verilator/src/V3Dfg.cpp

536 lines
19 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Data flow graph (DFG) representation of logic
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2022 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#include "config_build.h"
#include "verilatedos.h"
#include "V3Dfg.h"
#include "V3File.h"
#include <cctype>
#include <unordered_map>
//------------------------------------------------------------------------------
// DfgGraph
//------------------------------------------------------------------------------
DfgGraph::DfgGraph(AstModule& module, const string& name)
: m_modulep{&module}
, m_name{name} {}
DfgGraph::~DfgGraph() {
forEachVertex([](DfgVertex& vtxp) { delete &vtxp; });
}
void DfgGraph::addGraph(DfgGraph& other) {
other.forEachVertex([&](DfgVertex& vtx) {
other.removeVertex(vtx);
this->addVertex(vtx);
});
}
bool DfgGraph::sortTopologically(bool reverse) {
// Vertices in reverse topological order
std::vector<DfgVertex*> order;
// Markings for algorithm
enum class Mark : uint8_t { Scheduled, OnPath, Finished };
std::unordered_map<DfgVertex*, Mark> marks;
// Stack of nodes in depth first search. The second element of the pair is true if the vertex
// is on the current DFS path, and false if it's only scheduled for visitation.
std::vector<std::pair<DfgVertex*, bool>> stack;
// Schedule vertex for visitation
const auto scheudle = [&](DfgVertex& vtx) {
// Nothing to do if already finished
if (marks.emplace(&vtx, Mark::Scheduled).first->second == Mark::Finished) return;
// Otherwise scheule for visitation
stack.emplace_back(&vtx, false);
};
// For each vertex (direct loop, so we can return early)
for (DfgVertex* vtxp = m_vertices.begin(); vtxp; vtxp = vtxp->m_verticesEnt.nextp()) {
// Initiate DFS from this vertex
scheudle(*vtxp);
while (!stack.empty()) {
// Pick up stack top
const auto pair = stack.back();
stack.pop_back();
DfgVertex* const currp = pair.first;
const bool onPath = pair.second;
Mark& mark = marks.at(currp);
if (onPath) { // Popped node on path
// Mark it as done
UASSERT_OBJ(mark == Mark::OnPath, currp, "DFS got lost");
mark = Mark::Finished;
// Add to order
order.push_back(currp);
} else { // Otherwise node was scheduled for visitation, so visit it
// If already finished, then nothing to do
if (mark == Mark::Finished) continue;
// If already on path, then not a DAG
if (mark == Mark::OnPath) return false;
// Push to path and mark as such
mark = Mark::OnPath;
stack.emplace_back(currp, true);
// Schedule children
currp->forEachSink(scheudle);
}
}
}
// Move given vertex to end of vertex list
const auto reinsert = [this](DfgVertex& vtx) {
// Remove from current location
removeVertex(vtx);
// 'addVertex' appends to the end of the vertex list, so can do this in one loop
addVertex(vtx);
};
// Remember 'order' is in reverse topological order
if (!reverse) {
for (DfgVertex* vtxp : vlstd::reverse_view(order)) reinsert(*vtxp);
} else {
for (DfgVertex* vtxp : order) reinsert(*vtxp);
}
// Done
return true;
}
std::vector<std::unique_ptr<DfgGraph>> DfgGraph::splitIntoComponents() {
size_t componentNumber = 0;
std::unordered_map<const DfgVertex*, unsigned> vertex2component;
forEachVertex([&](const DfgVertex& vtx) {
// If already assigned this vertex to a component, then continue
if (vertex2component.count(&vtx)) return;
// Work queue for depth first traversal starting from this vertex
std::vector<const DfgVertex*> queue{&vtx};
// Depth first traversal
while (!queue.empty()) {
// Pop next work item
const DfgVertex& item = *queue.back();
queue.pop_back();
// Mark vertex as belonging to current component (if it's not marked yet)
const bool isFirstEncounter = vertex2component.emplace(&item, componentNumber).second;
// If we have already visited this vertex during the traversal, then move on.
if (!isFirstEncounter) continue;
// Enqueue all sources and sinks of this vertex.
item.forEachSource([&](const DfgVertex& src) { queue.push_back(&src); });
item.forEachSink([&](const DfgVertex& dst) { queue.push_back(&dst); });
}
// Done with this component
++componentNumber;
});
// Create the component graphs
std::vector<std::unique_ptr<DfgGraph>> results{componentNumber};
for (size_t i = 0; i < componentNumber; ++i) {
results[i].reset(new DfgGraph{*m_modulep, name() + "-component-" + cvtToStr(i)});
}
// Move all vertices under the corresponding component graphs
forEachVertex([&](DfgVertex& vtx) {
this->removeVertex(vtx);
results[vertex2component[&vtx]]->addVertex(vtx);
});
UASSERT(size() == 0, "'this' DfgGraph should have been emptied");
return results;
}
void DfgGraph::runToFixedPoint(std::function<bool(DfgVertex&)> f) {
bool changed;
const auto apply = [&](DfgVertex& vtx) -> void {
if (f(vtx)) changed = true;
};
while (true) {
// Do one pass over the graph.
changed = false;
forEachVertex(apply);
if (!changed) break;
// Do another pass in the opposite direction. Alternating directions reduces
// the pathological complexity with left/right leaning trees.
changed = false;
forEachVertexInReverse(apply);
if (!changed) break;
}
}
static const string toDotId(const DfgVertex& vtx) { return '"' + cvtToHex(&vtx) + '"'; }
// Dump one DfgVertex in Graphviz format
static void dumpDotVertex(std::ostream& os, const DfgVertex& vtx) {
os << toDotId(vtx);
if (const DfgVar* const varVtxp = vtx.cast<DfgVar>()) {
AstVar* const varp = varVtxp->varp();
os << " [label=\"" << varp->name() << "\nW" << varVtxp->width() << " / F"
<< varVtxp->fanout() << '"';
if (varp->isIO()) {
if (varp->direction() == VDirection::INPUT) {
os << ", shape=house, orientation=270";
} else if (varp->direction() == VDirection::OUTPUT) {
os << ", shape=house, orientation=90";
} else {
os << ", shape=star";
}
} else if (varVtxp->hasExtRefs()) {
os << ", shape=box, style=diagonals,filled, fillcolor=red";
} else if (varVtxp->hasModRefs()) {
os << ", shape=box, style=diagonals";
} else {
os << ", shape=box";
}
os << "]";
} else if (const DfgConst* const constVtxp = vtx.cast<DfgConst>()) {
const V3Number& num = constVtxp->constp()->num();
os << " [label=\"";
if (num.width() <= 32 && !num.isSigned()) {
const bool feedsSel = !constVtxp->findSink<DfgVertex>([](const DfgVertex& vtx) { //
return !vtx.is<DfgSel>();
});
if (feedsSel) {
os << num.toUInt();
} else {
os << constVtxp->width() << "'d" << num.toUInt() << "\n";
os << constVtxp->width() << "'h" << std::hex << num.toUInt() << std::dec;
}
} else {
os << num.ascii();
}
os << '"';
os << ", shape=plain";
os << "]";
} else {
os << " [label=\"" << vtx.typeName() << "\nW" << vtx.width() << " / F" << vtx.fanout()
<< '"';
if (vtx.hasMultipleSinks())
os << ", shape=doublecircle";
else
os << ", shape=circle";
os << "]";
}
os << endl;
}
// Dump one DfgEdge in Graphviz format
static void dumpDotEdge(std::ostream& os, const DfgEdge& edge, const string& headlabel) {
os << toDotId(*edge.sourcep()) << " -> " << toDotId(*edge.sinkp());
if (!headlabel.empty()) os << " [headlabel=\"" << headlabel << "\"]";
os << endl;
}
// Dump one DfgVertex and all of its source DfgEdges in Graphviz format
static void dumpDotVertexAndSourceEdges(std::ostream& os, const DfgVertex& vtx) {
dumpDotVertex(os, vtx);
vtx.forEachSourceEdge([&](const DfgEdge& edge, size_t idx) { //
if (edge.sourcep()) {
string headLabel;
if (vtx.arity() > 1) headLabel = std::toupper(vtx.srcName(idx)[0]);
dumpDotEdge(os, edge, headLabel);
}
});
}
void DfgGraph::dumpDot(std::ostream& os, const string& label) const {
// Header
os << "digraph dfg {" << endl;
os << "graph [label=\"" << name();
if (!label.empty()) os << "-" << label;
os << "\", labelloc=t, labeljust=l]" << endl;
os << "graph [rankdir=LR]" << endl;
// Emit all vertices
forEachVertex([&](const DfgVertex& vtx) { dumpDotVertexAndSourceEdges(os, vtx); });
// Footer
os << "}" << endl;
}
void DfgGraph::dumpDotFile(const string& fileName, const string& label) const {
// This generates a file used by graphviz, https://www.graphviz.org
// "hardcoded" parameters:
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(fileName)};
if (os->fail()) v3fatal("Cannot write to file: " << fileName);
dumpDot(*os.get(), label);
os->close();
}
void DfgGraph::dumpDotFilePrefixed(const string& label) const {
string fileName = name();
if (!label.empty()) fileName += "-" + label;
dumpDotFile(v3Global.debugFilename(fileName) + ".dot", label);
}
// Dump upstream logic cone starting from given vertex
static void dumpDotUpstreamConeFromVertex(std::ostream& os, const DfgVertex& vtx) {
// Work queue for depth first traversal starting from this vertex
std::vector<const DfgVertex*> queue{&vtx};
// Set of already visited vertices
std::unordered_set<const DfgVertex*> visited;
// Depth first traversal
while (!queue.empty()) {
// Pop next work item
const DfgVertex* const itemp = queue.back();
queue.pop_back();
// Mark vertex as visited
const bool isFirstEncounter = visited.insert(itemp).second;
// If we have already visited this vertex during the traversal, then move on.
if (!isFirstEncounter) continue;
// Enqueue all sources of this vertex.
itemp->forEachSource([&](const DfgVertex& src) { queue.push_back(&src); });
// Emit this vertex and all of its source edges
dumpDotVertexAndSourceEdges(os, *itemp);
}
// Emit all DfgVar vertices that have external references driven by this vertex
vtx.forEachSink([&](const DfgVertex& dst) {
if (const DfgVar* const varVtxp = dst.cast<DfgVar>()) {
if (varVtxp->hasRefs()) dumpDotVertexAndSourceEdges(os, dst);
}
});
}
// LCOV_EXCL_START // Debug function for developer use only
void DfgGraph::dumpDotUpstreamCone(const string& fileName, const DfgVertex& vtx,
const string& name) const {
// Open output file
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(fileName)};
if (os->fail()) v3fatal("Cannot write to file: " << fileName);
// Header
*os << "digraph dfg {" << endl;
if (!name.empty()) *os << "graph [label=\"" << name << "\", labelloc=t, labeljust=l]" << endl;
*os << "graph [rankdir=LR]" << endl;
// Dump the cone
dumpDotUpstreamConeFromVertex(*os, vtx);
// Footer
*os << "}" << endl;
// Done
os->close();
}
// LCOV_EXCL_STOP
void DfgGraph::dumpDotAllVarConesPrefixed(const string& label) const {
const string prefix = label.empty() ? name() + "-cone-" : name() + "-" + label + "-cone-";
forEachVertex([&](const DfgVertex& vtx) {
// Check if this vertex drives a variable referenced outside the DFG.
const DfgVar* const sinkp = vtx.findSink<DfgVar>([](const DfgVar& sink) { //
return sink.hasRefs();
});
// We only dump cones driving an externally referenced variable
if (!sinkp) return;
// Open output file
const string coneName{prefix + sinkp->varp()->name()};
const string fileName{v3Global.debugFilename(coneName) + ".dot"};
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(fileName)};
if (os->fail()) v3fatal("Cannot write to file: " << fileName);
// Header
*os << "digraph dfg {" << endl;
*os << "graph [label=\"" << coneName << "\", labelloc=t, labeljust=l]" << endl;
*os << "graph [rankdir=LR]" << endl;
// Dump this cone
dumpDotUpstreamConeFromVertex(*os, vtx);
// Footer
*os << "}" << endl;
// Done with this logic cone
os->close();
});
}
//------------------------------------------------------------------------------
// DfgEdge
//------------------------------------------------------------------------------
void DfgEdge::unlinkSource() {
if (!m_sourcep) return;
#ifdef VL_DEBUG
{
DfgEdge* sinkp = m_sourcep->m_sinksp;
while (sinkp) {
if (sinkp == this) break;
sinkp = sinkp->m_nextp;
}
UASSERT(sinkp, "'m_sourcep' does not have this edge as sink");
}
#endif
// Relink pointers of predecessor and successor
if (m_prevp) m_prevp->m_nextp = m_nextp;
if (m_nextp) m_nextp->m_prevp = m_prevp;
// If head of list in source, update source's head pointer
if (m_sourcep->m_sinksp == this) m_sourcep->m_sinksp = m_nextp;
// Mark source as unconnected
m_sourcep = nullptr;
// Clear links. This is not strictly necessary, but might catch bugs.
m_prevp = nullptr;
m_nextp = nullptr;
}
void DfgEdge::relinkSource(DfgVertex* newSourcep) {
// Unlink current source, if any
unlinkSource();
// Link new source
m_sourcep = newSourcep;
// Prepend to sink list in source
m_nextp = newSourcep->m_sinksp;
if (m_nextp) m_nextp->m_prevp = this;
newSourcep->m_sinksp = this;
}
//------------------------------------------------------------------------------
// DfgVertex
//------------------------------------------------------------------------------
DfgVertex::DfgVertex(DfgGraph& dfg, FileLine* flp, AstNodeDType* dtypep, DfgType type)
: m_filelinep{flp}
, m_dtypep{dtypep}
, m_type{type} {
dfg.addVertex(*this);
}
bool DfgVertex::selfEquals(const DfgVertex& that) const {
return this->m_type == that.m_type && this->dtypep() == that.dtypep();
}
V3Hash DfgVertex::selfHash() const { return V3Hash{m_type} + width(); }
bool DfgVertex::equals(const DfgVertex& that, EqualsCache& cache) const {
if (this == &that) return true;
if (!this->selfEquals(that)) return false;
const auto key = (this < &that) ? EqualsCache::key_type{this, &that} //
: EqualsCache::key_type{&that, this};
const auto pair = cache.emplace(key, true);
bool& result = pair.first->second;
if (pair.second) {
auto thisPair = this->sourceEdges();
const DfgEdge* const thisSrcEdgesp = thisPair.first;
const size_t thisArity = thisPair.second;
auto thatPair = that.sourceEdges();
const DfgEdge* const thatSrcEdgesp = thatPair.first;
const size_t thatArity = thatPair.second;
UASSERT_OBJ(thisArity == thatArity, this, "Same type vertices must have same arity!");
for (size_t i = 0; i < thisArity; ++i) {
const DfgVertex* const thisSrcVtxp = thisSrcEdgesp[i].m_sourcep;
const DfgVertex* const thatSrcVtxp = thatSrcEdgesp[i].m_sourcep;
if (thisSrcVtxp == thatSrcVtxp) continue;
if (!thisSrcVtxp || !thatSrcVtxp || !thisSrcVtxp->equals(*thatSrcVtxp, cache)) {
result = false;
break;
}
}
}
return result;
}
V3Hash DfgVertex::hash(HashCache& cache) const {
const auto pair = cache.emplace(this, V3Hash{});
V3Hash& result = pair.first->second;
if (pair.second) {
result += selfHash();
forEachSource([&result, &cache](const DfgVertex& src) { result += src.hash(cache); });
}
return result;
}
uint32_t DfgVertex::fanout() const {
uint32_t result = 0;
forEachSinkEdge([&](const DfgEdge&) { ++result; });
return result;
}
void DfgVertex::unlinkDelete(DfgGraph& dfg) {
// Unlink source edges
forEachSourceEdge([](DfgEdge& edge, size_t) { edge.unlinkSource(); });
// Unlink sink edges
forEachSinkEdge([](DfgEdge& edge) { edge.unlinkSource(); });
// Remove from graph
dfg.removeVertex(*this);
// Delete
delete this;
}
void DfgVertex::replaceWith(DfgVertex* newSorucep) {
while (m_sinksp) m_sinksp->relinkSource(newSorucep);
}
//------------------------------------------------------------------------------
// Vertex classes
//------------------------------------------------------------------------------
// DfgVar ----------
void DfgVar::accept(DfgVisitor& visitor) { visitor.visit(this); }
bool DfgVar::selfEquals(const DfgVertex& that) const {
if (const DfgVar* otherp = that.cast<DfgVar>()) return varp() == otherp->varp();
return false;
}
V3Hash DfgVar::selfHash() const { return V3Hasher::uncachedHash(m_varp); }
// DfgConst ----------
void DfgConst::accept(DfgVisitor& visitor) { visitor.visit(this); }
bool DfgConst::selfEquals(const DfgVertex& that) const {
if (const DfgConst* otherp = that.cast<DfgConst>()) {
return constp()->sameTree(otherp->constp());
}
return false;
}
V3Hash DfgConst::selfHash() const { return V3Hasher::uncachedHash(m_constp); }
//------------------------------------------------------------------------------
// DfgVisitor
//------------------------------------------------------------------------------
void DfgVisitor::visit(DfgVar* vtxp) { visit(static_cast<DfgVertex*>(vtxp)); }
void DfgVisitor::visit(DfgConst* vtxp) { visit(static_cast<DfgVertex*>(vtxp)); }
//------------------------------------------------------------------------------
// 'astgen' generated definitions
//------------------------------------------------------------------------------
#include "V3Dfg__gen_definitions.h"