Having many triggers still hits a bottleneck in LLVM leading to long
compile times.
Instead of setting triggers bit-wise, set them as a whole 64-bit word
when possible. This improves C++ compile times by ~4x on some large
designs and has minor run-time performance benefit.
* Refactor V3Delay for extensibility
Introduce the concept of an "NBA Scheme", which is the lowering pattern
we can use for various variables that are the targets of NBAs.
E.g.:
- ShadowVariable (old default scheme)
- FlagShared (old array set flag scheme)
- ValueQueueWhole (recent dynamic commit queue)
We now analyse all AstAssignDly before making any decisions on which
scheme to apply. We then choose a specific scheme for each variable that
is the target of an NBA, and then all NBAs targeting that variable use
the same scheme. This enables easy mix and match of schemes as needed,
while remaining consistent by design after extensions.
Output is perturbed due to node insertion order, but no functional
or performance change is intended.
Continuing the idea of decoupling the implementations of the various algorithms.
The main points:
-Move the former "processDomain" stuff, dealing with assigning combinational logic into the relevant sensitivity domains into V3OrderProcessDomains.cpp
-Move the parallel code construction in V3OrderParallel.cpp (Could combine this with some parts of V3Partition - those not called from V3Partition::finalize - but that's not for this patch).
-Move the serial code construction into V3OrderSerial.cpp
-Factored the very small common code between the parallel and serial code construction (processMoveOneLogic) into V3OrderCFuncEmitter.cpp