A ! = B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2013-12-27 14:20:15 +01:00
module \ $eqx ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-12-27 14:20:15 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) = = = $signed ( B ) ;
end else begin : BLOCK2
assign Y = A = = = B ;
end
endgenerate
2013-12-27 14:20:15 +01:00
endmodule
// --------------------------------------------------------
module \ $nex ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-12-27 14:20:15 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) ! = = $signed ( B ) ;
end else begin : BLOCK2
assign Y = A ! = = B ;
end
endgenerate
2013-12-27 14:20:15 +01:00
endmodule
// --------------------------------------------------------
2013-01-05 11:13:26 +01:00
module \ $ge ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) > = $signed ( B ) ;
end else begin : BLOCK2
assign Y = A > = B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $gt ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) > $signed ( B ) ;
end else begin : BLOCK2
assign Y = A > B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $add ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) + $signed ( B ) ;
end else begin : BLOCK2
assign Y = A + B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $sub ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) - $signed ( B ) ;
end else begin : BLOCK2
assign Y = A - B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $mul ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) * $signed ( B ) ;
end else begin : BLOCK2
assign Y = A * B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2024-04-03 20:37:54 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $macc (A, B, Y)
//-
//- Multiply and accumulate.
//- A building block for summing any number of negated and unnegated signals and arithmetic products of pairs of signals. Cell port A concatenates pairs of signals to be multiplied together. When the second signal in a pair is zero length, a constant 1 is used instead as the second factor. Cell port B concatenates 1-bit-wide signals to also be summed, such as "carry in" in adders.
//- Typically created by the `alumacc` pass, which transforms $add and $mul into $macc cells.
2014-09-06 17:59:12 +02:00
module \ $macc ( A , B , Y ) ;
2014-09-08 13:29:13 +02:00
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2024-04-03 20:37:54 +02:00
// CONFIG determines the layout of A, as explained below
2014-09-08 13:29:13 +02:00
parameter CONFIG = 4 'b0000 ;
parameter CONFIG_WIDTH = 4 ;
2024-04-03 20:37:54 +02:00
// In the terms used for this cell, there's mixed meanings for the term "port". To disambiguate:
// A cell port is for example the A input (it is constructed in C++ as cell->setPort(ID::A, ...))
// Multiplier ports are pairs of multiplier inputs ("factors").
// If the second signal in such a pair is zero length, no multiplication is necessary, and the first signal is just added to the sum.
input [ A_WIDTH - 1 : 0 ] A ; // Cell port A is the concatenation of all arithmetic ports
input [ B_WIDTH - 1 : 0 ] B ; // Cell port B is the concatenation of single-bit unsigned signals to be also added to the sum
output reg [ Y_WIDTH - 1 : 0 ] Y ; // Output sum
2014-09-08 13:29:13 +02:00
2014-09-08 17:09:39 +02:00
// Xilinx XSIM does not like $clog2() below..
function integer my_clog2 ;
input integer v ;
begin
if ( v > 0 )
v = v - 1 ;
my_clog2 = 0 ;
while ( v ) begin
v = v > > 1 ;
my_clog2 = my_clog2 + 1 ;
end
end
endfunction
2024-04-03 20:37:54 +02:00
// Bits that a factor's length field in CONFIG per factor in cell port A
2014-09-16 08:19:35 +02:00
localparam integer num_bits = CONFIG [ 3 : 0 ] > 0 ? CONFIG [ 3 : 0 ] : 1 ;
2024-04-03 20:37:54 +02:00
// Number of multiplier ports
2014-09-08 13:29:13 +02:00
localparam integer num_ports = ( CONFIG_WIDTH - 4 ) / ( 2 + 2 * num_bits ) ;
2024-04-03 20:37:54 +02:00
// Minium bit width of an induction variable to iterate over all bits of cell port A
2014-09-08 17:09:39 +02:00
localparam integer num_abits = my_clog2 ( A_WIDTH ) > 0 ? my_clog2 ( A_WIDTH ) : 1 ;
2014-09-08 13:29:13 +02:00
2024-04-03 20:37:54 +02:00
// In this pseudocode, u(foo) means an unsigned int that's foo bits long.
// The CONFIG parameter carries the following information:
// struct CONFIG {
// u4 num_bits;
// struct port_field {
// bool is_signed;
// bool is_subtract;
// u(num_bits) factor1_len;
// u(num_bits) factor2_len;
// }[num_ports];
// };
// The A cell port carries the following information:
// struct A {
// u(CONFIG.port_field[0].factor1_len) port0factor1;
// u(CONFIG.port_field[0].factor2_len) port0factor2;
// u(CONFIG.port_field[1].factor1_len) port1factor1;
// u(CONFIG.port_field[1].factor2_len) port1factor2;
// ...
// };
// and log(sizeof(A)) is num_abits.
// No factor1 may have a zero length.
// A factor2 having a zero length implies factor2 is replaced with a constant 1.
// Additionally, B is an array of 1-bit-wide unsigned integers to also be summed up.
// Finally, we have:
// Y = port0factor1 * port0factor2 + port1factor1 * port1factor2 + ...
// * B[0] + B[1] + ...
2014-09-08 13:29:13 +02:00
function [ 2 * num_ports * num_abits - 1 : 0 ] get_port_offsets ;
input [ CONFIG_WIDTH - 1 : 0 ] cfg ;
integer i , cursor ;
begin
cursor = 0 ;
get_port_offsets = 0 ;
for ( i = 0 ; i < num_ports ; i = i + 1 ) begin
get_port_offsets [ ( 2 * i + 0 ) * num_abits + : num_abits ] = cursor ;
cursor = cursor + cfg [ 4 + i * ( 2 + 2 * num_bits ) + 2 + : num_bits ] ;
get_port_offsets [ ( 2 * i + 1 ) * num_abits + : num_abits ] = cursor ;
cursor = cursor + cfg [ 4 + i * ( 2 + 2 * num_bits ) + 2 + num_bits + : num_bits ] ;
2014-09-06 17:59:12 +02:00
end
2014-09-08 13:29:13 +02:00
end
endfunction
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
localparam [ 2 * num_ports * num_abits - 1 : 0 ] port_offsets = get_port_offsets ( CONFIG ) ;
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
`define PORT_IS_SIGNED (0 + CONFIG[4 + i*(2 + 2*num_bits)])
`define PORT_DO_SUBTRACT (0 + CONFIG[4 + i*(2 + 2*num_bits) + 1])
`define PORT_SIZE_A (0 + CONFIG[4 + i*(2 + 2*num_bits) + 2 +: num_bits])
`define PORT_SIZE_B (0 + CONFIG[4 + i*(2 + 2*num_bits) + 2 + num_bits +: num_bits])
`define PORT_OFFSET_A (0 + port_offsets[2*i*num_abits +: num_abits])
`define PORT_OFFSET_B (0 + port_offsets[2*i*num_abits + num_abits +: num_abits])
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
integer i , j ;
reg [ Y_WIDTH - 1 : 0 ] tmp_a , tmp_b ;
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
always @ * begin
Y = 0 ;
for ( i = 0 ; i < num_ports ; i = i + 1 )
begin
tmp_a = 0 ;
tmp_b = 0 ;
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
for ( j = 0 ; j < `PORT_SIZE_A ; j = j + 1 )
tmp_a [ j ] = A [ `PORT_OFFSET_A + j ] ;
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
if ( `PORT_IS_SIGNED & & `PORT_SIZE_A > 0 )
for ( j = `PORT_SIZE_A ; j < Y_WIDTH ; j = j + 1 )
tmp_a [ j ] = tmp_a [ `PORT_SIZE_A - 1 ] ;
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
for ( j = 0 ; j < `PORT_SIZE_B ; j = j + 1 )
tmp_b [ j ] = A [ `PORT_OFFSET_B + j ] ;
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
if ( `PORT_IS_SIGNED & & `PORT_SIZE_B > 0 )
for ( j = `PORT_SIZE_B ; j < Y_WIDTH ; j = j + 1 )
tmp_b [ j ] = tmp_b [ `PORT_SIZE_B - 1 ] ;
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
if ( `PORT_SIZE_B > 0 )
tmp_a = tmp_a * tmp_b ;
2014-09-06 17:59:12 +02:00
2014-09-08 13:29:13 +02:00
if ( `PORT_DO_SUBTRACT )
Y = Y - tmp_a ;
else
Y = Y + tmp_a ;
2014-09-06 17:59:12 +02:00
end
2014-09-08 13:29:13 +02:00
for ( i = 0 ; i < B_WIDTH ; i = i + 1 ) begin
Y = Y + B [ i ] ;
end
end
`undef PORT_IS_SIGNED
`undef PORT_DO_SUBTRACT
`undef PORT_SIZE_A
`undef PORT_SIZE_B
`undef PORT_OFFSET_A
`undef PORT_OFFSET_B
2014-09-06 17:59:12 +02:00
endmodule
// --------------------------------------------------------
2020-04-21 12:51:58 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $div (A, B, Y)
//-
//- Division with truncated result (rounded towards 0).
//-
2013-01-05 11:13:26 +01:00
module \ $div ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) / $signed ( B ) ;
end else begin : BLOCK2
assign Y = A / B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2020-04-08 19:30:47 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $mod (A, B, Y)
//-
//- Modulo/remainder of division with truncated result (rounded towards 0).
//-
//- Invariant: $div(A, B) * B + $mod(A, B) == A
//-
2013-01-05 11:13:26 +01:00
module \ $mod ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) % $signed ( B ) ;
end else begin : BLOCK2
assign Y = A % B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
2020-04-08 19:30:47 +02:00
// --------------------------------------------------------
2020-04-21 12:51:58 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $divfloor (A, B, Y)
//-
//- Division with floored result (rounded towards negative infinity).
//-
module \ $divfloor ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
output [ Y_WIDTH - 1 : 0 ] Y ;
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
localparam WIDTH =
A_WIDTH > = B_WIDTH & & A_WIDTH > = Y_WIDTH ? A_WIDTH :
B_WIDTH > = A_WIDTH & & B_WIDTH > = Y_WIDTH ? B_WIDTH : Y_WIDTH ;
wire [ WIDTH: 0 ] A_buf , B_buf , N_buf ;
assign A_buf = $signed ( A ) ;
assign B_buf = $signed ( B ) ;
assign N_buf = ( A [ A_WIDTH - 1 ] = = B [ B_WIDTH - 1 ] ) | | A = = 0 ? A_buf : $signed ( A_buf - ( B [ B_WIDTH - 1 ] ? B_buf + 1 : B_buf - 1 ) ) ;
assign Y = $signed ( N_buf ) / $signed ( B_buf ) ;
end else begin : BLOCK2
assign Y = A / B ;
end
endgenerate
endmodule
// --------------------------------------------------------
2020-04-08 19:30:47 +02:00
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $modfloor (A, B, Y)
//-
//- Modulo/remainder of division with floored result (rounded towards negative infinity).
//-
//- Invariant: $divfloor(A, B) * B + $modfloor(A, B) == A
//-
module \ $modfloor ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
output [ Y_WIDTH - 1 : 0 ] Y ;
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
localparam WIDTH = B_WIDTH > = Y_WIDTH ? B_WIDTH : Y_WIDTH ;
wire [ WIDTH - 1 : 0 ] B_buf , Y_trunc ;
assign B_buf = $signed ( B ) ;
assign Y_trunc = $signed ( A ) % $signed ( B ) ;
// flooring mod is the same as truncating mod for positive division results (A and B have
// the same sign), as well as when there's no remainder.
// For all other cases, they behave as `floor - trunc = B`
assign Y = ( A [ A_WIDTH - 1 ] = = B [ B_WIDTH - 1 ] ) | | Y_trunc = = 0 ? Y_trunc : $signed ( B_buf ) + $signed ( Y_trunc ) ;
end else begin : BLOCK2
// no difference between truncating and flooring for unsigned
assign Y = A % B ;
end
endgenerate
endmodule
2013-01-05 11:13:26 +01:00
// --------------------------------------------------------
2014-01-29 00:36:03 +01:00
`ifndef SIMLIB_NOPOW
2013-01-05 11:13:26 +01:00
module \ $pow ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) * * $signed ( B ) ;
end else if ( A_SIGNED ) begin : BLOCK2
assign Y = $signed ( A ) * * B ;
end else if ( B_SIGNED ) begin : BLOCK3
assign Y = A * * $signed ( B ) ;
end else begin : BLOCK4
assign Y = A * * B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
2014-01-29 00:36:03 +01:00
`endif
2013-01-05 11:13:26 +01:00
// --------------------------------------------------------
module \ $logic_not ( A , Y ) ;
parameter A_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED ) begin : BLOCK1
assign Y = ! $signed ( A ) ;
end else begin : BLOCK2
assign Y = ! A ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $logic_and ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) & & $signed ( B ) ;
end else begin : BLOCK2
assign Y = A & & B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
module \ $logic_or ( A , B , Y ) ;
parameter A_SIGNED = 0 ;
parameter B_SIGNED = 0 ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
2014-01-29 00:36:03 +01:00
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
2013-01-05 11:13:26 +01:00
output [ Y_WIDTH - 1 : 0 ] Y ;
2014-01-29 00:36:03 +01:00
generate
if ( A_SIGNED & & B_SIGNED ) begin : BLOCK1
assign Y = $signed ( A ) | | $signed ( B ) ;
end else begin : BLOCK2
assign Y = A | | B ;
end
endgenerate
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2014-02-07 17:44:57 +01:00
module \ $slice ( A , Y ) ;
parameter OFFSET = 0 ;
parameter A_WIDTH = 0 ;
parameter Y_WIDTH = 0 ;
input [ A_WIDTH - 1 : 0 ] A ;
output [ Y_WIDTH - 1 : 0 ] Y ;
assign Y = A > > OFFSET ;
endmodule
// --------------------------------------------------------
module \ $concat ( A , B , Y ) ;
parameter A_WIDTH = 0 ;
parameter B_WIDTH = 0 ;
input [ A_WIDTH - 1 : 0 ] A ;
input [ B_WIDTH - 1 : 0 ] B ;
output [ A_WIDTH + B_WIDTH - 1 : 0 ] Y ;
assign Y = { B , A } ;
endmodule
// --------------------------------------------------------
2013-01-05 11:13:26 +01:00
module \ $mux ( A , B , S , Y ) ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A , B ;
input S ;
2022-10-28 19:48:00 +02:00
output [ WIDTH - 1 : 0 ] Y ;
2013-01-05 11:13:26 +01:00
2022-10-28 19:48:00 +02:00
assign Y = S ? B : A ;
2013-01-05 11:13:26 +01:00
endmodule
// --------------------------------------------------------
2022-01-24 16:02:29 +01:00
module \ $bmux ( A , S , Y ) ;
parameter WIDTH = 0 ;
parameter S_WIDTH = 0 ;
input [ ( WIDTH < < S_WIDTH ) - 1 : 0 ] A ;
input [ S_WIDTH - 1 : 0 ] S ;
output [ WIDTH - 1 : 0 ] Y ;
wire [ WIDTH - 1 : 0 ] bm0_out , bm1_out ;
generate
if ( S_WIDTH > 1 ) begin : muxlogic
2022-11-11 14:31:39 +01:00
\ $bmux # ( . WIDTH ( WIDTH ) , . S_WIDTH ( S_WIDTH - 1 ) ) bm0 ( . A ( A [ ( WIDTH < < ( S_WIDTH - 1 ) ) - 1 : 0 ] ) , . S ( S [ S_WIDTH - 2 : 0 ] ) , . Y ( bm0_out ) ) ;
2022-01-24 16:02:29 +01:00
\ $bmux # ( . WIDTH ( WIDTH ) , . S_WIDTH ( S_WIDTH - 1 ) ) bm1 ( . A ( A [ ( WIDTH < < S_WIDTH ) - 1 : WIDTH < < ( S_WIDTH - 1 ) ] ) , . S ( S [ S_WIDTH - 2 : 0 ] ) , . Y ( bm1_out ) ) ;
assign Y = S [ S_WIDTH - 1 ] ? bm1_out : bm0_out ;
end else if ( S_WIDTH = = 1 ) begin : simple
2022-11-11 14:31:39 +01:00
assign Y = S ? A [ 2 * WIDTH - 1 : WIDTH ] : A [ WIDTH - 1 : 0 ] ;
2022-01-24 16:02:29 +01:00
end else begin : passthru
assign Y = A ;
end
endgenerate
endmodule
// --------------------------------------------------------
2013-01-05 11:13:26 +01:00
module \ $pmux ( A , B , S , Y ) ;
parameter WIDTH = 0 ;
parameter S_WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A ;
input [ WIDTH * S_WIDTH - 1 : 0 ] B ;
input [ S_WIDTH - 1 : 0 ] S ;
output reg [ WIDTH - 1 : 0 ] Y ;
integer i ;
2014-08-14 11:39:46 +02:00
reg found_active_sel_bit ;
2013-01-05 11:13:26 +01:00
always @ * begin
Y = A ;
2014-08-14 11:39:46 +02:00
found_active_sel_bit = 0 ;
2013-01-05 11:13:26 +01:00
for ( i = 0 ; i < S_WIDTH ; i = i + 1 )
2022-11-10 16:17:54 +01:00
case ( S [ i ] )
1 'b1 : begin
Y = found_active_sel_bit ? ' bx : B > > ( WIDTH * i ) ;
found_active_sel_bit = 1 ;
end
1 'b0 : ;
1 ' bx: begin
Y = ' bx ;
found_active_sel_bit = ' bx ;
end
endcase
2013-01-05 11:13:26 +01:00
end
endmodule
2022-01-24 16:02:29 +01:00
// --------------------------------------------------------
module \ $demux ( A , S , Y ) ;
parameter WIDTH = 1 ;
parameter S_WIDTH = 1 ;
input [ WIDTH - 1 : 0 ] A ;
input [ S_WIDTH - 1 : 0 ] S ;
output [ ( WIDTH < < S_WIDTH ) - 1 : 0 ] Y ;
genvar i ;
generate
for ( i = 0 ; i < ( 1 < < S_WIDTH ) ; i = i + 1 ) begin : slices
assign Y [ i * WIDTH + : WIDTH ] = ( S = = i ) ? A : 0 ;
end
endgenerate
endmodule
2013-01-05 11:13:26 +01:00
// --------------------------------------------------------
2014-04-02 21:28:33 +02:00
`ifndef SIMLIB_NOLUT
2013-01-05 11:13:26 +01:00
2014-08-15 14:18:40 +02:00
module \ $lut ( A , Y ) ;
2013-07-23 16:19:34 +02:00
parameter WIDTH = 0 ;
parameter LUT = 0 ;
2014-08-15 14:18:40 +02:00
input [ WIDTH - 1 : 0 ] A ;
2022-01-24 16:02:29 +01:00
output Y ;
2013-07-23 16:19:34 +02:00
2022-11-10 16:31:45 +01:00
\ $bmux # ( . WIDTH ( 1 ) , . S_WIDTH ( WIDTH ) ) mux ( . A ( LUT [ ( 1 < < WIDTH ) - 1 : 0 ] ) , . S ( A ) , . Y ( Y ) ) ;
2013-07-23 16:19:34 +02:00
endmodule
2014-04-02 21:28:33 +02:00
`endif
2013-07-23 16:19:34 +02:00
// --------------------------------------------------------
2016-06-17 13:46:01 +02:00
module \ $sop ( A , Y ) ;
parameter WIDTH = 0 ;
parameter DEPTH = 0 ;
parameter TABLE = 0 ;
input [ WIDTH - 1 : 0 ] A ;
output reg Y ;
integer i , j ;
reg match ;
always @ * begin
Y = 0 ;
for ( i = 0 ; i < DEPTH ; i = i + 1 ) begin
match = 1 ;
for ( j = 0 ; j < WIDTH ; j = j + 1 ) begin
if ( TABLE [ 2 * WIDTH * i + 2 * j + 0 ] & & A [ j ] ) match = 0 ;
if ( TABLE [ 2 * WIDTH * i + 2 * j + 1 ] & & ! A [ j ] ) match = 0 ;
end
if ( match ) Y = 1 ;
end
end
endmodule
// --------------------------------------------------------
2015-08-16 13:05:32 +02:00
module \ $tribuf ( A , EN , Y ) ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A ;
input EN ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = EN ? A : ' bz ;
endmodule
// --------------------------------------------------------
2019-04-21 16:10:41 +02:00
module \ $specify2 ( EN , SRC , DST ) ;
parameter FULL = 0 ;
parameter SRC_WIDTH = 1 ;
parameter DST_WIDTH = 1 ;
parameter SRC_DST_PEN = 0 ;
parameter SRC_DST_POL = 0 ;
parameter T_RISE_MIN = 0 ;
2019-04-22 09:52:47 +02:00
parameter T_RISE_TYP = 0 ;
2019-04-21 16:10:41 +02:00
parameter T_RISE_MAX = 0 ;
parameter T_FALL_MIN = 0 ;
2019-04-22 09:52:47 +02:00
parameter T_FALL_TYP = 0 ;
2019-04-21 16:10:41 +02:00
parameter T_FALL_MAX = 0 ;
input EN ;
input [ SRC_WIDTH - 1 : 0 ] SRC ;
input [ DST_WIDTH - 1 : 0 ] DST ;
localparam SD = SRC_DST_PEN ? ( SRC_DST_POL ? 1 : 2 ) : 0 ;
`ifdef SIMLIB_SPECIFY
specify
2019-04-22 09:52:47 +02:00
if ( EN & & SD = = 0 & & ! FULL ) ( SRC = > DST ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & SD = = 0 & & FULL ) ( SRC * > DST ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & SD = = 1 & & ! FULL ) ( SRC + = > DST ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & SD = = 1 & & FULL ) ( SRC + * > DST ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & SD = = 2 & & ! FULL ) ( SRC - = > DST ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & SD = = 2 & & FULL ) ( SRC - * > DST ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
2019-04-21 16:10:41 +02:00
endspecify
`endif
endmodule
// --------------------------------------------------------
module \ $specify3 ( EN , SRC , DST , DAT ) ;
parameter FULL = 0 ;
parameter SRC_WIDTH = 1 ;
parameter DST_WIDTH = 1 ;
parameter EDGE_EN = 0 ;
parameter EDGE_POL = 0 ;
parameter SRC_DST_PEN = 0 ;
parameter SRC_DST_POL = 0 ;
parameter DAT_DST_PEN = 0 ;
parameter DAT_DST_POL = 0 ;
parameter T_RISE_MIN = 0 ;
2019-04-22 09:52:47 +02:00
parameter T_RISE_TYP = 0 ;
2019-04-21 16:10:41 +02:00
parameter T_RISE_MAX = 0 ;
parameter T_FALL_MIN = 0 ;
2019-04-22 09:52:47 +02:00
parameter T_FALL_TYP = 0 ;
2019-04-21 16:10:41 +02:00
parameter T_FALL_MAX = 0 ;
input EN ;
input [ SRC_WIDTH - 1 : 0 ] SRC ;
input [ DST_WIDTH - 1 : 0 ] DST , DAT ;
localparam ED = EDGE_EN ? ( EDGE_POL ? 1 : 2 ) : 0 ;
localparam SD = SRC_DST_PEN ? ( SRC_DST_POL ? 1 : 2 ) : 0 ;
localparam DD = DAT_DST_PEN ? ( DAT_DST_POL ? 1 : 2 ) : 0 ;
`ifdef SIMLIB_SPECIFY
specify
// DD=0
2019-04-22 09:52:47 +02:00
if ( EN & & DD = = 0 & & SD = = 0 & & ED = = 0 & & ! FULL ) ( SRC = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 0 & & ED = = 0 & & FULL ) ( SRC * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 0 & & ED = = 1 & & ! FULL ) ( posedge SRC = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 0 & & ED = = 1 & & FULL ) ( posedge SRC * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 0 & & ED = = 2 & & ! FULL ) ( negedge SRC = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 0 & & ED = = 2 & & FULL ) ( negedge SRC * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 1 & & ED = = 0 & & ! FULL ) ( SRC + = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 1 & & ED = = 0 & & FULL ) ( SRC + * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 1 & & ED = = 1 & & ! FULL ) ( posedge SRC + = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 1 & & ED = = 1 & & FULL ) ( posedge SRC + * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 1 & & ED = = 2 & & ! FULL ) ( negedge SRC + = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 1 & & ED = = 2 & & FULL ) ( negedge SRC + * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 2 & & ED = = 0 & & ! FULL ) ( SRC - = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 2 & & ED = = 0 & & FULL ) ( SRC - * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 2 & & ED = = 1 & & ! FULL ) ( posedge SRC - = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 2 & & ED = = 1 & & FULL ) ( posedge SRC - * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 2 & & ED = = 2 & & ! FULL ) ( negedge SRC - = > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 0 & & SD = = 2 & & ED = = 2 & & FULL ) ( negedge SRC - * > ( DST : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
2019-04-21 16:10:41 +02:00
// DD=1
2019-04-22 09:52:47 +02:00
if ( EN & & DD = = 1 & & SD = = 0 & & ED = = 0 & & ! FULL ) ( SRC = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 0 & & ED = = 0 & & FULL ) ( SRC * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 0 & & ED = = 1 & & ! FULL ) ( posedge SRC = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 0 & & ED = = 1 & & FULL ) ( posedge SRC * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 0 & & ED = = 2 & & ! FULL ) ( negedge SRC = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 0 & & ED = = 2 & & FULL ) ( negedge SRC * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 1 & & ED = = 0 & & ! FULL ) ( SRC + = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 1 & & ED = = 0 & & FULL ) ( SRC + * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 1 & & ED = = 1 & & ! FULL ) ( posedge SRC + = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 1 & & ED = = 1 & & FULL ) ( posedge SRC + * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 1 & & ED = = 2 & & ! FULL ) ( negedge SRC + = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 1 & & ED = = 2 & & FULL ) ( negedge SRC + * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 2 & & ED = = 0 & & ! FULL ) ( SRC - = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 2 & & ED = = 0 & & FULL ) ( SRC - * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 2 & & ED = = 1 & & ! FULL ) ( posedge SRC - = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 2 & & ED = = 1 & & FULL ) ( posedge SRC - * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 2 & & ED = = 2 & & ! FULL ) ( negedge SRC - = > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 1 & & SD = = 2 & & ED = = 2 & & FULL ) ( negedge SRC - * > ( DST + : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
2019-04-21 16:10:41 +02:00
// DD=2
2019-04-22 09:52:47 +02:00
if ( EN & & DD = = 2 & & SD = = 0 & & ED = = 0 & & ! FULL ) ( SRC = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 0 & & ED = = 0 & & FULL ) ( SRC * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 0 & & ED = = 1 & & ! FULL ) ( posedge SRC = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 0 & & ED = = 1 & & FULL ) ( posedge SRC * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 0 & & ED = = 2 & & ! FULL ) ( negedge SRC = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 0 & & ED = = 2 & & FULL ) ( negedge SRC * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 1 & & ED = = 0 & & ! FULL ) ( SRC + = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 1 & & ED = = 0 & & FULL ) ( SRC + * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 1 & & ED = = 1 & & ! FULL ) ( posedge SRC + = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 1 & & ED = = 1 & & FULL ) ( posedge SRC + * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 1 & & ED = = 2 & & ! FULL ) ( negedge SRC + = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 1 & & ED = = 2 & & FULL ) ( negedge SRC + * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 2 & & ED = = 0 & & ! FULL ) ( SRC - = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 2 & & ED = = 0 & & FULL ) ( SRC - * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 2 & & ED = = 1 & & ! FULL ) ( posedge SRC - = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 2 & & ED = = 1 & & FULL ) ( posedge SRC - * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 2 & & ED = = 2 & & ! FULL ) ( negedge SRC - = > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
if ( EN & & DD = = 2 & & SD = = 2 & & ED = = 2 & & FULL ) ( negedge SRC - * > ( DST - : DAT ) ) = ( T_RISE_MIN: T_RISE_TYP: T_RISE_MAX , T_FALL_MIN: T_FALL_TYP: T_FALL_MAX ) ;
2019-04-21 16:10:41 +02:00
endspecify
`endif
endmodule
// --------------------------------------------------------
2019-04-23 15:46:40 +02:00
module \ $specrule ( EN_SRC , EN_DST , SRC , DST ) ;
2019-04-23 22:57:10 +02:00
parameter TYPE = " " ;
2019-04-23 22:18:04 +02:00
parameter T_LIMIT = 0 ;
2019-04-23 22:57:10 +02:00
parameter T_LIMIT2 = 0 ;
2019-04-23 22:18:04 +02:00
2019-04-23 15:46:40 +02:00
parameter SRC_WIDTH = 1 ;
parameter DST_WIDTH = 1 ;
parameter SRC_PEN = 0 ;
parameter SRC_POL = 0 ;
parameter DST_PEN = 0 ;
parameter DST_POL = 0 ;
input EN_SRC , EN_DST ;
input [ SRC_WIDTH - 1 : 0 ] SRC ;
input [ DST_WIDTH - 1 : 0 ] DST ;
`ifdef SIMLIB_SPECIFY
specify
// TBD
endspecify
`endif
endmodule
// --------------------------------------------------------
2022-11-02 17:12:51 +01:00
module \ $bweqx ( A , B , Y ) ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A , B ;
output [ WIDTH - 1 : 0 ] Y ;
genvar i ;
generate
for ( i = 0 ; i < WIDTH ; i = i + 1 ) begin : slices
assign Y [ i ] = A [ i ] = = = B [ i ] ;
end
endgenerate
endmodule
// --------------------------------------------------------
module \ $bwmux ( A , B , S , Y ) ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A , B ;
input [ WIDTH - 1 : 0 ] S ;
output [ WIDTH - 1 : 0 ] Y ;
genvar i ;
generate
for ( i = 0 ; i < WIDTH ; i = i + 1 ) begin : slices
assign Y [ i ] = S [ i ] ? B [ i ] : A [ i ] ;
end
endgenerate
endmodule
// --------------------------------------------------------
2014-01-19 14:03:40 +01:00
module \ $assert ( A , EN ) ;
input A , EN ;
2015-01-19 11:55:05 +01:00
`ifndef SIMLIB_NOCHECKS
2014-01-19 14:03:40 +01:00
always @ * begin
if ( A ! = = 1 'b1 & & EN = = = 1 'b1 ) begin
2015-08-14 22:23:01 +02:00
$display ( " Assertion %m failed! " ) ;
2015-02-26 18:04:10 +01:00
$stop ;
end
end
`endif
endmodule
// --------------------------------------------------------
module \ $assume ( A , EN ) ;
input A , EN ;
`ifndef SIMLIB_NOCHECKS
always @ * begin
if ( A ! = = 1 'b1 & & EN = = = 1 'b1 ) begin
$display ( " Assumption %m failed! " ) ;
2015-01-19 11:55:05 +01:00
$stop ;
2014-01-19 14:03:40 +01:00
end
end
2015-01-19 11:55:05 +01:00
`endif
endmodule
// --------------------------------------------------------
2017-02-25 10:36:39 +01:00
module \ $live ( A , EN ) ;
input A , EN ;
endmodule
// --------------------------------------------------------
module \ $fair ( A , EN ) ;
input A , EN ;
endmodule
// --------------------------------------------------------
2017-02-04 14:14:26 +01:00
module \ $cover ( A , EN ) ;
input A , EN ;
endmodule
// --------------------------------------------------------
2016-07-21 14:23:22 +02:00
module \ $initstate ( Y ) ;
output reg Y = 1 ;
reg [ 3 : 0 ] cnt = 1 ;
reg trig = 0 ;
initial trig < = 1 ;
always @ ( cnt , trig ) begin
Y < = | cnt ;
cnt < = cnt + | cnt ;
end
endmodule
// --------------------------------------------------------
2016-07-27 15:41:22 +02:00
module \ $anyconst ( Y ) ;
parameter WIDTH = 0 ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = ' bx ;
endmodule
// --------------------------------------------------------
2016-10-14 15:24:03 +02:00
module \ $anyseq ( Y ) ;
parameter WIDTH = 0 ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = ' bx ;
endmodule
2022-07-21 14:22:15 +02:00
// --------------------------------------------------------
`ifdef SIMLIB_FF
2022-11-25 17:40:50 +01:00
`ifndef SIMLIB_GLOBAL_CLOCK
`define SIMLIB_GLOBAL_CLOCK $global_clk
`endif
2022-07-21 14:22:15 +02:00
module \ $anyinit ( D , Q ) ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
initial Q < = ' bx ;
2022-11-25 17:40:50 +01:00
always @ ( `SIMLIB_GLOBAL_CLOCK ) begin
2022-07-21 14:22:15 +02:00
Q < = D ;
end
endmodule
`endif
2016-10-14 15:24:03 +02:00
// --------------------------------------------------------
2018-02-23 13:14:47 +01:00
module \ $allconst ( Y ) ;
parameter WIDTH = 0 ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = ' bx ;
endmodule
// --------------------------------------------------------
module \ $allseq ( Y ) ;
parameter WIDTH = 0 ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = ' bx ;
endmodule
// --------------------------------------------------------
2015-01-19 11:55:05 +01:00
module \ $equiv ( A , B , Y ) ;
input A , B ;
output Y ;
assign Y = ( A ! = = 1 ' bx & & A ! = = B ) ? 1 ' bx : A ;
`ifndef SIMLIB_NOCHECKS
always @ * begin
if ( A ! = = 1 ' bx & & A ! = = B ) begin
$display ( " Equivalence failed! " ) ;
$stop ;
end
end
`endif
2014-01-19 14:03:40 +01:00
endmodule
2023-06-28 03:51:27 +02:00
// --------------------------------------------------------
module \ $print ( EN , TRG , ARGS ) ;
2024-01-11 10:39:28 +01:00
parameter PRIORITY = 0 ;
2023-06-28 03:51:27 +02:00
parameter FORMAT = " " ;
parameter ARGS_WIDTH = 0 ;
2024-01-11 10:39:28 +01:00
2023-06-28 03:51:27 +02:00
parameter TRG_ENABLE = 1 ;
2024-01-11 10:39:28 +01:00
parameter TRG_WIDTH = 0 ;
parameter TRG_POLARITY = 0 ;
2023-06-28 03:51:27 +02:00
2024-01-11 10:39:28 +01:00
input EN ;
input [ TRG_WIDTH - 1 : 0 ] TRG ;
input [ ARGS_WIDTH - 1 : 0 ] ARGS ;
endmodule
// --------------------------------------------------------
module \ $check ( A , EN , TRG , ARGS ) ;
parameter FLAVOR = " " ;
parameter PRIORITY = 0 ;
parameter FORMAT = " " ;
parameter ARGS_WIDTH = 0 ;
parameter TRG_ENABLE = 1 ;
2023-06-28 03:51:27 +02:00
parameter TRG_WIDTH = 0 ;
parameter TRG_POLARITY = 0 ;
2024-01-11 10:39:28 +01:00
input A ;
2023-06-28 03:51:27 +02:00
input EN ;
input [ TRG_WIDTH - 1 : 0 ] TRG ;
input [ ARGS_WIDTH - 1 : 0 ] ARGS ;
endmodule
2014-01-19 14:03:40 +01:00
// --------------------------------------------------------
2014-04-02 21:06:55 +02:00
`ifndef SIMLIB_NOSR
2014-01-19 14:03:40 +01:00
2013-10-18 11:56:16 +02:00
module \ $sr ( SET , CLR , Q ) ;
parameter WIDTH = 0 ;
parameter SET_POLARITY = 1 'b1 ;
parameter CLR_POLARITY = 1 'b1 ;
input [ WIDTH - 1 : 0 ] SET , CLR ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire [ WIDTH - 1 : 0 ] pos_set = SET_POLARITY ? SET : ~ SET ;
wire [ WIDTH - 1 : 0 ] pos_clr = CLR_POLARITY ? CLR : ~ CLR ;
genvar i ;
generate
2016-06-17 16:31:16 +02:00
for ( i = 0 ; i < WIDTH ; i = i + 1 ) begin : bitslices
2020-04-11 16:03:19 +02:00
always @ *
2013-10-18 11:56:16 +02:00
if ( pos_clr [ i ] )
Q [ i ] < = 0 ;
else if ( pos_set [ i ] )
Q [ i ] < = 1 ;
end
endgenerate
endmodule
2014-04-02 21:06:55 +02:00
`endif
2013-10-18 11:56:16 +02:00
// --------------------------------------------------------
2016-10-14 12:33:56 +02:00
`ifdef SIMLIB_FF
2022-11-25 17:40:50 +01:00
`ifndef SIMLIB_GLOBAL_CLOCK
`define SIMLIB_GLOBAL_CLOCK $global_clk
`endif
2013-10-18 11:56:16 +02:00
2016-10-12 01:18:39 +02:00
module \ $ff ( D , Q ) ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] D ;
2016-10-14 12:33:56 +02:00
output reg [ WIDTH - 1 : 0 ] Q ;
2016-10-12 01:18:39 +02:00
2022-11-25 17:40:50 +01:00
always @ ( `SIMLIB_GLOBAL_CLOCK ) begin
2016-10-14 12:33:56 +02:00
Q < = D ;
end
2016-10-12 01:18:39 +02:00
endmodule
2016-10-14 12:33:56 +02:00
`endif
2016-10-12 01:18:39 +02:00
// --------------------------------------------------------
2013-01-05 11:13:26 +01:00
module \ $dff ( CLK , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
input CLK ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
always @ ( posedge pos_clk ) begin
Q < = D ;
end
endmodule
// --------------------------------------------------------
2014-12-08 10:50:19 +01:00
module \ $dffe ( CLK , EN , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter EN_POLARITY = 1 'b1 ;
input CLK , EN ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
always @ ( posedge pos_clk ) begin
if ( EN = = EN_POLARITY ) Q < = D ;
end
endmodule
// --------------------------------------------------------
2014-04-02 21:06:55 +02:00
`ifndef SIMLIB_NOSR
2013-01-05 11:13:26 +01:00
2013-10-18 11:56:16 +02:00
module \ $dffsr ( CLK , SET , CLR , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter SET_POLARITY = 1 'b1 ;
parameter CLR_POLARITY = 1 'b1 ;
input CLK ;
input [ WIDTH - 1 : 0 ] SET , CLR , D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire [ WIDTH - 1 : 0 ] pos_set = SET_POLARITY ? SET : ~ SET ;
wire [ WIDTH - 1 : 0 ] pos_clr = CLR_POLARITY ? CLR : ~ CLR ;
genvar i ;
generate
2016-06-17 16:31:16 +02:00
for ( i = 0 ; i < WIDTH ; i = i + 1 ) begin : bitslices
2013-10-18 11:56:16 +02:00
always @ ( posedge pos_set [ i ] , posedge pos_clr [ i ] , posedge pos_clk )
if ( pos_clr [ i ] )
Q [ i ] < = 0 ;
else if ( pos_set [ i ] )
Q [ i ] < = 1 ;
else
Q [ i ] < = D [ i ] ;
end
endgenerate
endmodule
Add new builtin FF types
The new types include:
- FFs with async reset and enable (`$adffe`, `$_DFFE_[NP][NP][01][NP]_`)
- FFs with sync reset (`$sdff`, `$_SDFF_[NP][NP][01]_`)
- FFs with sync reset and enable, reset priority (`$sdffs`, `$_SDFFE_[NP][NP][01][NP]_`)
- FFs with sync reset and enable, enable priority (`$sdffce`, `$_SDFFCE_[NP][NP][01][NP]_`)
- FFs with async reset, set, and enable (`$dffsre`, `$_DFFSRE_[NP][NP][NP][NP]_`)
- latches with reset or set (`$adlatch`, `$_DLATCH_[NP][NP][01]_`)
The new FF types are not actually used anywhere yet (this is left
for future commits).
2020-04-08 21:42:50 +02:00
// --------------------------------------------------------
module \ $dffsre ( CLK , SET , CLR , EN , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter SET_POLARITY = 1 'b1 ;
parameter CLR_POLARITY = 1 'b1 ;
parameter EN_POLARITY = 1 'b1 ;
input CLK , EN ;
input [ WIDTH - 1 : 0 ] SET , CLR , D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire [ WIDTH - 1 : 0 ] pos_set = SET_POLARITY ? SET : ~ SET ;
wire [ WIDTH - 1 : 0 ] pos_clr = CLR_POLARITY ? CLR : ~ CLR ;
genvar i ;
generate
for ( i = 0 ; i < WIDTH ; i = i + 1 ) begin : bitslices
always @ ( posedge pos_set [ i ] , posedge pos_clr [ i ] , posedge pos_clk )
if ( pos_clr [ i ] )
Q [ i ] < = 0 ;
else if ( pos_set [ i ] )
Q [ i ] < = 1 ;
else if ( EN = = EN_POLARITY )
Q [ i ] < = D [ i ] ;
end
endgenerate
endmodule
2014-04-02 21:06:55 +02:00
`endif
2013-10-18 11:56:16 +02:00
// --------------------------------------------------------
2013-01-05 11:13:26 +01:00
module \ $adff ( CLK , ARST , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter ARST_POLARITY = 1 'b1 ;
parameter ARST_VALUE = 0 ;
input CLK , ARST ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire pos_arst = ARST = = ARST_POLARITY ;
always @ ( posedge pos_clk , posedge pos_arst ) begin
if ( pos_arst )
Q < = ARST_VALUE ;
else
Q < = D ;
end
endmodule
// --------------------------------------------------------
2013-10-18 11:56:16 +02:00
2021-10-01 04:33:00 +02:00
module \ $aldff ( CLK , ALOAD , AD , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter ALOAD_POLARITY = 1 'b1 ;
input CLK , ALOAD ;
input [ WIDTH - 1 : 0 ] AD ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire pos_aload = ALOAD = = ALOAD_POLARITY ;
always @ ( posedge pos_clk , posedge pos_aload ) begin
if ( pos_aload )
Q < = AD ;
else
Q < = D ;
end
endmodule
// --------------------------------------------------------
Add new builtin FF types
The new types include:
- FFs with async reset and enable (`$adffe`, `$_DFFE_[NP][NP][01][NP]_`)
- FFs with sync reset (`$sdff`, `$_SDFF_[NP][NP][01]_`)
- FFs with sync reset and enable, reset priority (`$sdffs`, `$_SDFFE_[NP][NP][01][NP]_`)
- FFs with sync reset and enable, enable priority (`$sdffce`, `$_SDFFCE_[NP][NP][01][NP]_`)
- FFs with async reset, set, and enable (`$dffsre`, `$_DFFSRE_[NP][NP][NP][NP]_`)
- latches with reset or set (`$adlatch`, `$_DLATCH_[NP][NP][01]_`)
The new FF types are not actually used anywhere yet (this is left
for future commits).
2020-04-08 21:42:50 +02:00
module \ $sdff ( CLK , SRST , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter SRST_POLARITY = 1 'b1 ;
parameter SRST_VALUE = 0 ;
input CLK , SRST ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire pos_srst = SRST = = SRST_POLARITY ;
always @ ( posedge pos_clk ) begin
if ( pos_srst )
Q < = SRST_VALUE ;
else
Q < = D ;
end
endmodule
// --------------------------------------------------------
module \ $adffe ( CLK , ARST , EN , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter EN_POLARITY = 1 'b1 ;
parameter ARST_POLARITY = 1 'b1 ;
parameter ARST_VALUE = 0 ;
input CLK , ARST , EN ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire pos_arst = ARST = = ARST_POLARITY ;
always @ ( posedge pos_clk , posedge pos_arst ) begin
if ( pos_arst )
Q < = ARST_VALUE ;
else if ( EN = = EN_POLARITY )
Q < = D ;
end
endmodule
// --------------------------------------------------------
2021-10-01 04:33:00 +02:00
module \ $aldffe ( CLK , ALOAD , AD , EN , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter EN_POLARITY = 1 'b1 ;
parameter ALOAD_POLARITY = 1 'b1 ;
input CLK , ALOAD , EN ;
input [ WIDTH - 1 : 0 ] D ;
input [ WIDTH - 1 : 0 ] AD ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire pos_aload = ALOAD = = ALOAD_POLARITY ;
always @ ( posedge pos_clk , posedge pos_aload ) begin
if ( pos_aload )
Q < = AD ;
else if ( EN = = EN_POLARITY )
Q < = D ;
end
endmodule
// --------------------------------------------------------
Add new builtin FF types
The new types include:
- FFs with async reset and enable (`$adffe`, `$_DFFE_[NP][NP][01][NP]_`)
- FFs with sync reset (`$sdff`, `$_SDFF_[NP][NP][01]_`)
- FFs with sync reset and enable, reset priority (`$sdffs`, `$_SDFFE_[NP][NP][01][NP]_`)
- FFs with sync reset and enable, enable priority (`$sdffce`, `$_SDFFCE_[NP][NP][01][NP]_`)
- FFs with async reset, set, and enable (`$dffsre`, `$_DFFSRE_[NP][NP][NP][NP]_`)
- latches with reset or set (`$adlatch`, `$_DLATCH_[NP][NP][01]_`)
The new FF types are not actually used anywhere yet (this is left
for future commits).
2020-04-08 21:42:50 +02:00
module \ $sdffe ( CLK , SRST , EN , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter EN_POLARITY = 1 'b1 ;
parameter SRST_POLARITY = 1 'b1 ;
parameter SRST_VALUE = 0 ;
input CLK , SRST , EN ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire pos_srst = SRST = = SRST_POLARITY ;
always @ ( posedge pos_clk ) begin
if ( pos_srst )
Q < = SRST_VALUE ;
else if ( EN = = EN_POLARITY )
Q < = D ;
end
endmodule
// --------------------------------------------------------
module \ $sdffce ( CLK , SRST , EN , D , Q ) ;
parameter WIDTH = 0 ;
parameter CLK_POLARITY = 1 'b1 ;
parameter EN_POLARITY = 1 'b1 ;
parameter SRST_POLARITY = 1 'b1 ;
parameter SRST_VALUE = 0 ;
input CLK , SRST , EN ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire pos_srst = SRST = = SRST_POLARITY ;
always @ ( posedge pos_clk ) begin
if ( EN = = EN_POLARITY ) begin
if ( pos_srst )
Q < = SRST_VALUE ;
else
Q < = D ;
end
end
endmodule
// --------------------------------------------------------
2013-10-18 11:56:16 +02:00
module \ $dlatch ( EN , D , Q ) ;
parameter WIDTH = 0 ;
parameter EN_POLARITY = 1 'b1 ;
input EN ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
2013-11-24 20:44:00 +01:00
always @ * begin
2013-10-18 11:56:16 +02:00
if ( EN = = EN_POLARITY )
2015-02-12 17:45:44 +01:00
Q = D ;
2013-11-24 20:44:00 +01:00
end
2013-10-18 11:56:16 +02:00
endmodule
// --------------------------------------------------------
Add new builtin FF types
The new types include:
- FFs with async reset and enable (`$adffe`, `$_DFFE_[NP][NP][01][NP]_`)
- FFs with sync reset (`$sdff`, `$_SDFF_[NP][NP][01]_`)
- FFs with sync reset and enable, reset priority (`$sdffs`, `$_SDFFE_[NP][NP][01][NP]_`)
- FFs with sync reset and enable, enable priority (`$sdffce`, `$_SDFFCE_[NP][NP][01][NP]_`)
- FFs with async reset, set, and enable (`$dffsre`, `$_DFFSRE_[NP][NP][NP][NP]_`)
- latches with reset or set (`$adlatch`, `$_DLATCH_[NP][NP][01]_`)
The new FF types are not actually used anywhere yet (this is left
for future commits).
2020-04-08 21:42:50 +02:00
module \ $adlatch ( EN , ARST , D , Q ) ;
parameter WIDTH = 0 ;
parameter EN_POLARITY = 1 'b1 ;
parameter ARST_POLARITY = 1 'b1 ;
parameter ARST_VALUE = 0 ;
input EN , ARST ;
input [ WIDTH - 1 : 0 ] D ;
output reg [ WIDTH - 1 : 0 ] Q ;
always @ * begin
if ( ARST = = ARST_POLARITY )
Q = ARST_VALUE ;
else if ( EN = = EN_POLARITY )
Q = D ;
end
endmodule
// --------------------------------------------------------
2014-04-02 21:06:55 +02:00
`ifndef SIMLIB_NOSR
2013-01-05 11:13:26 +01:00
2014-03-31 14:14:40 +02:00
module \ $dlatchsr ( EN , SET , CLR , D , Q ) ;
parameter WIDTH = 0 ;
parameter EN_POLARITY = 1 'b1 ;
parameter SET_POLARITY = 1 'b1 ;
parameter CLR_POLARITY = 1 'b1 ;
input EN ;
input [ WIDTH - 1 : 0 ] SET , CLR , D ;
output reg [ WIDTH - 1 : 0 ] Q ;
wire pos_en = EN = = EN_POLARITY ;
wire [ WIDTH - 1 : 0 ] pos_set = SET_POLARITY ? SET : ~ SET ;
wire [ WIDTH - 1 : 0 ] pos_clr = CLR_POLARITY ? CLR : ~ CLR ;
genvar i ;
generate
2016-06-17 16:31:16 +02:00
for ( i = 0 ; i < WIDTH ; i = i + 1 ) begin : bitslices
2014-03-31 14:14:40 +02:00
always @ *
if ( pos_clr [ i ] )
2015-02-12 17:45:44 +01:00
Q [ i ] = 0 ;
2014-03-31 14:14:40 +02:00
else if ( pos_set [ i ] )
2015-02-12 17:45:44 +01:00
Q [ i ] = 1 ;
2014-03-31 14:14:40 +02:00
else if ( pos_en )
2015-02-12 17:45:44 +01:00
Q [ i ] = D [ i ] ;
2014-03-31 14:14:40 +02:00
end
endgenerate
endmodule
2014-04-02 21:06:55 +02:00
`endif
2014-03-31 14:14:40 +02:00
// --------------------------------------------------------
2013-01-05 11:13:26 +01:00
module \ $fsm ( CLK , ARST , CTRL_IN , CTRL_OUT ) ;
parameter NAME = " " ;
parameter CLK_POLARITY = 1 'b1 ;
parameter ARST_POLARITY = 1 'b1 ;
parameter CTRL_IN_WIDTH = 1 ;
parameter CTRL_OUT_WIDTH = 1 ;
parameter STATE_BITS = 1 ;
parameter STATE_NUM = 1 ;
parameter STATE_NUM_LOG2 = 1 ;
parameter STATE_RST = 0 ;
parameter STATE_TABLE = 1 'b0 ;
parameter TRANS_NUM = 1 ;
parameter TRANS_TABLE = 4 'b0 x0x ;
input CLK , ARST ;
input [ CTRL_IN_WIDTH - 1 : 0 ] CTRL_IN ;
output reg [ CTRL_OUT_WIDTH - 1 : 0 ] CTRL_OUT ;
wire pos_clk = CLK = = CLK_POLARITY ;
wire pos_arst = ARST = = ARST_POLARITY ;
reg [ STATE_BITS - 1 : 0 ] state ;
reg [ STATE_BITS - 1 : 0 ] state_tmp ;
reg [ STATE_BITS - 1 : 0 ] next_state ;
reg [ STATE_BITS - 1 : 0 ] tr_state_in ;
reg [ STATE_BITS - 1 : 0 ] tr_state_out ;
reg [ CTRL_IN_WIDTH - 1 : 0 ] tr_ctrl_in ;
reg [ CTRL_OUT_WIDTH - 1 : 0 ] tr_ctrl_out ;
integer i ;
task tr_fetch ;
input [ 31 : 0 ] tr_num ;
reg [ 31 : 0 ] tr_pos ;
reg [ STATE_NUM_LOG2 - 1 : 0 ] state_num ;
begin
tr_pos = ( 2 * STATE_NUM_LOG2 + CTRL_IN_WIDTH + CTRL_OUT_WIDTH ) * tr_num ;
tr_ctrl_out = TRANS_TABLE > > tr_pos ;
tr_pos = tr_pos + CTRL_OUT_WIDTH ;
state_num = TRANS_TABLE > > tr_pos ;
tr_state_out = STATE_TABLE > > ( STATE_BITS * state_num ) ;
tr_pos = tr_pos + STATE_NUM_LOG2 ;
tr_ctrl_in = TRANS_TABLE > > tr_pos ;
tr_pos = tr_pos + CTRL_IN_WIDTH ;
state_num = TRANS_TABLE > > tr_pos ;
tr_state_in = STATE_TABLE > > ( STATE_BITS * state_num ) ;
tr_pos = tr_pos + STATE_NUM_LOG2 ;
end
endtask
always @ ( posedge pos_clk , posedge pos_arst ) begin
2014-01-31 11:21:29 +01:00
if ( pos_arst ) begin
2013-01-05 11:13:26 +01:00
state_tmp = STATE_TABLE [ STATE_BITS * ( STATE_RST + 1 ) - 1 : STATE_BITS * STATE_RST ] ;
2014-01-31 11:21:29 +01:00
for ( i = 0 ; i < STATE_BITS ; i = i + 1 )
if ( state_tmp [ i ] = = = 1 ' bz )
state_tmp [ i ] = 0 ;
state < = state_tmp ;
end else begin
2013-01-05 11:13:26 +01:00
state_tmp = next_state ;
2014-01-31 11:21:29 +01:00
for ( i = 0 ; i < STATE_BITS ; i = i + 1 )
if ( state_tmp [ i ] = = = 1 ' bz )
state_tmp [ i ] = 0 ;
state < = state_tmp ;
end
2013-01-05 11:13:26 +01:00
end
always @ ( state , CTRL_IN ) begin
next_state < = STATE_TABLE [ STATE_BITS * ( STATE_RST + 1 ) - 1 : STATE_BITS * STATE_RST ] ;
CTRL_OUT < = ' bx ;
// $display("---");
// $display("Q: %b %b", state, CTRL_IN);
for ( i = 0 ; i < TRANS_NUM ; i = i + 1 ) begin
tr_fetch ( i ) ;
// $display("T: %b %b -> %b %b [%d]", tr_state_in, tr_ctrl_in, tr_state_out, tr_ctrl_out, i);
casez ( { state , CTRL_IN } )
{ tr_state_in , tr_ctrl_in } : begin
// $display("-> %b %b <- MATCH", state, CTRL_IN);
{ next_state , CTRL_OUT } < = { tr_state_out , tr_ctrl_out } ;
end
endcase
end
end
endmodule
// --------------------------------------------------------
`ifndef SIMLIB_NOMEM
2015-09-25 12:23:11 +02:00
module \ $memrd ( CLK , EN , ADDR , DATA ) ;
2013-01-05 11:13:26 +01:00
parameter MEMID = " " ;
parameter ABITS = 8 ;
parameter WIDTH = 8 ;
2013-04-07 16:42:29 +02:00
parameter CLK_ENABLE = 0 ;
parameter CLK_POLARITY = 0 ;
2014-12-30 13:33:29 +01:00
parameter TRANSPARENT = 0 ;
2013-01-05 11:13:26 +01:00
2015-09-25 12:23:11 +02:00
input CLK , EN ;
2013-01-05 11:13:26 +01:00
input [ ABITS - 1 : 0 ] ADDR ;
output [ WIDTH - 1 : 0 ] DATA ;
initial begin
2014-01-18 19:13:43 +01:00
if ( MEMID ! = " " ) begin
$display ( " ERROR: Found non-simulatable instance of $memrd! " ) ;
$finish ;
end
2013-01-05 11:13:26 +01:00
end
endmodule
2021-05-27 20:54:29 +02:00
module \ $memrd_v2 ( CLK , EN , ARST , SRST , ADDR , DATA ) ;
parameter MEMID = " " ;
parameter ABITS = 8 ;
parameter WIDTH = 8 ;
parameter CLK_ENABLE = 0 ;
parameter CLK_POLARITY = 0 ;
parameter TRANSPARENCY_MASK = 0 ;
parameter COLLISION_X_MASK = 0 ;
parameter ARST_VALUE = 0 ;
parameter SRST_VALUE = 0 ;
parameter INIT_VALUE = 0 ;
parameter CE_OVER_SRST = 0 ;
input CLK , EN , ARST , SRST ;
input [ ABITS - 1 : 0 ] ADDR ;
output [ WIDTH - 1 : 0 ] DATA ;
initial begin
if ( MEMID ! = " " ) begin
$display ( " ERROR: Found non-simulatable instance of $memrd_v2! " ) ;
$finish ;
end
end
endmodule
2013-01-05 11:13:26 +01:00
// --------------------------------------------------------
module \ $memwr ( CLK , EN , ADDR , DATA ) ;
parameter MEMID = " " ;
parameter ABITS = 8 ;
parameter WIDTH = 8 ;
2013-04-07 16:42:29 +02:00
parameter CLK_ENABLE = 0 ;
parameter CLK_POLARITY = 0 ;
2014-12-30 13:33:29 +01:00
parameter PRIORITY = 0 ;
2013-01-05 11:13:26 +01:00
2014-07-16 11:46:40 +02:00
input CLK ;
input [ WIDTH - 1 : 0 ] EN ;
2013-01-05 11:13:26 +01:00
input [ ABITS - 1 : 0 ] ADDR ;
input [ WIDTH - 1 : 0 ] DATA ;
initial begin
2014-01-18 19:13:43 +01:00
if ( MEMID ! = " " ) begin
$display ( " ERROR: Found non-simulatable instance of $memwr! " ) ;
$finish ;
end
2013-01-05 11:13:26 +01:00
end
endmodule
2021-05-27 20:54:29 +02:00
module \ $memwr_v2 ( CLK , EN , ADDR , DATA ) ;
parameter MEMID = " " ;
parameter ABITS = 8 ;
parameter WIDTH = 8 ;
parameter CLK_ENABLE = 0 ;
parameter CLK_POLARITY = 0 ;
parameter PORTID = 0 ;
parameter PRIORITY_MASK = 0 ;
input CLK ;
input [ WIDTH - 1 : 0 ] EN ;
input [ ABITS - 1 : 0 ] ADDR ;
input [ WIDTH - 1 : 0 ] DATA ;
initial begin
if ( MEMID ! = " " ) begin
$display ( " ERROR: Found non-simulatable instance of $memwr_v2! " ) ;
$finish ;
end
end
endmodule
2013-01-05 11:13:26 +01:00
// --------------------------------------------------------
2015-02-14 10:23:03 +01:00
module \ $meminit ( ADDR , DATA ) ;
parameter MEMID = " " ;
parameter ABITS = 8 ;
parameter WIDTH = 8 ;
2015-07-31 10:40:09 +02:00
parameter WORDS = 1 ;
2015-02-14 10:23:03 +01:00
parameter PRIORITY = 0 ;
input [ ABITS - 1 : 0 ] ADDR ;
2015-07-31 10:40:09 +02:00
input [ WORDS * WIDTH - 1 : 0 ] DATA ;
2015-02-14 10:23:03 +01:00
initial begin
if ( MEMID ! = " " ) begin
$display ( " ERROR: Found non-simulatable instance of $meminit! " ) ;
$finish ;
end
end
endmodule
// --------------------------------------------------------
2021-05-21 02:26:52 +02:00
module \ $meminit_v2 ( ADDR , DATA , EN ) ;
parameter MEMID = " " ;
parameter ABITS = 8 ;
parameter WIDTH = 8 ;
parameter WORDS = 1 ;
parameter PRIORITY = 0 ;
input [ ABITS - 1 : 0 ] ADDR ;
input [ WORDS * WIDTH - 1 : 0 ] DATA ;
input [ WIDTH - 1 : 0 ] EN ;
initial begin
if ( MEMID ! = " " ) begin
$display ( " ERROR: Found non-simulatable instance of $meminit_v2! " ) ;
$finish ;
end
end
endmodule
// --------------------------------------------------------
2015-09-25 12:23:11 +02:00
module \ $mem ( RD_CLK , RD_EN , RD_ADDR , RD_DATA , WR_CLK , WR_EN , WR_ADDR , WR_DATA ) ;
2013-01-05 11:13:26 +01:00
parameter MEMID = " " ;
2015-04-05 17:26:53 +02:00
parameter signed SIZE = 4 ;
parameter signed OFFSET = 0 ;
parameter signed ABITS = 2 ;
parameter signed WIDTH = 8 ;
2015-02-14 12:55:03 +01:00
parameter signed INIT = 1 ' bx ;
2013-01-05 11:13:26 +01:00
2015-04-05 17:26:53 +02:00
parameter signed RD_PORTS = 1 ;
2013-01-05 11:13:26 +01:00
parameter RD_CLK_ENABLE = 1 'b1 ;
parameter RD_CLK_POLARITY = 1 'b1 ;
2014-02-03 13:01:45 +01:00
parameter RD_TRANSPARENT = 1 'b1 ;
2013-01-05 11:13:26 +01:00
2015-04-05 17:26:53 +02:00
parameter signed WR_PORTS = 1 ;
2013-01-05 11:13:26 +01:00
parameter WR_CLK_ENABLE = 1 'b1 ;
parameter WR_CLK_POLARITY = 1 'b1 ;
input [ RD_PORTS - 1 : 0 ] RD_CLK ;
2015-09-25 12:23:11 +02:00
input [ RD_PORTS - 1 : 0 ] RD_EN ;
2013-01-05 11:13:26 +01:00
input [ RD_PORTS * ABITS - 1 : 0 ] RD_ADDR ;
output reg [ RD_PORTS * WIDTH - 1 : 0 ] RD_DATA ;
2014-07-16 11:46:40 +02:00
input [ WR_PORTS - 1 : 0 ] WR_CLK ;
input [ WR_PORTS * WIDTH - 1 : 0 ] WR_EN ;
2013-01-05 11:13:26 +01:00
input [ WR_PORTS * ABITS - 1 : 0 ] WR_ADDR ;
input [ WR_PORTS * WIDTH - 1 : 0 ] WR_DATA ;
2015-01-02 17:11:31 +01:00
reg [ WIDTH - 1 : 0 ] memory [ SIZE - 1 : 0 ] ;
2013-01-05 11:13:26 +01:00
2015-01-02 17:11:31 +01:00
integer i , j ;
reg [ WR_PORTS - 1 : 0 ] LAST_WR_CLK ;
reg [ RD_PORTS - 1 : 0 ] LAST_RD_CLK ;
function port_active ;
input clk_enable ;
input clk_polarity ;
input last_clk ;
input this_clk ;
begin
casez ( { clk_enable , clk_polarity , last_clk , this_clk } )
4 'b0 ? ? ? : port_active = 1 ;
4 'b1101 : port_active = 1 ;
4 'b1010 : port_active = 1 ;
default : port_active = 0 ;
endcase
end
endfunction
2013-01-05 11:13:26 +01:00
2015-02-14 12:55:03 +01:00
initial begin
for ( i = 0 ; i < SIZE ; i = i + 1 )
memory [ i ] = INIT > > > ( i * WIDTH ) ;
end
2015-01-02 22:45:26 +01:00
always @ ( RD_CLK , RD_ADDR , RD_DATA , WR_CLK , WR_EN , WR_ADDR , WR_DATA ) begin
2015-01-03 10:57:01 +01:00
`ifdef SIMLIB_MEMDELAY
# `SIMLIB_MEMDELAY ;
`endif
2015-01-02 17:11:31 +01:00
for ( i = 0 ; i < RD_PORTS ; i = i + 1 ) begin
2015-09-25 12:23:11 +02:00
if ( ! RD_TRANSPARENT [ i ] & & RD_CLK_ENABLE [ i ] & & RD_EN [ i ] & & port_active ( RD_CLK_ENABLE [ i ] , RD_CLK_POLARITY [ i ] , LAST_RD_CLK [ i ] , RD_CLK [ i ] ) ) begin
2015-02-14 12:55:03 +01:00
// $display("Read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
2015-01-02 17:11:31 +01:00
RD_DATA [ i * WIDTH + : WIDTH ] < = memory [ RD_ADDR [ i * ABITS + : ABITS ] - OFFSET ] ;
2015-02-14 12:55:03 +01:00
end
2013-01-05 11:13:26 +01:00
end
2015-01-02 17:11:31 +01:00
for ( i = 0 ; i < WR_PORTS ; i = i + 1 ) begin
if ( port_active ( WR_CLK_ENABLE [ i ] , WR_CLK_POLARITY [ i ] , LAST_WR_CLK [ i ] , WR_CLK [ i ] ) )
for ( j = 0 ; j < WIDTH ; j = j + 1 )
2015-02-14 12:55:03 +01:00
if ( WR_EN [ i * WIDTH + j ] ) begin
// $display("Write to %s: addr=%b data=%b", MEMID, WR_ADDR[i*ABITS +: ABITS], WR_DATA[i*WIDTH+j]);
2015-01-02 17:11:31 +01:00
memory [ WR_ADDR [ i * ABITS + : ABITS ] - OFFSET ] [ j ] = WR_DATA [ i * WIDTH + j ] ;
2015-02-14 12:55:03 +01:00
end
2013-01-05 11:13:26 +01:00
end
2015-01-02 17:11:31 +01:00
for ( i = 0 ; i < RD_PORTS ; i = i + 1 ) begin
2015-02-14 12:55:03 +01:00
if ( ( RD_TRANSPARENT [ i ] | | ! RD_CLK_ENABLE [ i ] ) & & port_active ( RD_CLK_ENABLE [ i ] , RD_CLK_POLARITY [ i ] , LAST_RD_CLK [ i ] , RD_CLK [ i ] ) ) begin
// $display("Transparent read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
2015-01-02 17:11:31 +01:00
RD_DATA [ i * WIDTH + : WIDTH ] < = memory [ RD_ADDR [ i * ABITS + : ABITS ] - OFFSET ] ;
2015-02-14 12:55:03 +01:00
end
2015-01-02 17:11:31 +01:00
end
LAST_RD_CLK < = RD_CLK ;
LAST_WR_CLK < = WR_CLK ;
end
2013-01-05 11:13:26 +01:00
endmodule
2021-05-27 20:54:29 +02:00
module \ $mem_v2 ( RD_CLK , RD_EN , RD_ARST , RD_SRST , RD_ADDR , RD_DATA , WR_CLK , WR_EN , WR_ADDR , WR_DATA ) ;
parameter MEMID = " " ;
parameter signed SIZE = 4 ;
parameter signed OFFSET = 0 ;
parameter signed ABITS = 2 ;
parameter signed WIDTH = 8 ;
parameter signed INIT = 1 ' bx ;
parameter signed RD_PORTS = 1 ;
parameter RD_CLK_ENABLE = 1 'b1 ;
parameter RD_CLK_POLARITY = 1 'b1 ;
parameter RD_TRANSPARENCY_MASK = 1 'b0 ;
parameter RD_COLLISION_X_MASK = 1 'b0 ;
parameter RD_WIDE_CONTINUATION = 1 'b0 ;
parameter RD_CE_OVER_SRST = 1 'b0 ;
parameter RD_ARST_VALUE = 1 'b0 ;
parameter RD_SRST_VALUE = 1 'b0 ;
parameter RD_INIT_VALUE = 1 'b0 ;
parameter signed WR_PORTS = 1 ;
parameter WR_CLK_ENABLE = 1 'b1 ;
parameter WR_CLK_POLARITY = 1 'b1 ;
parameter WR_PRIORITY_MASK = 1 'b0 ;
parameter WR_WIDE_CONTINUATION = 1 'b0 ;
input [ RD_PORTS - 1 : 0 ] RD_CLK ;
input [ RD_PORTS - 1 : 0 ] RD_EN ;
input [ RD_PORTS - 1 : 0 ] RD_ARST ;
input [ RD_PORTS - 1 : 0 ] RD_SRST ;
input [ RD_PORTS * ABITS - 1 : 0 ] RD_ADDR ;
output reg [ RD_PORTS * WIDTH - 1 : 0 ] RD_DATA ;
input [ WR_PORTS - 1 : 0 ] WR_CLK ;
input [ WR_PORTS * WIDTH - 1 : 0 ] WR_EN ;
input [ WR_PORTS * ABITS - 1 : 0 ] WR_ADDR ;
input [ WR_PORTS * WIDTH - 1 : 0 ] WR_DATA ;
reg [ WIDTH - 1 : 0 ] memory [ SIZE - 1 : 0 ] ;
integer i , j , k ;
reg [ WR_PORTS - 1 : 0 ] LAST_WR_CLK ;
reg [ RD_PORTS - 1 : 0 ] LAST_RD_CLK ;
function port_active ;
input clk_enable ;
input clk_polarity ;
input last_clk ;
input this_clk ;
begin
casez ( { clk_enable , clk_polarity , last_clk , this_clk } )
4 'b0 ? ? ? : port_active = 1 ;
4 'b1101 : port_active = 1 ;
4 'b1010 : port_active = 1 ;
default : port_active = 0 ;
endcase
end
endfunction
initial begin
for ( i = 0 ; i < SIZE ; i = i + 1 )
memory [ i ] = INIT > > > ( i * WIDTH ) ;
RD_DATA = RD_INIT_VALUE ;
end
always @ ( RD_CLK , RD_ARST , RD_ADDR , RD_DATA , WR_CLK , WR_EN , WR_ADDR , WR_DATA ) begin
`ifdef SIMLIB_MEMDELAY
# `SIMLIB_MEMDELAY ;
`endif
for ( i = 0 ; i < RD_PORTS ; i = i + 1 ) begin
if ( RD_CLK_ENABLE [ i ] & & RD_EN [ i ] & & port_active ( RD_CLK_ENABLE [ i ] , RD_CLK_POLARITY [ i ] , LAST_RD_CLK [ i ] , RD_CLK [ i ] ) ) begin
// $display("Read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
RD_DATA [ i * WIDTH + : WIDTH ] < = memory [ RD_ADDR [ i * ABITS + : ABITS ] - OFFSET ] ;
for ( j = 0 ; j < WR_PORTS ; j = j + 1 ) begin
if ( RD_TRANSPARENCY_MASK [ i * WR_PORTS + j ] & & port_active ( WR_CLK_ENABLE [ j ] , WR_CLK_POLARITY [ j ] , LAST_WR_CLK [ j ] , WR_CLK [ j ] ) & & RD_ADDR [ i * ABITS + : ABITS ] = = WR_ADDR [ j * ABITS + : ABITS ] )
for ( k = 0 ; k < WIDTH ; k = k + 1 )
if ( WR_EN [ j * WIDTH + k ] )
RD_DATA [ i * WIDTH + k ] < = WR_DATA [ j * WIDTH + k ] ;
if ( RD_COLLISION_X_MASK [ i * WR_PORTS + j ] & & port_active ( WR_CLK_ENABLE [ j ] , WR_CLK_POLARITY [ j ] , LAST_WR_CLK [ j ] , WR_CLK [ j ] ) & & RD_ADDR [ i * ABITS + : ABITS ] = = WR_ADDR [ j * ABITS + : ABITS ] )
for ( k = 0 ; k < WIDTH ; k = k + 1 )
if ( WR_EN [ j * WIDTH + k ] )
RD_DATA [ i * WIDTH + k ] < = 1 ' bx ;
end
end
end
for ( i = 0 ; i < WR_PORTS ; i = i + 1 ) begin
if ( port_active ( WR_CLK_ENABLE [ i ] , WR_CLK_POLARITY [ i ] , LAST_WR_CLK [ i ] , WR_CLK [ i ] ) )
for ( j = 0 ; j < WIDTH ; j = j + 1 )
if ( WR_EN [ i * WIDTH + j ] ) begin
// $display("Write to %s: addr=%b data=%b", MEMID, WR_ADDR[i*ABITS +: ABITS], WR_DATA[i*WIDTH+j]);
memory [ WR_ADDR [ i * ABITS + : ABITS ] - OFFSET ] [ j ] = WR_DATA [ i * WIDTH + j ] ;
end
end
for ( i = 0 ; i < RD_PORTS ; i = i + 1 ) begin
if ( ! RD_CLK_ENABLE [ i ] ) begin
// $display("Combinatorial read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
RD_DATA [ i * WIDTH + : WIDTH ] < = memory [ RD_ADDR [ i * ABITS + : ABITS ] - OFFSET ] ;
end
end
for ( i = 0 ; i < RD_PORTS ; i = i + 1 ) begin
if ( RD_SRST [ i ] & & port_active ( RD_CLK_ENABLE [ i ] , RD_CLK_POLARITY [ i ] , LAST_RD_CLK [ i ] , RD_CLK [ i ] ) & & ( RD_EN [ i ] | | ! RD_CE_OVER_SRST [ i ] ) )
RD_DATA [ i * WIDTH + : WIDTH ] < = RD_SRST_VALUE [ i * WIDTH + : WIDTH ] ;
if ( RD_ARST [ i ] )
RD_DATA [ i * WIDTH + : WIDTH ] < = RD_ARST_VALUE [ i * WIDTH + : WIDTH ] ;
end
LAST_RD_CLK < = RD_CLK ;
LAST_WR_CLK < = WR_CLK ;
end
endmodule
2013-01-05 11:13:26 +01:00
`endif
2019-04-21 16:10:41 +02:00
2013-01-05 11:13:26 +01:00
// --------------------------------------------------------
2023-06-07 10:20:16 +02:00
module \ $set_tag ( A , SET , CLR , Y ) ;
parameter TAG = " " ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A ;
input [ WIDTH - 1 : 0 ] SET ;
input [ WIDTH - 1 : 0 ] CLR ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = A ;
endmodule
// --------------------------------------------------------
module \ $get_tag ( A , Y ) ;
parameter TAG = " " ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = A ;
endmodule
// --------------------------------------------------------
module \ $overwrite_tag ( A , SET , CLR ) ;
parameter TAG = " " ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A ;
input [ WIDTH - 1 : 0 ] SET ;
input [ WIDTH - 1 : 0 ] CLR ;
endmodule
// --------------------------------------------------------
module \ $original_tag ( A , Y ) ;
parameter TAG = " " ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = A ;
endmodule
// --------------------------------------------------------
2023-08-24 11:55:30 +02:00
module \ $future_ff ( A , Y ) ;
parameter WIDTH = 0 ;
input [ WIDTH - 1 : 0 ] A ;
output [ WIDTH - 1 : 0 ] Y ;
assign Y = A ;
endmodule
// --------------------------------------------------------
2023-12-19 14:37:27 +01:00
( * noblackbox * )
module \ $scopeinfo ( ) ;
parameter TYPE = " " ;
endmodule