mirror of https://github.com/zachjs/sv2v.git
200 lines
6.6 KiB
Haskell
200 lines
6.6 KiB
Haskell
{-# LANGUAGE PatternSynonyms #-}
|
|
{- sv2v
|
|
- Author: Zachary Snow <zach@zachjs.com>
|
|
-
|
|
- Utilities for expressions and ranges
|
|
-}
|
|
|
|
module Convert.ExprUtils
|
|
( simplify
|
|
, simplifyStep
|
|
, rangeSize
|
|
, rangeSizeHiLo
|
|
, endianCondExpr
|
|
, endianCondRange
|
|
, dimensionsSize
|
|
) where
|
|
|
|
import Data.Bits (shiftL, shiftR)
|
|
|
|
import Convert.Traverse
|
|
import Language.SystemVerilog.AST
|
|
|
|
simplify :: Expr -> Expr
|
|
simplify = simplifyStep . traverseSinglyNestedExprs simplify . simplifyStep
|
|
|
|
simplifyStep :: Expr -> Expr
|
|
|
|
simplifyStep (UniOp LogNot (Number n)) =
|
|
case numberToInteger n of
|
|
Just 0 -> bool True
|
|
Just _ -> bool False
|
|
Nothing -> UniOp LogNot $ Number n
|
|
simplifyStep (UniOp LogNot (BinOp Eq a b)) = BinOp Ne a b
|
|
simplifyStep (UniOp LogNot (BinOp Ne a b)) = BinOp Eq a b
|
|
|
|
simplifyStep (UniOp UniSub (UniOp UniSub e)) = e
|
|
simplifyStep (UniOp UniSub (BinOp Sub e1 e2)) = BinOp Sub e2 e1
|
|
|
|
simplifyStep (Concat [e]) = e
|
|
simplifyStep (Concat es) = Concat $ filter (/= Concat []) es
|
|
simplifyStep (Repeat (Dec 0) _) = Concat []
|
|
simplifyStep (Repeat (Dec 1) es) = Concat es
|
|
simplifyStep (Mux (Number n) e1 e2) =
|
|
case numberToInteger n of
|
|
Just 0 -> e2
|
|
Just _ -> e1
|
|
Nothing -> Mux (Number n) e1 e2
|
|
|
|
simplifyStep (Call (Ident "$clog2") (Args [Dec k] [])) =
|
|
toDec $ clog2 k
|
|
where
|
|
clog2Help :: Integer -> Integer -> Integer
|
|
clog2Help p n = if p >= n then 0 else 1 + clog2Help (p*2) n
|
|
clog2 :: Integer -> Integer
|
|
clog2 n = if n < 2 then 0 else clog2Help 1 n
|
|
|
|
simplifyStep (BinOp op e1 e2) = simplifyBinOp op e1 e2
|
|
simplifyStep other = other
|
|
|
|
|
|
simplifyBinOp :: BinOp -> Expr -> Expr -> Expr
|
|
|
|
simplifyBinOp Add (Dec 0) e = e
|
|
simplifyBinOp Add e (Dec 0) = e
|
|
simplifyBinOp Sub e (Dec 0) = e
|
|
simplifyBinOp Sub (Dec 0) e = UniOp UniSub e
|
|
simplifyBinOp Mul (Dec 0) _ = toDec 0
|
|
simplifyBinOp Mul (Dec 1) e = e
|
|
simplifyBinOp Mul _ (Dec 0) = toDec 0
|
|
simplifyBinOp Mul e (Dec 1) = e
|
|
|
|
simplifyBinOp Add e1 (UniOp UniSub e2) = BinOp Sub e1 e2
|
|
simplifyBinOp Add (UniOp UniSub e1) e2 = BinOp Sub e2 e1
|
|
simplifyBinOp Sub e1 (UniOp UniSub e2) = BinOp Add e1 e2
|
|
simplifyBinOp Sub (UniOp UniSub e1) e2 = UniOp UniSub $ BinOp Add e1 e2
|
|
|
|
simplifyBinOp Sub (n1 @ Number{}) (BinOp Sub (n2 @ Number{}) e) =
|
|
BinOp Add (BinOp Sub n1 n2) e
|
|
simplifyBinOp Sub (n1 @ Number{}) (BinOp Sub e (n2 @ Number{})) =
|
|
BinOp Sub (BinOp Add n1 n2) e
|
|
simplifyBinOp Sub (BinOp Add e (n1 @ Number{})) (n2 @ Number{}) =
|
|
BinOp Add e (BinOp Sub n1 n2)
|
|
simplifyBinOp Add (n1 @ Number{}) (BinOp Add (n2 @ Number{}) e) =
|
|
BinOp Add (BinOp Add n1 n2) e
|
|
simplifyBinOp Add (n1 @ Number{}) (BinOp Sub e (n2 @ Number{})) =
|
|
BinOp Add e (BinOp Sub n1 n2)
|
|
simplifyBinOp Sub (BinOp Sub e (n1 @ Number{})) (n2 @ Number{}) =
|
|
BinOp Sub e (BinOp Add n1 n2)
|
|
simplifyBinOp Add (BinOp Sub e (n1 @ Number{})) (n2 @ Number{}) =
|
|
BinOp Sub e (BinOp Sub n1 n2)
|
|
simplifyBinOp Add (BinOp Sub (n1 @ Number{}) e) (n2 @ Number{}) =
|
|
BinOp Sub (BinOp Add n1 n2) e
|
|
simplifyBinOp Ge (BinOp Sub e (Dec 1)) (Dec 0) = BinOp Ge e (toDec 1)
|
|
|
|
simplifyBinOp ShiftAL (Dec x) (Dec y) = toDec $ shiftL x (fromIntegral y)
|
|
simplifyBinOp ShiftAR (Dec x) (Dec y) = toDec $ shiftR x (fromIntegral y)
|
|
simplifyBinOp ShiftL (Dec x) (Dec y) = toDec $ shiftL x (fromIntegral y)
|
|
simplifyBinOp ShiftR (Dec x) (Dec y) = toDec $ shiftR x (fromIntegral y)
|
|
|
|
simplifyBinOp op e1 e2 =
|
|
case (e1, e2) of
|
|
(Dec x, Dec y) -> constantFold orig op x y
|
|
(SizDec x, Dec y) -> constantFold orig op x y
|
|
(Dec x, SizDec y) -> constantFold orig op x y
|
|
(Bas x, Dec y) -> constantFold orig op x y
|
|
(Dec x, Bas y) -> constantFold orig op x y
|
|
(Bas x, Bas y) -> constantFold orig op x y
|
|
(NegDec x, Dec y) -> constantFold orig op (-x) y
|
|
(Dec x, NegDec y) -> constantFold orig op x (-y)
|
|
(NegDec x, NegDec y) -> constantFold orig op (-x) (-y)
|
|
_ -> orig
|
|
where orig = BinOp op e1 e2
|
|
|
|
|
|
-- attempt to constant fold a binary operation on integers
|
|
constantFold :: Expr -> BinOp -> Integer -> Integer -> Expr
|
|
constantFold _ Add x y = toDec (x + y)
|
|
constantFold _ Sub x y = toDec (x - y)
|
|
constantFold _ Mul x y = toDec (x * y)
|
|
constantFold _ Div _ 0 = Number $ Based (-32) True Hex 0 bits
|
|
where bits = 2 ^ (32 :: Integer) - 1
|
|
constantFold _ Div x y = toDec (x `quot` y)
|
|
constantFold _ Mod x y = toDec (x `rem` y)
|
|
constantFold _ Pow x y = toDec (x ^ y)
|
|
constantFold _ Eq x y = bool $ x == y
|
|
constantFold _ Ne x y = bool $ x /= y
|
|
constantFold _ Gt x y = bool $ x > y
|
|
constantFold _ Ge x y = bool $ x >= y
|
|
constantFold _ Lt x y = bool $ x < y
|
|
constantFold _ Le x y = bool $ x <= y
|
|
constantFold fallback _ _ _ = fallback
|
|
|
|
|
|
bool :: Bool -> Expr
|
|
bool True = Number $ Decimal 1 False 1
|
|
bool False = Number $ Decimal 1 False 0
|
|
|
|
toDec :: Integer -> Expr
|
|
toDec n =
|
|
if n < 0 then
|
|
UniOp UniSub $ toDec (-n)
|
|
else if n >= 4294967296 `div` 2 then
|
|
let size = fromIntegral $ bits $ n * 2
|
|
in Number $ Decimal size True n
|
|
else
|
|
RawNum n
|
|
where
|
|
bits :: Integer -> Integer
|
|
bits 0 = 0
|
|
bits v = 1 + bits (quot v 2)
|
|
|
|
pattern Dec :: Integer -> Expr
|
|
pattern Dec n <- Number (Decimal (-32) _ n)
|
|
|
|
pattern SizDec :: Integer -> Expr
|
|
pattern SizDec n <- Number (Decimal 32 _ n)
|
|
|
|
pattern NegDec :: Integer -> Expr
|
|
pattern NegDec n <- UniOp UniSub (Dec n)
|
|
|
|
pattern Bas :: Integer -> Expr
|
|
pattern Bas n <- Number (Based _ _ _ n 0)
|
|
|
|
|
|
-- returns the size of a range
|
|
rangeSize :: Range -> Expr
|
|
rangeSize (s, e) =
|
|
endianCondExpr (s, e) a b
|
|
where
|
|
a = rangeSizeHiLo (s, e)
|
|
b = rangeSizeHiLo (e, s)
|
|
|
|
-- returns the size of a range known to be ordered
|
|
rangeSizeHiLo :: Range -> Expr
|
|
rangeSizeHiLo (hi, lo) =
|
|
simplify $ BinOp Add (BinOp Sub hi lo) (RawNum 1)
|
|
|
|
-- chooses one or the other expression based on the endianness of the given
|
|
-- range; [hi:lo] chooses the first expression
|
|
endianCondExpr :: Range -> Expr -> Expr -> Expr
|
|
endianCondExpr r e1 e2 = simplify $ Mux (uncurry (BinOp Ge) r) e1 e2
|
|
|
|
-- chooses one or the other range based on the endianness of the given range,
|
|
-- but in such a way that the result is itself also usable as a range even if
|
|
-- the endianness cannot be resolved during conversion, i.e. if it's dependent
|
|
-- on a parameter value; [hi:lo] chooses the first range
|
|
endianCondRange :: Range -> Range -> Range -> Range
|
|
endianCondRange r r1 r2 =
|
|
( endianCondExpr r (fst r1) (fst r2)
|
|
, endianCondExpr r (snd r1) (snd r2)
|
|
)
|
|
|
|
-- returns the total size of a set of dimensions
|
|
dimensionsSize :: [Range] -> Expr
|
|
dimensionsSize ranges =
|
|
simplify $
|
|
foldl (BinOp Mul) (RawNum 1) $
|
|
map rangeSize $
|
|
ranges
|