Having many triggers still hits a bottleneck in LLVM leading to long
compile times.
Instead of setting triggers bit-wise, set them as a whole 64-bit word
when possible. This improves C++ compile times by ~4x on some large
designs and has minor run-time performance benefit.
* Refactor V3Delay for extensibility
Introduce the concept of an "NBA Scheme", which is the lowering pattern
we can use for various variables that are the targets of NBAs.
E.g.:
- ShadowVariable (old default scheme)
- FlagShared (old array set flag scheme)
- ValueQueueWhole (recent dynamic commit queue)
We now analyse all AstAssignDly before making any decisions on which
scheme to apply. We then choose a specific scheme for each variable that
is the target of an NBA, and then all NBAs targeting that variable use
the same scheme. This enables easy mix and match of schemes as needed,
while remaining consistent by design after extensions.
Output is perturbed due to node insertion order, but no functional
or performance change is intended.
Continuing the idea of decoupling the implementations of the various algorithms.
The main points:
-Move the former "processDomain" stuff, dealing with assigning combinational logic into the relevant sensitivity domains into V3OrderProcessDomains.cpp
-Move the parallel code construction in V3OrderParallel.cpp (Could combine this with some parts of V3Partition - those not called from V3Partition::finalize - but that's not for this patch).
-Move the serial code construction into V3OrderSerial.cpp
-Factored the very small common code between the parallel and serial code construction (processMoveOneLogic) into V3OrderCFuncEmitter.cpp
Pack the elements of VlTriggerVec as dense bits (instead of a 1 byte
bool per bit), and check whether they are set on a word granularity.
This effectively transforms conditions of the form `if (trig.at(0) |
trig.at(2) | trig.at(64))` into `if (trig.word(0) & 0x5 | trig.word(1) &
0x1)`. This improves OpenTitan ST by about 1%, worth more on some other
designs.
Apart from the representational changes below, this patch renames
AstNodeMath to AstNodeExpr, and AstCMath to AstCExpr.
Now every expression (i.e.: those AstNodes that represent a [possibly
void] value, with value being interpreted in a very general sense) has
AstNodeExpr as a super class. This necessitates the introduction of an
AstStmtExpr, which represents an expression in statement position, e.g :
'foo();' would be represented as AstStmtExpr(AstCCall(foo)). In exchange
we can get rid of isStatement() in AstNodeStmt, which now really always
represent a statement
Peak memory consumption and verilation speed are not measurably changed.
Partial step towards #3420
This is a major re-design of the way code is scheduled in Verilator,
with the goal of properly supporting the Active and NBA regions of the
SystemVerilog scheduling model, as defined in IEEE 1800-2017 chapter 4.
With this change, all internally generated clocks should simulate
correctly, and there should be no more need for the `clock_enable` and
`clocker` attributes for correctness in the absence of Verilator
generated library models (`--lib-create`).
Details of the new scheduling model and algorithm are provided in
docs/internals.rst.
Implements #3278
IEEE 1800-2017 6.11.3 says these types are unsigned. Until now these
types were treated as not having a signedness (NOSIGN), and nodes having
these types were later resolved by V3Width to be unsigned. This is a bit
problematic when creating nodes of these types after V3Width. Treating
these types as unsigned from the get go is fine, and actually improves
generated code slightly.
* EmitXml: Added <ccall>, <constpool>, <initarray>/<inititem>, wrapped children of <if> and <while> with <begin> elements to prevent ambiguity
* EmitXml: added signed="true" to signed basicdtypes