This patch adds some abstract enums to pass to the trace decl* APIs, so
the VCD/FST specific code can be kept in verilated_{vcd,fst}_*.cc, and
removed from V3Emit*. It also reworks the generation of the trace init
functions (those that call 'decl*' for the signals) such that the scope
hierarchy is traversed precisely once during initialization, which
simplifies the FST writer. This later change also has the side effect of
fixing tracing of nested interfaces when traced via an interface
reference - see the change in the expected t_interface_ref_trace - which
previously were missed.
Some values emitted to the trace files are constant (e.g.: actual
parameter values), and never change. Previously we used to trace these
in the 'full' dumps, which also included all other truly variable
signals. This patch introduces a new generated trace function 'const',
to complement the 'full' and 'chg' flavour, and 'const' now only
contains the constant signals, while 'full' and 'chg' contain only the
truly variable signals. The generate 'full' and 'chg' trace functions
now have exactly the same shape. Note that 'const' signals are still
traced using the 'full*' dump methods of the trace buffers, so there is
no need for a third flavour of those.
Again --prof-exec have bit-rotted a little with all the recent changes
to the structure of the generated code. This patch contains a few
improvements:
- Repalce the eval/evl_loop begin/end events with generic
section_push/section_pop events, that can be arbitrarily sprinkled
into the generate code (so long as they are matched correctly) to
measure various sections. The report then contains a nested profile
of the sections, and the VCD trace shows the section names.
- Better handling of exec graphs
- Clearer overall statistics
Still some remains of the --threads 0 mode. Remove unnecessary complexity
from V3EmitCModel. (Also don't pretend there is an MTask in single
threaded mode, when there really isn't.)
It's unlikely one value fits all use case, so making VL_LOCK_SPINS
configurable at model build time.
For testing, we reduce the value as we expect high contention.
This API is used if the user copies the process using `fork`
and similar OS-level mechanisms. The `at_clone` member function
ensures that all model-allocated resources are re-allocated, such
that the copied child process/model can simulate correctly.
A typical allocated resource is the thread pool, which every model
has its own pool.
* Ignore CLion project files and CMake outputs
* Supporting stripping file path that contains backslash
* Set /bigobj flag and increase stack size for windows platform
* Fix MSVC warnings
* Add VL_ASSERT_CAPABILITY; add assumeLocked and pretendUnlock to V3Mutex.
* Pass jobs as template-arguments and use std::packaged_task.
* Add and use V3ThreadPool::ScopedExclusiveAccess.
Event-triggered coroutines live in two stages: 'uncommitted' and 'ready'. First
they land in 'uncommitted', meaning they can't be resumed yet. Only after
coroutines from the 'ready' queue are resumed, the 'uncommitted' ones are moved
to the 'ready' queue, and can be resumed. This is to avoid self-triggering in
situations like waiting for an event immediately after triggering it.
However, there is an issue with `wait` statements. If you have a `wait(b)`, it's
being translated into a loop that awaits a change in `b` as long as `b` is
false. If `b` is false at first, the coroutine is put into the `uncommitted`
queue. If `b` is set to true before it's committed, the coroutine won't get
resumed.
This patch fixes that by immediately committing event controls created from
`wait` statements. That means the coroutine from the example above will get
resumed from now on.
Pack the elements of VlTriggerVec as dense bits (instead of a 1 byte
bool per bit), and check whether they are set on a word granularity.
This effectively transforms conditions of the form `if (trig.at(0) |
trig.at(2) | trig.at(64))` into `if (trig.word(0) & 0x5 | trig.word(1) &
0x1)`. This improves OpenTitan ST by about 1%, worth more on some other
designs.
`VlNow{}` is completely unnecessary, as coroutines are always on the
heap (unless optimized out). Also fix access of var ref passed to forked processes.
1. Fixes passing a null reference as a task argument. Before this patch it would
cause a C++ compile error like `cannot convert ‘VlNull’ to ‘VlClassRef<...>’`.
2. Fixes passing a class reference as a task argument when the argument is a
reference to a base class. Before the patch it would cause a C++ compile
error like `cannot convert ‘VlClassRef<{DERIVED_CLASS}>’ to ‘VlClassRef<{BASE_CLASS}>`.
Apart from the representational changes below, this patch renames
AstNodeMath to AstNodeExpr, and AstCMath to AstCExpr.
Now every expression (i.e.: those AstNodes that represent a [possibly
void] value, with value being interpreted in a very general sense) has
AstNodeExpr as a super class. This necessitates the introduction of an
AstStmtExpr, which represents an expression in statement position, e.g :
'foo();' would be represented as AstStmtExpr(AstCCall(foo)). In exchange
we can get rid of isStatement() in AstNodeStmt, which now really always
represent a statement
Peak memory consumption and verilation speed are not measurably changed.
Partial step towards #3420
In non-static contexts like class objects or stack frames, the use of
global trigger evaluation is not feasible. The concept of dynamic
triggers allows for trigger evaluation in such cases. These triggers are
simply local variables, and coroutines are themselves responsible for
evaluating them. They await the global dynamic trigger scheduler object,
which is responsible for resuming them during the trigger evaluation
step in the 'act' eval region. Once the trigger is set, they await the
dynamic trigger scheduler once again, and then get resumed during the
resumption step in the 'act' eval region.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
Prevents the possibility of assigning an integer to a class reference,
both at the SystemVerilog and the emitted C++ levels.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
* Put suspended coroutine source location in a separate struct,
* Have `dump()` always print, wrap calls in `VL_DEBUG_IF`,
* Improve const correctness.
These are also used as a marker (when non-nullptr) when creating a
buffer. Reset them when they are not valid to avoid invalid write if a
buffer is created after a close (due to a subsequent re-open).
Fixes#3651.
This change introduces a custom reference-counting pointer class that
allows creating such pointers from 'this'. This lets us keep the
receiver object around even if all references to it outside of a class
method no longer exist. Useful for coroutine methods, which may outlive
all external references to the object.
The deletion of objects is deferred until the next time slot. This is to
make clearing the triggered flag on named events in classes safe
(otherwise freed memory could be accessed).
Adds timing support to Verilator. It makes it possible to use delays,
event controls within processes (not just at the start), wait
statements, and forks.
Building a design with those constructs requires a compiler that
supports C++20 coroutines (GCC 10, Clang 5).
The basic idea is to have processes and tasks with delays/event controls
implemented as C++20 coroutines. This allows us to suspend and resume
them at any time.
There are five main runtime classes responsible for managing suspended
coroutines:
* `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle`
with move semantics and automatic cleanup.
* `VlDelayScheduler`, for coroutines suspended by delays. It resumes
them at a proper simulation time.
* `VlTriggerScheduler`, for coroutines suspended by event controls. It
resumes them if its corresponding trigger was set.
* `VlForkSync`, used for syncing `fork..join` and `fork..join_any`
blocks.
* `VlCoroutine`, the return type of all verilated coroutines. It allows
for suspending a stack of coroutines (normally, C++ coroutines are
stackless).
There is a new visitor in `V3Timing.cpp` which:
* scales delays according to the timescale,
* simplifies intra-assignment timing controls and net delays into
regular timing controls and assignments,
* simplifies wait statements into loops with event controls,
* marks processes and tasks with timing controls in them as
suspendable,
* creates delay, trigger scheduler, and fork sync variables,
* transforms timing controls and fork joins into C++ awaits
There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`)
that integrate static scheduling with timing. This involves providing
external domains for variables, so that the necessary combinational
logic gets triggered after coroutine resumption, as well as statements
that need to be injected into the design eval function to perform this
resumption at the correct time.
There is also a function that transforms forked processes into separate
functions.
See the comments in `verilated_timing.h`, `verilated_timing.cpp`,
`V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals
documentation for more details.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
Various optimizations to speed up MTasks coarsening (which is the long
pole in the multi-threaded scheduling of very large designs).
The biggest impact ones:
- Use efficient hand written Pairing Heaps for implementing priority
queues and the scoreboard, instead of the old SortByValueMap. This
helps us avoid having to sort a lot of merge candidates that we will
never actually consider and helps a lot in performance.
- Remove unnecessary associative containers and store data structures
(the heap nodes in particular) directly in the object they relate to.
This eliminates a huge amount of lookups and helps a lot in
performance.
- Distribute storage for SiblingMC instances into the LogicMTask
instances, and combine with the sibling maps. This again eliminates
hash table lookups and makes storage structures smaller.
- Remove some now bidirectional edge maps, keep only the forward map.
There are also some other smaller optimizations:
- Replaced more unnecessary dynamic_casts with static_casts
- Templated some functions/classes to reduce the number of static
branches in loops.
- Improves sorting of edges for sibling candidate creation
- Various micro-optimizations here and there
This speeds up MTask coarsening by 3.8x on a large design, which
translates to a 2.5x speedup of the ordering pass in multi-threaded
mode. (Combined with the earlier optimizations, ordering is now 3x
faster.)
Due to the elimination of a lot of the auxiliary data structures, and
ensuring a minimal size for the necessary ones, memory consumption of
the MTask coarsening is also reduced (measured up to 4.4x reduction
though the accuracy of this is low).
The algorithm is identical except for minor alterations of the order
some candidates are added or removed, this can cause perturbation in the
output due to tied scores being broken based on IDs.
__gcov_flush was a private function and was removed from later GCC
versions (at least from 11.2.0, possibly earlier). Replace with the
documented public __gcov_dump.
These have been 'deprecated' for 2 years and are otherwise unused except
for using a temporary placeholder value, which I have inlined with the
default value.
Also remove the now VL_TIME_STR_CONVERT utility function (and
corresponding unit tests), which have no references in any project on
GitHub.
All remaining use of conditional compilation in the tracing
implementation of the run-time library are replaced with the use of
VerilatedModel::traceConfig, and is now done at run-time.