The previous algorithm was designed to handle the general case where a
full control flow path predicate is required to select which value to
use when synthesizing control flow join point in an always block.
Here we add a better algorithm that tries to use the predicate of
the closest dominating branch if the branch paths dominate the joining
paths. This is almost universally true in synthesizable logic (RTLMeter
has no exceptions), however there are cases where this is not
applicable, for which we fall back on the previous generic algorithm.
Overall this significantly simplifies the synthesized Dfg graphs and
enables further optimization.
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
Previously DFG was limited to having a Sel, or an ArraySel potentially
under a Concat on the LHS of combinational assignments. Other forms or
combinations were not representable in the graph.
This adds support for arbitrary combinations of the above by
combining DfgSplicePacked and DfgSpliceArray vertices introduced in
#6176. In particular, Sel(ArraySel(VarRef,_),_) enables a lot more code
to be represented in DFG.
Added a second algorithm to break cycles in DFG by identifying which
bits of a circular variable are actually independent of the variable,
then reuse the existing (but extended) driver tracing algorithm to
eliminate them.
This can fix up things like: `assign gray = binary ^ (gray >> 1)`
Added an algorithm that can break some combinational cycles in DFG, by
attempting to trace driver logic until we escape the cycle. This can
eliminate a decent portion of UNOPTFLAT warnings. E.g. due to this code:
```systemverilog
assign a[0] = .....;
assign a[1] = ~a[0];
```